forked from alibaba/EasyNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_clip.py
148 lines (136 loc) · 5.31 KB
/
test_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright (c) 2020 Alibaba PAI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import unittest
from sklearn.metrics import accuracy_score, f1_score
class TestCLIP(unittest.TestCase):
def test_0_train(self):
argvs = "easynlp \
--mode train \
--worker_gpu=1 \
--tables=./MUGE_MR_train_base64_part.tsv,./MUGE_MR_valid_base64_part.tsv \
--input_schema=text:str:1,image:str:1 \
--first_sequence=text \
--second_sequence=image \
--checkpoint_dir=./clip_cn_model/ \
--learning_rate=1e-6 \
--epoch_num=1 \
--random_seed=42 \
--logging_steps=100 \
--save_checkpoint_steps 200 \
--sequence_length=32 \
--micro_batch_size=32 \
--app_name=clip \
--save_all_checkpoints \
--user_defined_parameters='pretrain_model_name_or_path=alibaba-pai/clip_chinese_roberta_base_vit_base' \
"
print(argvs)
try:
p = subprocess.Popen(argvs,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
shell=True)
while True:
line = p.stdout.readline()
if not line:
break
if 'returned non-zero exit status 1' in line.rstrip().decode(
'utf-8'):
p.stdout.close()
raise RuntimeError
print(line.rstrip().decode('utf-8'))
p.stdout.close()
except subprocess.CalledProcessError as e:
print(e.output.decode('utf-8'))
raise RuntimeError
self.assertTrue('./clip_model/pytorch_model.bin')
self.assertTrue('./clip_model/config.json')
def test_1_evaluate(self):
argvs = "easynlp \
--mode evaluate \
--worker_gpu=1 \
--tables=./MUGE_MR_valid_base64_part.tsv \
--input_schema=text:str:1,image:str:1 \
--first_sequence=text \
--second_sequence=image \
--checkpoint_dir=./clip_cn_model \
--random_seed=42 \
--logging_steps=100 \
--save_checkpoint_steps=500 \
--sequence_length=32 \
--micro_batch_size=32 \
--app_name=clip \
"
print(argvs)
try:
p = subprocess.Popen(argvs,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
shell=True)
while True:
line = p.stdout.readline()
if not line:
break
if 'returned non-zero exit status 1' in line.rstrip().decode(
'utf-8'):
p.stdout.close()
raise RuntimeError
print(line.rstrip().decode('utf-8'))
p.stdout.close()
except subprocess.CalledProcessError as e:
print(e.output.decode('utf-8'))
raise RuntimeError
def test_2_predict(self):
argvs = "easynlp \
--mode predict \
--worker_gpu=1 \
--tables=./MUGE_MR_test_base64_part_text.tsv \
--input_schema=text:str:1 \
--output_schema=text_feat \
--outputs ./text_feat.tsv \
--first_sequence=text \
--checkpoint_dir=./clip_cn_model/ \
--random_seed=42 \
--logging_steps=100 \
--save_checkpoint_steps=500 \
--sequence_length=32 \
--micro_batch_size=2 \
--app_name=clip \
"
print(argvs)
try:
p = subprocess.Popen(argvs,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
shell=True)
while True:
line = p.stdout.readline()
if not line:
break
if 'returned non-zero exit status 1' in line.rstrip().decode(
'utf-8'):
p.stdout.close()
raise RuntimeError
print(line.rstrip().decode('utf-8'))
p.stdout.close()
except subprocess.CalledProcessError as e:
print(e.output.decode('utf-8'))
raise RuntimeError
self.assertTrue('./text_feat.tsv')
if __name__ == '__main__':
test = TestCLIP()
test.test_0_train()
test.test_1_evaluate()
test.test_2_predict()