-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
393 lines (334 loc) · 14.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import sys
import os
import argparse
import time
import numpy as np
import glob
import torch
import torch.nn as nn
from Data import dataloaders
from Models import models
from Metrics import performance_metrics
from Metrics import losses
import shutil, cv2
import matplotlib
from skimage.io import imsave
import random
from transunet_networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
from transunet_networks.vit_seg_modeling import VisionTransformer as ViT_seg
from utils import DiceLoss
random.seed(12)
matplotlib.use('tkagg')
torch.manual_seed(0)
np.random.seed(0)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def save_overlay(background, true_mask, pred_mask, mean=0.13466596,std=0.04942362):
# background = background* std+ mean
# background = ((background* std+ mean)*255).astype('uint8')
true_mask=true_mask.astype('uint8')
pred_mask=pred_mask.astype('uint8')
colored_true_mask = np.zeros((np.shape(true_mask)[0],np.shape(true_mask)[1],3), dtype="uint8")
colored_true_mask[true_mask==255, 0] = 200
colored_true_mask[true_mask==255, 1] = 100
colored_true_mask[true_mask==255, 2] = 0
colored_pred_mask = np.zeros((np.shape(pred_mask)[0],np.shape(pred_mask)[1],3), dtype="uint8")
colored_pred_mask[pred_mask==255, 0] = 50
colored_pred_mask[pred_mask==255, 1] = 250
colored_pred_mask[pred_mask==255, 2] = 200
added_image = cv2.addWeighted(colored_true_mask,0.7,colored_pred_mask,0.3,0)
return added_image
def train_epoch(model, device, train_loader, optimizer, epoch, Dice_loss, BCE_loss):
t = time.time()
model.train()
loss_accumulator = []
for batch_idx, (data, target, _, _, _) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = Dice_loss(output, target) + BCE_loss(torch.sigmoid(output), target)
loss.backward()
optimizer.step()
loss_accumulator.append(loss.item())
if batch_idx + 1 < len(train_loader):
print(
"\rTrain Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}\tTime: {:.6f}".format(
epoch,
(batch_idx + 1) * len(data),
len(train_loader.dataset),
100.0 * (batch_idx + 1) / len(train_loader),
loss.item(),
time.time() - t,
),
end="",
)
else:
print(
"\rTrain Epoch: {} [{}/{} ({:.1f}%)]\tAverage loss: {:.6f}\tTime: {:.6f}".format(
epoch,
(batch_idx + 1) * len(data),
len(train_loader.dataset),
100.0 * (batch_idx + 1) / len(train_loader),
np.mean(loss_accumulator),
time.time() - t,
)
)
return np.mean(loss_accumulator)
@torch.no_grad()
def test(model, device, test_loader, epoch, perf_measure, do_save=False):
t = time.time()
model.eval()
perf_accumulator = []
cnt = 0
for batch_idx, (data, target) in enumerate(test_loader):
data, target = data.to(device), target.to(device)
output = model(data)
if do_save:
for out_id in range(output.size()[0]):
probs = torch.sigmoid(output[out_id,0,:,:])
a = probs.cpu().detach().numpy()
a[a>=0.7] = 1
a[a<0.7] = 0
imsave('results/pred_'+str(cnt)+'.jpg', a*255)
y = target[out_id,0,:,:].cpu().detach().numpy()
imsave('results2/true_'+str(cnt)+'.jpg', y*255)
cnt += 1
background = data[out_id,0,:,:].cpu().detach().numpy()
overlay = save_overlay(background, y*255, a*255)
imsave('results2/overlay_'+str(cnt)+'.jpg', overlay)
perf_accumulator.append(perf_measure(output, target).item())
if batch_idx + 1 < len(test_loader):
print(
"\rTest Epoch: {} [{}/{} ({:.1f}%)]\tAverage performance: {:.6f}\tTime: {:.6f}".format(
epoch,
batch_idx + 1,
len(test_loader),
100.0 * (batch_idx + 1) / len(test_loader),
np.mean(perf_accumulator),
time.time() - t,
),
end="",
)
else:
print(
"\rTest Epoch: {} [{}/{} ({:.1f}%)]\tAverage performance: {:.6f}\tTime: {:.6f}".format(
epoch,
batch_idx + 1,
len(test_loader),
100.0 * (batch_idx + 1) / len(test_loader),
np.mean(perf_accumulator),
time.time() - t,
)
)
print('performances per each case: ', perf_accumulator)
return np.mean(perf_accumulator), np.std(perf_accumulator)
def batch_mean_and_sd(files, files2):
mean = np.array([0.])
stdTemp = np.array([0.])
std = np.array([0.])
numSamples = len(files)
for i in range(numSamples):
im = cv2.imread(str(files[i]), cv2.IMREAD_GRAYSCALE)
# im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
im = im.astype(float) / 255.
# for j in range(3):
mean += np.mean(im[:,:])
# numSamples2 = len(files2)
# for i in range(numSamples2):
# im = cv2.imread(str(files2[i]), cv2.IMREAD_GRAYSCALE)
# # im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# im = im.astype(float) / 255.
# # for j in range(3):
# mean += np.mean(im[:,:])
mean = (mean/(numSamples))
print(mean) #0.51775225 0.47745317 0.35173384]
for i in range(numSamples):
im = cv2.imread(str(files[i]), cv2.IMREAD_GRAYSCALE)
im = im.astype(float) / 255.
# for j in range(3):
stdTemp += ((im[:,:] - mean)**2).sum()/(im.shape[0]*im.shape[1])
std = np.sqrt(stdTemp/numSamples)
print(std) #[0.28075549 0.25811162 0.28913701]
def build(args):
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
if args.dataset == "Kvasir":
img_path = args.root + "/images/*"
input_paths = sorted(glob.glob(img_path))
depth_path = args.root + "/masks/*"
target_paths = sorted(glob.glob(depth_path))
elif args.dataset == "CVC":
img_path = args.root + "Original/*"
input_paths = sorted(glob.glob(img_path))
depth_path = args.root + "Ground Truth/*"
target_paths = sorted(glob.glob(depth_path))
elif args.dataset.lower() == "hifu":
img_path_b = args.root+"images/before/*"
img_path_a = args.root+"images/after/"
mask_path = args.root + "masks/"
input_paths = sorted(glob.glob(img_path_b))
test_img_path_b = args.root+"test_data_asam/images/before/*"
test_img_path_a = args.root+"test_data_asam/images/after/"
test_mask_path = args.root + "test_data_asam/masks/"
test_input_paths = sorted(glob.glob(test_img_path_b))
train_dataloader, test_loader = dataloaders.get_dataloaders(
input_paths, img_path_a, mask_path, test_input_paths, test_img_path_a, test_mask_path, batch_size=args.batch_size, img_size=args.img_size,
)
# mean, std = batch_mean_and_sd(input_paths, img_path_a)
# print("mean and std: \n", mean, std)
Dice_loss = losses.SoftDiceLoss()
BCE_loss = nn.BCELoss()
# Dice_loss = DiceLoss(1)
perf = performance_metrics.DiceScore()
if args.model == 'transunet': #=============== TransUnet
config_vit = CONFIGS_ViT_seg[args.vit_name]
config_vit.n_classes = 1
config_vit.n_skip = args.n_skip
if args.vit_name.find('R50') != -1:
config_vit.patches.grid = (int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size))
model = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda()
model.load_from(weights=np.load('model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz'))
print('\n transunet is set...\n')
elif args.model == 'swinunet':
from Models.vision_transformer import SwinUnet as ViT_seg
from config import get_config
config = get_config(args)
model = ViT_seg(config, img_size=args.img_size, num_classes=1).cuda()
model.load_from(config)
else:
model = models.FCBFormer()
print('\n FCBFormer is set...\n')
try:
if os.path.exists("./Trained models/FCBFormer_Hifu.pt"):
model.load_state_dict(torch.load("./Trained models/FCBFormer_Hifu.pt"))
model.eval()
print('\n load successfully from ./Trained models/FCBFormer_Hifu.pt \n')
except:
pass
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
if args.mgpu == "true":
model = nn.DataParallel(model)
model.to(device)
return (
device,
train_dataloader,
test_loader,
Dice_loss,
BCE_loss,
perf,
model,
optimizer,
)
def train(args):
(
device,
train_dataloader,
test_dataloader,
Dice_loss,
BCE_loss,
perf,
model,
optimizer,
) = build(args)
if not os.path.exists("./Trained models"):
os.makedirs("./Trained models")
prev_best_test = None
if args.lrs == "true":
if args.lrs_min > 0:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="max", factor=0.5, min_lr=args.lrs_min, verbose=True
)
else:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="max", factor=0.5, verbose=True
)
for epoch in range(1, args.epochs + 1):
try:
loss = train_epoch(
model, device, train_dataloader, optimizer, epoch, Dice_loss, BCE_loss
)
test_measure_mean, test_measure_std = test(
model, device, test_dataloader, epoch, perf
)
except KeyboardInterrupt:
print("Training interrupted by user")
sys.exit(0)
if args.lrs == "true":
scheduler.step(test_measure_mean)
print('\n*** prev_best_test: ', prev_best_test,'\n')
if prev_best_test == None or test_measure_mean > prev_best_test:
if test_measure_mean > 0.82:
print("Saving...")
test(model, device, test_dataloader, epoch, perf, do_save=True)
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict()
if args.mgpu == "false"
else model.module.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
"test_measure_mean": test_measure_mean,
"test_measure_std": test_measure_std,
},
"Trained models/FCBFormer_" + args.dataset + ".pt",
)
prev_best_test = test_measure_mean
# test_measure_mean, test_measure_std = test(model, device, test_dataloader, epoch, perf, do_save=True)
print('Finished...!')
def get_args():
parser = argparse.ArgumentParser(description="Train FCBFormer on specified dataset")
parser.add_argument("--dataset", type=str, default='Hifu', choices=["hifu", "Kvasir", "CVC"])
parser.add_argument("--model", type=str, default='swinunet', choices=["fcbformer", "transunet", "swinunet"])
parser.add_argument("--data-root", type=str, dest="root")
parser.add_argument("--epochs", type=int, default=1000)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--learning-rate", type=float, default=2e-6, dest="lr")
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
parser.add_argument(
"--learning-rate-scheduler", type=str, default="true", dest="lrs"
)
parser.add_argument(
"--learning-rate-scheduler-minimum", type=float, default=1e-5, dest="lrs_min"
)
parser.add_argument(
"--multi-gpu", type=str, default="true", dest="mgpu", choices=["true", "false"]
)
parser.add_argument('--n_skip', type=int,
default=3, help='using number of skip-connect, default is num')
parser.add_argument('--vit_name', type=str,
default='R50-ViT-B_16', help='select one vit model')
parser.add_argument('--vit_patches_size', type=int,
default=16, help='vit_patches_size, default is 16')
parser.add_argument('--cfg', type=str, default='/home/hossein/projects/hifu/FCBFormer_V1/configs/swin_tiny_patch4_window7_224_lite.yaml', metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
return parser
def main():
parser = get_args()
args = parser.parse_args()
args.root = 'Data/HIFU_data/'
train(args)
if __name__ == "__main__":
main()