forked from mozman/ezdxf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_604_linalg.py
432 lines (331 loc) · 9.06 KB
/
test_604_linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright (c) 2018-2020 Manfred Moitzi
# License: MIT License
from typing import Iterable
import pytest
import math
from ezdxf.math.linalg import (
Matrix,
tridiagonal_vector_solver,
tridiagonal_matrix_solver,
)
from ezdxf.math.legacy import (
gauss_matrix_solver,
gauss_vector_solver,
gauss_jordan_solver,
gauss_jordan_inverse,
LUDecomposition,
)
@pytest.fixture
def X():
return Matrix([[12, 7], [4, 5], [3, 8]])
def matrix_init(X):
Y = Matrix([12, 7, 4, 5, 3, 8], shape=(3, 2))
assert X.shape == X.nrows, X.ncols
assert Y.shape == (3, 2)
assert X == Y
Y = Matrix(shape=(3, 3))
assert Y == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
Y = Matrix(X)
assert Y == X
Y[0, 0] = -1
assert Y != X, "should not share the same list objects"
Y = Matrix(X, shape=(2, 3))
assert Y.rows() == [[12, 7, 4], [5, 3, 8]]
def test_matrix_getter(X):
assert X[0, 0] == 12
assert X[2, 1] == 8
def test_matrix_setter(X):
X[0, 0] = -7
X[2, 1] = 1.5
assert X[0, 0] == -7
assert X[2, 1] == 1.5
def test_row(X):
a = list(X.row(0))
assert list(X.row(0)) == [12, 7]
assert list(X.row(1)) == [4, 5]
assert list(X.row(2)) == [3, 8]
assert list(X.rows()) == [[12, 7], [4, 5], [3, 8]]
def test_set_row(X):
X.set_row(0, [1, 1])
X.set_row(2, [2, 2])
assert X.row(0) == [1, 1]
assert X.row(2) == [2, 2]
assert list(X.rows()) == [[1, 1], [4, 5], [2, 2]]
X.set_row(-1, [7, 7])
assert X.row(2) == [7, 7]
def test_set_row_error(X):
with pytest.raises(IndexError):
X.set_row(5, [1, 1])
def test_col(X):
assert X.col(0) == [12, 4, 3]
assert X.col(1) == [7, 5, 8]
assert list(X.cols()) == [[12, 4, 3], [7, 5, 8]]
def test_set_col(X):
X.set_col(0, [1, 1, 1])
X.set_col(1, [2, 2, 2])
assert X.col(0) == [1, 1, 1]
assert X.col(1) == [2, 2, 2]
assert list(X.cols()) == [[1, 1, 1], [2, 2, 2]]
X.set_col(-1, [3, 3, 3])
assert X.col(1) == [3, 3, 3]
def test_set_col_error(X):
with pytest.raises(IndexError):
X.set_col(2, [1, 1, 1])
def test_freeze_matrix(X):
m = X.freeze()
assert m == X
assert m[0, 0] == 12
assert m[2, 1] == 8
with pytest.raises(ValueError):
m[0, 0] = 1.0
def test_mul():
X = Matrix(
[
[12, 7, 3],
[4, 5, 6],
[7, 8, 9],
]
)
Y = Matrix(
[
[5, 8, 1, 2],
[6, 7, 3, 0],
[4, 5, 9, 1],
]
)
R = Matrix(
[
[114, 160, 60, 27],
[74, 97, 73, 14],
[119, 157, 112, 23],
]
)
assert X * Y == R
def test_imul():
X = Matrix(
[
[12, 7, 3],
[4, 5, 6],
[7, 8, 9],
]
)
Y = X
Y *= 10
assert Y == Matrix(
[
[120, 70, 30],
[40, 50, 60],
[70, 80, 90],
]
)
assert X[0, 0] != Y[0, 0]
def test_transpose(X):
R = Matrix(
[
(12, 4, 3),
(7, 5, 8),
]
)
T = X.transpose()
assert T == R
# is T mutable?
T[0, 0] = 99
assert T[0, 0] == 99
def test_add(X):
R = X + X
assert R == Matrix([[24, 14], [8, 10], [6, 16]])
R = R + 10
assert R == Matrix([[34, 24], [18, 20], [16, 26]])
def test_iadd(X):
Y = X
Y += Y
assert Y == Matrix([[24, 14], [8, 10], [6, 16]])
assert Y[0, 0] != X[0, 0]
Z = Y
Z += 10
assert Z == Matrix([[34, 24], [18, 20], [16, 26]])
assert Y[0, 0] != Z[0, 0]
def test_sub(X):
R = X - X
assert R == Matrix([[0, 0], [0, 0], [0, 0]])
R = X - 10
assert R == Matrix([[2, -3], [-6, -5], [-7, -2]])
def test_build_matrix_by_rows():
m = Matrix()
m.append_row([1, 2, 3])
assert m.nrows == 1
assert m.ncols == 3
def test_build_matrix_by_cols():
m = Matrix()
m.append_col([1, 2, 3])
assert m.nrows == 3
assert m.ncols == 1
DIAG = [
[1, 2, 5, 7],
[5, 2, 3, 6],
[7, 4, 3, 4],
[8, 6, 3, 4],
]
def test_diag():
m = Matrix(DIAG)
assert m.diag(0) == [1, 2, 3, 4]
assert m.diag(1) == [2, 3, 4]
assert m.diag(2) == [5, 6]
assert m.diag(3) == [7]
assert m.diag(4) == []
assert m.diag(-1) == [5, 4, 3]
assert m.diag(-2) == [7, 6]
assert m.diag(-3) == [8]
assert m.diag(-4) == []
def test_set_diag_float():
m = Matrix(shape=(4, 4))
m.set_diag(0, 2)
for i in range(4):
assert m[i, i] == 2.0
def test_set_diag_above():
m = Matrix(shape=(4, 4))
m.set_diag(1, 2)
for i in range(3):
assert m[i, i + 1] == 2.0
def test_set_diag_below():
m = Matrix(shape=(4, 4))
m.set_diag(-1, 2)
for i in range(3):
assert m[i + 1, i] == 2.0
def test_set_diag_iterable():
m = Matrix(shape=(4, 4))
m.set_diag(0, range(5))
for i in range(4):
assert m[i, i] == i
def test_identity():
m = Matrix.identity((3, 4))
for i in range(3):
assert m[i, i] == 1.0
A = [
[2, 3, 2, 5, 6],
[5, 1, 4, 5, 3],
[1, 12, 3, 1, 12],
[7, 3, 2, 2, 6],
[9, 4, 2, 13, 6],
]
B1 = [6, 9, 5, 4, 8]
B2 = [5, 10, 6, 3, 2]
B3 = [1, 7, 3, 9, 12]
SOLUTION_B1 = [
-0.14854771784232382,
-0.3128630705394192,
1.7966804979253113,
0.41908713692946065,
0.2578146611341633,
]
def test_gauss_vector_solver():
result = gauss_vector_solver(A, B1)
assert result == SOLUTION_B1
def is_close_vectors(v0, v1) -> bool:
return all(math.isclose(c0, c1) for c0, c1 in zip(v0, v1))
def test_gauss_matrix_solver():
result = gauss_matrix_solver(A, zip(B1, B2, B3))
assert is_close_vectors(result.col(0), gauss_vector_solver(A, B1))
assert is_close_vectors(result.col(1), gauss_vector_solver(A, B2))
assert is_close_vectors(result.col(2), gauss_vector_solver(A, B3))
def are_close_vectors(v1: Iterable[float], v2: Iterable[float], abs_tol: float = 1e-12):
for i, j in zip(v1, v2):
assert math.isclose(i, j, abs_tol=abs_tol)
def test_gauss_jordan_vector_solver():
B = Matrix(items=B1, shape=(5, 1))
result_A, result_B = gauss_jordan_solver(A, B)
are_close_vectors(result_B.col(0), SOLUTION_B1)
def test_gauss_jordan_matrix_solver():
result_A, result_B = gauss_jordan_solver(A, zip(B1, B2, B3))
are_close_vectors(result_B.col(0), gauss_vector_solver(A, B1))
are_close_vectors(result_B.col(1), gauss_vector_solver(A, B2))
are_close_vectors(result_B.col(2), gauss_vector_solver(A, B3))
EXPECTED_INVERSE = [
[
-0.16390041493775933617,
-0.002489626556016597522,
-0.007468879668049792526,
0.13651452282157676342,
0.043568464730290456478,
],
[
-0.33402489626556016593,
0.05062240663900414948,
0.15186721991701244817,
-0.10912863070539419082,
0.11410788381742738587,
],
[
-0.05394190871369294633,
0.34854771784232365142,
0.04564315352697095431,
-0.11203319502074688787,
-0.099585062240663900493,
],
[
0.06016597510373443986,
-0.00414937759336099577,
-0.012448132780082987519,
-0.10580912863070539416,
0.072614107883817427371,
],
[
0.35615491009681881048,
-0.13720608575380359624,
-0.078284923928077455093,
0.13457814661134163205,
-0.098893499308437067754,
],
]
def test_gauss_jordan_inverse():
result = gauss_jordan_inverse(A)
assert result.nrows == len(A)
assert result.ncols == len(A[0])
m = Matrix(matrix=EXPECTED_INVERSE)
assert result.isclose(m)
def test_LU_decomposition_solve_vector():
R = LUDecomposition(A).solve_vector(B1)
are_close_vectors(R, SOLUTION_B1)
def test_LU_decomposition_solve_matrix():
lu = LUDecomposition(A)
result = lu.solve_matrix(zip(B1, B2, B3))
are_close_vectors(result.col(0), gauss_vector_solver(A, B1))
are_close_vectors(result.col(1), gauss_vector_solver(A, B2))
are_close_vectors(result.col(2), gauss_vector_solver(A, B3))
def test_LU_decomposition_inverse():
m = Matrix(matrix=EXPECTED_INVERSE)
assert m.isclose(LUDecomposition(A).inverse())
def test_determinant():
from ezdxf.math import Matrix44
A = [
[2, 3, 2, 5],
[5, 1, 4, 5],
[1, 12, 3, 1],
[7, 3, 2, 2],
]
det = LUDecomposition(A).determinant()
chk = Matrix44(*A)
assert math.isclose(chk.determinant(), det)
TRI_DIAGONAL = [
[2, 3, 0, 0, 0],
[5, 1, 4, 0, 0],
[0, 9, 3, 1, 0],
[0, 0, 2, 2, 6],
[0, 0, 0, 4, 6],
]
def tri_solution():
return gauss_matrix_solver(TRI_DIAGONAL, zip(B1, B2, B3))
@pytest.fixture
def tridiag():
m = Matrix(TRI_DIAGONAL)
a = [0] # a0 is not used but must be present
a.extend(m.diag(-1))
b = m.diag(0)
c = m.diag(+1)
return a, b, c
def test_tridiagonal_vector_solver(tridiag):
result = tridiagonal_vector_solver(tridiag, B1)
are_close_vectors(result, tri_solution().col(0))
def test_tridiagonal_matrix_solver(tridiag):
result = tridiagonal_matrix_solver(tridiag, zip(B1, B2, B3))
assert result.isclose(tri_solution())