forked from thuml/Time-Series-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCrossformer_EncDec.py
131 lines (98 loc) · 4.23 KB
/
Crossformer_EncDec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
from einops import rearrange, repeat
from layers.SelfAttention_Family import TwoStageAttentionLayer
class SegMerging(nn.Module):
def __init__(self, d_model, win_size, norm_layer=nn.LayerNorm):
super().__init__()
self.d_model = d_model
self.win_size = win_size
self.linear_trans = nn.Linear(win_size * d_model, d_model)
self.norm = norm_layer(win_size * d_model)
def forward(self, x):
batch_size, ts_d, seg_num, d_model = x.shape
pad_num = seg_num % self.win_size
if pad_num != 0:
pad_num = self.win_size - pad_num
x = torch.cat((x, x[:, :, -pad_num:, :]), dim=-2)
seg_to_merge = []
for i in range(self.win_size):
seg_to_merge.append(x[:, :, i::self.win_size, :])
x = torch.cat(seg_to_merge, -1)
x = self.norm(x)
x = self.linear_trans(x)
return x
class scale_block(nn.Module):
def __init__(self, configs, win_size, d_model, n_heads, d_ff, depth, dropout, \
seg_num=10, factor=10):
super(scale_block, self).__init__()
if win_size > 1:
self.merge_layer = SegMerging(d_model, win_size, nn.LayerNorm)
else:
self.merge_layer = None
self.encode_layers = nn.ModuleList()
for i in range(depth):
self.encode_layers.append(TwoStageAttentionLayer(configs, seg_num, factor, d_model, n_heads, \
d_ff, dropout))
def forward(self, x, attn_mask=None, tau=None, delta=None):
_, ts_dim, _, _ = x.shape
if self.merge_layer is not None:
x = self.merge_layer(x)
for layer in self.encode_layers:
x = layer(x)
return x, None
class Encoder(nn.Module):
def __init__(self, attn_layers):
super(Encoder, self).__init__()
self.encode_blocks = nn.ModuleList(attn_layers)
def forward(self, x):
encode_x = []
encode_x.append(x)
for block in self.encode_blocks:
x, attns = block(x)
encode_x.append(x)
return encode_x, None
class DecoderLayer(nn.Module):
def __init__(self, self_attention, cross_attention, seg_len, d_model, d_ff=None, dropout=0.1):
super(DecoderLayer, self).__init__()
self.self_attention = self_attention
self.cross_attention = cross_attention
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.MLP1 = nn.Sequential(nn.Linear(d_model, d_model),
nn.GELU(),
nn.Linear(d_model, d_model))
self.linear_pred = nn.Linear(d_model, seg_len)
def forward(self, x, cross):
batch = x.shape[0]
x = self.self_attention(x)
x = rearrange(x, 'b ts_d out_seg_num d_model -> (b ts_d) out_seg_num d_model')
cross = rearrange(cross, 'b ts_d in_seg_num d_model -> (b ts_d) in_seg_num d_model')
tmp, attn = self.cross_attention(x, cross, cross, None, None, None,)
x = x + self.dropout(tmp)
y = x = self.norm1(x)
y = self.MLP1(y)
dec_output = self.norm2(x + y)
dec_output = rearrange(dec_output, '(b ts_d) seg_dec_num d_model -> b ts_d seg_dec_num d_model', b=batch)
layer_predict = self.linear_pred(dec_output)
layer_predict = rearrange(layer_predict, 'b out_d seg_num seg_len -> b (out_d seg_num) seg_len')
return dec_output, layer_predict
class Decoder(nn.Module):
def __init__(self, layers):
super(Decoder, self).__init__()
self.decode_layers = nn.ModuleList(layers)
def forward(self, x, cross):
final_predict = None
i = 0
ts_d = x.shape[1]
for layer in self.decode_layers:
cross_enc = cross[i]
x, layer_predict = layer(x, cross_enc)
if final_predict is None:
final_predict = layer_predict
else:
final_predict = final_predict + layer_predict
i += 1
final_predict = rearrange(final_predict, 'b (out_d seg_num) seg_len -> b (seg_num seg_len) out_d', out_d=ts_d)
return final_predict