forked from facebookresearch/demucs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
executable file
·174 lines (147 loc) · 6.37 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) Meta, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Test time evaluation, either using the original SDR from [Vincent et al. 2006]
or the newest SDR definition from the MDX 2021 competition (this one will
be reported as `nsdr` for `new sdr`).
"""
from concurrent import futures
import logging
from dora.log import LogProgress
import numpy as np
import musdb
import museval
import torch as th
from .apply import apply_model
from .audio import convert_audio, save_audio
from . import distrib
from .utils import DummyPoolExecutor
logger = logging.getLogger(__name__)
def new_sdr(references, estimates):
"""
Compute the SDR according to the MDX challenge definition.
Adapted from AIcrowd/music-demixing-challenge-starter-kit (MIT license)
"""
assert references.dim() == 4
assert estimates.dim() == 4
delta = 1e-7 # avoid numerical errors
num = th.sum(th.square(references), dim=(2, 3))
den = th.sum(th.square(references - estimates), dim=(2, 3))
num += delta
den += delta
scores = 10 * th.log10(num / den)
return scores
def eval_track(references, estimates, win, hop, compute_sdr=True):
references = references.transpose(1, 2).double()
estimates = estimates.transpose(1, 2).double()
new_scores = new_sdr(references.cpu()[None], estimates.cpu()[None])[0]
if not compute_sdr:
return None, new_scores
else:
references = references.numpy()
estimates = estimates.numpy()
scores = museval.metrics.bss_eval(
references, estimates,
compute_permutation=False,
window=win,
hop=hop,
framewise_filters=False,
bsseval_sources_version=False)[:-1]
return scores, new_scores
def evaluate(solver, compute_sdr=False):
"""
Evaluate model using museval.
compute_sdr=False means using only the MDX definition of the SDR, which
is much faster to evaluate.
"""
args = solver.args
output_dir = solver.folder / "results"
output_dir.mkdir(exist_ok=True, parents=True)
json_folder = solver.folder / "results/test"
json_folder.mkdir(exist_ok=True, parents=True)
# we load tracks from the original musdb set
if args.test.nonhq is None:
test_set = musdb.DB(args.dset.musdb, subsets=["test"], is_wav=True)
else:
test_set = musdb.DB(args.test.nonhq, subsets=["test"], is_wav=False)
src_rate = args.dset.musdb_samplerate
eval_device = 'cpu'
model = solver.model
win = int(1. * model.samplerate)
hop = int(1. * model.samplerate)
indexes = range(distrib.rank, len(test_set), distrib.world_size)
indexes = LogProgress(logger, indexes, updates=args.misc.num_prints,
name='Eval')
pendings = []
pool = futures.ProcessPoolExecutor if args.test.workers else DummyPoolExecutor
with pool(args.test.workers) as pool:
for index in indexes:
track = test_set.tracks[index]
mix = th.from_numpy(track.audio).t().float()
if mix.dim() == 1:
mix = mix[None]
mix = mix.to(solver.device)
ref = mix.mean(dim=0) # mono mixture
mix = (mix - ref.mean()) / ref.std()
mix = convert_audio(mix, src_rate, model.samplerate, model.audio_channels)
estimates = apply_model(model, mix[None],
shifts=args.test.shifts, split=args.test.split,
overlap=args.test.overlap)[0]
estimates = estimates * ref.std() + ref.mean()
estimates = estimates.to(eval_device)
references = th.stack(
[th.from_numpy(track.targets[name].audio).t() for name in model.sources])
if references.dim() == 2:
references = references[:, None]
references = references.to(eval_device)
references = convert_audio(references, src_rate,
model.samplerate, model.audio_channels)
if args.test.save:
folder = solver.folder / "wav" / track.name
folder.mkdir(exist_ok=True, parents=True)
for name, estimate in zip(model.sources, estimates):
save_audio(estimate.cpu(), folder / (name + ".mp3"), model.samplerate)
pendings.append((track.name, pool.submit(
eval_track, references, estimates, win=win, hop=hop, compute_sdr=compute_sdr)))
pendings = LogProgress(logger, pendings, updates=args.misc.num_prints,
name='Eval (BSS)')
tracks = {}
for track_name, pending in pendings:
pending = pending.result()
scores, nsdrs = pending
tracks[track_name] = {}
for idx, target in enumerate(model.sources):
tracks[track_name][target] = {'nsdr': [float(nsdrs[idx])]}
if scores is not None:
(sdr, isr, sir, sar) = scores
for idx, target in enumerate(model.sources):
values = {
"SDR": sdr[idx].tolist(),
"SIR": sir[idx].tolist(),
"ISR": isr[idx].tolist(),
"SAR": sar[idx].tolist()
}
tracks[track_name][target].update(values)
all_tracks = {}
for src in range(distrib.world_size):
all_tracks.update(distrib.share(tracks, src))
result = {}
metric_names = next(iter(all_tracks.values()))[model.sources[0]]
for metric_name in metric_names:
avg = 0
avg_of_medians = 0
for source in model.sources:
medians = [
np.nanmedian(all_tracks[track][source][metric_name])
for track in all_tracks.keys()]
mean = np.mean(medians)
median = np.median(medians)
result[metric_name.lower() + "_" + source] = mean
result[metric_name.lower() + "_med" + "_" + source] = median
avg += mean / len(model.sources)
avg_of_medians += median / len(model.sources)
result[metric_name.lower()] = avg
result[metric_name.lower() + "_med"] = avg_of_medians
return result