forked from thuml/Time-Series-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPyraformer_EncDec.py
218 lines (169 loc) · 7.26 KB
/
Pyraformer_EncDec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.linear import Linear
from layers.SelfAttention_Family import AttentionLayer, FullAttention
from layers.Embed import DataEmbedding
import math
def get_mask(input_size, window_size, inner_size):
"""Get the attention mask of PAM-Naive"""
# Get the size of all layers
all_size = []
all_size.append(input_size)
for i in range(len(window_size)):
layer_size = math.floor(all_size[i] / window_size[i])
all_size.append(layer_size)
seq_length = sum(all_size)
mask = torch.zeros(seq_length, seq_length)
# get intra-scale mask
inner_window = inner_size // 2
for layer_idx in range(len(all_size)):
start = sum(all_size[:layer_idx])
for i in range(start, start + all_size[layer_idx]):
left_side = max(i - inner_window, start)
right_side = min(i + inner_window + 1, start + all_size[layer_idx])
mask[i, left_side:right_side] = 1
# get inter-scale mask
for layer_idx in range(1, len(all_size)):
start = sum(all_size[:layer_idx])
for i in range(start, start + all_size[layer_idx]):
left_side = (start - all_size[layer_idx - 1]) + \
(i - start) * window_size[layer_idx - 1]
if i == (start + all_size[layer_idx] - 1):
right_side = start
else:
right_side = (
start - all_size[layer_idx - 1]) + (i - start + 1) * window_size[layer_idx - 1]
mask[i, left_side:right_side] = 1
mask[left_side:right_side, i] = 1
mask = (1 - mask).bool()
return mask, all_size
def refer_points(all_sizes, window_size):
"""Gather features from PAM's pyramid sequences"""
input_size = all_sizes[0]
indexes = torch.zeros(input_size, len(all_sizes))
for i in range(input_size):
indexes[i][0] = i
former_index = i
for j in range(1, len(all_sizes)):
start = sum(all_sizes[:j])
inner_layer_idx = former_index - (start - all_sizes[j - 1])
former_index = start + \
min(inner_layer_idx // window_size[j - 1], all_sizes[j] - 1)
indexes[i][j] = former_index
indexes = indexes.unsqueeze(0).unsqueeze(3)
return indexes.long()
class RegularMask():
def __init__(self, mask):
self._mask = mask.unsqueeze(1)
@property
def mask(self):
return self._mask
class EncoderLayer(nn.Module):
""" Compose with two layers """
def __init__(self, d_model, d_inner, n_head, dropout=0.1, normalize_before=True):
super(EncoderLayer, self).__init__()
self.slf_attn = AttentionLayer(
FullAttention(mask_flag=True, factor=0,
attention_dropout=dropout, output_attention=False),
d_model, n_head)
self.pos_ffn = PositionwiseFeedForward(
d_model, d_inner, dropout=dropout, normalize_before=normalize_before)
def forward(self, enc_input, slf_attn_mask=None):
attn_mask = RegularMask(slf_attn_mask)
enc_output, _ = self.slf_attn(
enc_input, enc_input, enc_input, attn_mask=attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output
class Encoder(nn.Module):
""" A encoder model with self attention mechanism. """
def __init__(self, configs, window_size, inner_size):
super().__init__()
d_bottleneck = configs.d_model//4
self.mask, self.all_size = get_mask(
configs.seq_len, window_size, inner_size)
self.indexes = refer_points(self.all_size, window_size)
self.layers = nn.ModuleList([
EncoderLayer(configs.d_model, configs.d_ff, configs.n_heads, dropout=configs.dropout,
normalize_before=False) for _ in range(configs.e_layers)
]) # naive pyramid attention
self.enc_embedding = DataEmbedding(
configs.enc_in, configs.d_model, configs.dropout)
self.conv_layers = Bottleneck_Construct(
configs.d_model, window_size, d_bottleneck)
def forward(self, x_enc, x_mark_enc):
seq_enc = self.enc_embedding(x_enc, x_mark_enc)
mask = self.mask.repeat(len(seq_enc), 1, 1).to(x_enc.device)
seq_enc = self.conv_layers(seq_enc)
for i in range(len(self.layers)):
seq_enc = self.layers[i](seq_enc, mask)
indexes = self.indexes.repeat(seq_enc.size(
0), 1, 1, seq_enc.size(2)).to(seq_enc.device)
indexes = indexes.view(seq_enc.size(0), -1, seq_enc.size(2))
all_enc = torch.gather(seq_enc, 1, indexes)
seq_enc = all_enc.view(seq_enc.size(0), self.all_size[0], -1)
return seq_enc
class ConvLayer(nn.Module):
def __init__(self, c_in, window_size):
super(ConvLayer, self).__init__()
self.downConv = nn.Conv1d(in_channels=c_in,
out_channels=c_in,
kernel_size=window_size,
stride=window_size)
self.norm = nn.BatchNorm1d(c_in)
self.activation = nn.ELU()
def forward(self, x):
x = self.downConv(x)
x = self.norm(x)
x = self.activation(x)
return x
class Bottleneck_Construct(nn.Module):
"""Bottleneck convolution CSCM"""
def __init__(self, d_model, window_size, d_inner):
super(Bottleneck_Construct, self).__init__()
if not isinstance(window_size, list):
self.conv_layers = nn.ModuleList([
ConvLayer(d_inner, window_size),
ConvLayer(d_inner, window_size),
ConvLayer(d_inner, window_size)
])
else:
self.conv_layers = []
for i in range(len(window_size)):
self.conv_layers.append(ConvLayer(d_inner, window_size[i]))
self.conv_layers = nn.ModuleList(self.conv_layers)
self.up = Linear(d_inner, d_model)
self.down = Linear(d_model, d_inner)
self.norm = nn.LayerNorm(d_model)
def forward(self, enc_input):
temp_input = self.down(enc_input).permute(0, 2, 1)
all_inputs = []
for i in range(len(self.conv_layers)):
temp_input = self.conv_layers[i](temp_input)
all_inputs.append(temp_input)
all_inputs = torch.cat(all_inputs, dim=2).transpose(1, 2)
all_inputs = self.up(all_inputs)
all_inputs = torch.cat([enc_input, all_inputs], dim=1)
all_inputs = self.norm(all_inputs)
return all_inputs
class PositionwiseFeedForward(nn.Module):
""" Two-layer position-wise feed-forward neural network. """
def __init__(self, d_in, d_hid, dropout=0.1, normalize_before=True):
super().__init__()
self.normalize_before = normalize_before
self.w_1 = nn.Linear(d_in, d_hid)
self.w_2 = nn.Linear(d_hid, d_in)
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
if self.normalize_before:
x = self.layer_norm(x)
x = F.gelu(self.w_1(x))
x = self.dropout(x)
x = self.w_2(x)
x = self.dropout(x)
x = x + residual
if not self.normalize_before:
x = self.layer_norm(x)
return x