Skip to content

Latest commit

 

History

History
150 lines (109 loc) · 10.7 KB

regressions-dl19-passage.unicoil-noexp.cached.md

File metadata and controls

150 lines (109 loc) · 10.7 KB

Anserini Regressions: TREC 2019 Deep Learning Track (Passage)

Model: uniCOIL without any expansions (using cached queries)

This page describes regression experiments, integrated into Anserini's regression testing framework, using uniCOIL (without any expansions) on the TREC 2019 Deep Learning Track passage ranking task.. The uniCOIL model is described in the following paper:

Jimmy Lin and Xueguang Ma. A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques. arXiv:2106.14807.

The experiments on this page are not actually reported in the paper. Here, a variant model without expansion is used.

In these experiments, we are using cached queries (i.e., cached results of query encoding).

Note that the NIST relevance judgments provide far more relevant passages per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast). For additional instructions on working with MS MARCO passage collection, refer to this page.

The exact configurations for these regressions are stored in this YAML file. Note that this page is automatically generated from this template as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run bin/build.sh to rebuild the documentation.

From one of our Waterloo servers (e.g., orca), the following command will perform the complete regression, end to end:

python src/main/python/run_regression.py --index --verify --search --regression dl19-passage.unicoil-noexp.cached

We make available a version of the MS MARCO Passage Corpus that has already been processed with uniCOIL, i.e., we have performed model inference on every document and stored the output sparse vectors. Thus, no neural inference is involved.

From any machine, the following command will download the corpus and perform the complete regression, end to end:

python src/main/python/run_regression.py --download --index --verify --search --regression dl19-passage.unicoil-noexp.cached

The run_regression.py script automates the following steps, but if you want to perform each step manually, simply copy/paste from the commands below and you'll obtain the same regression results.

Corpus Download

Download the corpus and unpack into collections/:

wget https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/data/msmarco-passage-unicoil-noexp.tar -P collections/
tar xvf collections/msmarco-passage-unicoil-noexp.tar -C collections/

To confirm, msmarco-passage-unicoil-noexp.tar is 2.7 GB and has MD5 checksum f17ddd8c7c00ff121c3c3b147d2e17d8. With the corpus downloaded, the following command will perform the remaining steps below:

python src/main/python/run_regression.py --index --verify --search --regression dl19-passage.unicoil-noexp.cached \
  --corpus-path collections/msmarco-passage-unicoil-noexp

Indexing

Sample indexing command:

bin/run.sh io.anserini.index.IndexCollection \
  -collection JsonVectorCollection \
  -input /path/to/msmarco-passage-unicoil-noexp \
  -generator DefaultLuceneDocumentGenerator \
  -index indexes/lucene-inverted.msmarco-v1-passage.unicoil-noexp/ \
  -threads 16 -impact -pretokenized -storeDocvectors \
  >& logs/log.msmarco-passage-unicoil-noexp &

The path /path/to/msmarco-passage-unicoil-noexp/ should point to the corpus downloaded above.

The important indexing options to note here are -impact -pretokenized: the first tells Anserini not to encode BM25 doclengths into Lucene's norms (which is the default) and the second option says not to apply any additional tokenization on the uniCOIL tokens. Upon completion, we should have an index with 8,841,823 documents.

For additional details, see explanation of common indexing options.

Retrieval

Topics and qrels are stored here, which is linked to the Anserini repo as a submodule. The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track. The original data can be found here.

After indexing has completed, you should be able to perform retrieval as follows:

bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-inverted.msmarco-v1-passage.unicoil-noexp/ \
  -topics tools/topics-and-qrels/topics.dl19-passage.unicoil-noexp.0shot.tsv.gz \
  -topicReader TsvInt \
  -output runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached.topics.dl19-passage.unicoil-noexp.0shot.txt \
  -impact -pretokenized &

bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-inverted.msmarco-v1-passage.unicoil-noexp/ \
  -topics tools/topics-and-qrels/topics.dl19-passage.unicoil-noexp.0shot.tsv.gz \
  -topicReader TsvInt \
  -output runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rm3.topics.dl19-passage.unicoil-noexp.0shot.txt \
  -impact -pretokenized -rm3 &

bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-inverted.msmarco-v1-passage.unicoil-noexp/ \
  -topics tools/topics-and-qrels/topics.dl19-passage.unicoil-noexp.0shot.tsv.gz \
  -topicReader TsvInt \
  -output runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rocchio.topics.dl19-passage.unicoil-noexp.0shot.txt \
  -impact -pretokenized -rocchio &

Evaluation can be performed using trec_eval:

bin/trec_eval -m map -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m ndcg_cut.10 -c tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m recall.100 -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m recall.1000 -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached.topics.dl19-passage.unicoil-noexp.0shot.txt

bin/trec_eval -m map -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rm3.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m ndcg_cut.10 -c tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rm3.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m recall.100 -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rm3.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m recall.1000 -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rm3.topics.dl19-passage.unicoil-noexp.0shot.txt

bin/trec_eval -m map -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rocchio.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m ndcg_cut.10 -c tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rocchio.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m recall.100 -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rocchio.topics.dl19-passage.unicoil-noexp.0shot.txt
bin/trec_eval -m recall.1000 -c -l 2 tools/topics-and-qrels/qrels.dl19-passage.txt runs/run.msmarco-passage-unicoil-noexp.unicoil-noexp-cached+rocchio.topics.dl19-passage.unicoil-noexp.0shot.txt

Effectiveness

With the above commands, you should be able to reproduce the following results:

AP@1000 uniCOIL (no expansions) +RM3 +Rocchio
DL19 (Passage) 0.4033 0.4176 0.4195
nDCG@10 uniCOIL (no expansions) +RM3 +Rocchio
DL19 (Passage) 0.6433 0.6168 0.6226
R@100 uniCOIL (no expansions) +RM3 +Rocchio
DL19 (Passage) 0.5629 0.5915 0.5883
R@1000 uniCOIL (no expansions) +RM3 +Rocchio
DL19 (Passage) 0.7752 0.8019 0.7998

❗ Retrieval metrics here are computed to depth 1000 hits per query (as opposed to 100 hits per query for document ranking). For computing nDCG, remember that we keep qrels of all relevance grades, whereas for other metrics (e.g., AP), relevance grade 1 is considered not relevant (i.e., use the -l 2 option in trec_eval). The experimental results reported here are directly comparable to the results reported in the track overview paper.

Reproduction Log*

To add to this reproduction log, modify this template and run bin/build.sh to rebuild the documentation.