forked from shibing624/pycorrector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_models.py
74 lines (65 loc) · 3.6 KB
/
evaluate_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import argparse
import os
import sys
sys.path.append("../")
import pycorrector
pwd_path = os.path.abspath(os.path.dirname(__file__))
def demo():
idx_errors = pycorrector.detect('少先队员因该为老人让坐')
print(idx_errors)
def main(args):
if args.data == 'sighan_15' and args.model == 'rule':
# right_rate:0.1798201798201798, right_count:180, total_count:1001;
# recall_rate:0.15376676986584106, recall_right_count:149, recall_total_count:969, spend_time:121 s
from pycorrector.utils.eval import eval_sighan_2015_by_rule
eval_sighan_2015_by_rule()
if args.data == 'sighan_15' and args.model == 'bert':
# right_rate:0.37623762376237624, right_count:38, total_count:101;
# recall_rate:0.3645833333333333, recall_right_count:35, recall_total_count:96, spend_time:503 s
from pycorrector.utils.eval import eval_sighan_2015_by_bert
eval_sighan_2015_by_bert()
if args.data == 'sighan_15' and args.model == 'macbert':
from pycorrector.utils.eval import eval_sighan_2015_by_macbert
eval_sighan_2015_by_macbert()
if args.data == 'sighan_15' and args.model == 'ernie':
# right_rate:0.297029702970297, right_count:30, total_count:101;
# recall_rate:0.28125, recall_right_count:27, recall_total_count:96, spend_time:655 s
from pycorrector.utils.eval import eval_sighan_2015_by_ernie
eval_sighan_2015_by_ernie()
if args.data == 'corpus500' and args.model == 'rule':
# right_rate:0.486, right_count:243, total_count:500;
# recall_rate:0.18, recall_right_count:54, recall_total_count:300, spend_time:78 s
from pycorrector.utils.eval import eval_corpus500_by_rule, eval_data_path
# 评估规则方法的纠错准召率
out_file = os.path.join(pwd_path, './eval_corpus_error_by_rule.json')
eval_corpus500_by_rule(eval_data_path, output_eval_path=out_file)
if args.data == 'corpus500' and args.model == 'bert':
# right_rate:0.586, right_count:293, total_count:500;
# recall_rate:0.35, recall_right_count:105, recall_total_count:300, spend_time:1760 s
from pycorrector.utils.eval import eval_corpus500_by_bert, eval_data_path
# 评估bert模型的纠错准召率
out_file = os.path.join(pwd_path, './eval_corpus_error_by_bert.json')
eval_corpus500_by_bert(eval_data_path, output_eval_path=out_file)
if args.data == 'corpus500' and args.model == 'macbert':
from pycorrector.utils.eval import eval_corpus500_by_macbert, eval_data_path
out_file = os.path.join(pwd_path, './eval_corpus_error_by_macbert.json')
eval_corpus500_by_macbert(eval_data_path, output_eval_path=out_file)
if args.data == 'corpus500' and args.model == 'ernie':
# right_rate:0.598, right_count:299, total_count:500;
# recall_rate:0.41333333333333333, recall_right_count:124, recall_total_count:300, spend_time:6960 s
from pycorrector.utils.eval import eval_corpus500_by_ernie, eval_data_path
# 评估ernie模型的纠错准召率
out_file = os.path.join(pwd_path, './eval_corpus_error_by_ernie.json')
eval_corpus500_by_ernie(eval_data_path, output_eval_path=out_file)
if __name__ == '__main__':
demo()
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='sighan_15', help='evaluate dataset, sighan_15/corpus500')
parser.add_argument('--model', type=str, default='rule', help='which model to evaluate, rule/bert/macbert/ernie')
args = parser.parse_args()
main(args)