-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_fit_nn.py
49 lines (37 loc) · 873 Bytes
/
test_fit_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import jax
import jax.numpy as jnp
import jax.random as jr
import equinox as eqx
import optax
from sbiax.compression.nn import fit_nn
"""
Test fitting neural network compressors.
"""
def test_fit_nn():
key = jr.key(0)
net_key, net_train_key = jr.split(key)
in_size = 3
out_size = 2
net = eqx.nn.MLP(
in_size,
out_size,
width_size=8,
depth=2,
activation=jax.nn.tanh,
key=net_key
)
opt = optax.adamw(1e-3)
D = jnp.ones((100, in_size))
Y = jnp.ones((100, out_size))
model, losses = fit_nn(
net_train_key,
net,
train_data=(D, Y),
opt=opt,
n_batch=8,
patience=10
)
X = jax.vmap(model)(D)
assert jnp.all(jnp.isfinite(X))
assert jnp.all(jnp.isfinite(losses))
assert X.shape == (D.shape[0], out_size)