forked from mozman/ezdxf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_630b_bezier4p_functions.py
285 lines (226 loc) · 9.83 KB
/
test_630b_bezier4p_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Copyright (c) 2010-2020 Manfred Moitzi
# License: MIT License
import pytest
import random
from ezdxf.math import (
cubic_bezier_interpolation,
Vec3,
Vec2,
Bezier3P,
quadratic_to_cubic_bezier,
Bezier4P,
have_bezier_curves_g1_continuity,
bezier_to_bspline,
split_bezier,
quadratic_bezier_from_3p,
close_vectors,
cubic_bezier_bbox,
quadratic_bezier_bbox,
intersection_ray_cubic_bezier_2d,
)
def test_vertex_interpolation():
points = [(0, 0), (3, 1), (5, 3), (0, 8)]
result = list(cubic_bezier_interpolation(points))
assert len(result) == 3
c1, c2, c3 = result
p = c1.control_points
assert p[0].isclose((0, 0))
assert p[1].isclose((0.9333333333333331, 0.3111111111111111))
assert p[2].isclose((1.8666666666666663, 0.6222222222222222))
assert p[3].isclose((3, 1))
p = c2.control_points
assert p[0].isclose((3, 1))
assert p[1].isclose((4.133333333333334, 1.3777777777777778))
assert p[2].isclose((5.466666666666667, 1.822222222222222))
assert p[3].isclose((5, 3))
p = c3.control_points
assert p[0].isclose((5, 3))
assert p[1].isclose((4.533333333333333, 4.177777777777778))
assert p[2].isclose((2.2666666666666666, 6.088888888888889))
assert p[3].isclose((0, 8))
def test_invalid_bezier_interpolation():
"""At least 3 points are required."""
assert len(list(cubic_bezier_interpolation([(0, 0)]))) == 0
assert len(list(cubic_bezier_interpolation([(0, 0), (1, 0)]))) == 0
def test_quadratic_to_cubic_bezier():
r = random.Random(0)
def random_vec() -> Vec3:
return Vec3(r.uniform(-10, 10), r.uniform(-10, 10), r.uniform(-10, 10))
for i in range(1000):
quadratic = Bezier3P((random_vec(), random_vec(), random_vec()))
quadratic_approx = list(quadratic.approximate(10))
cubic = quadratic_to_cubic_bezier(quadratic)
cubic_approx = list(cubic.approximate(10))
assert len(quadratic_approx) == len(cubic_approx)
for p1, p2 in zip(quadratic_approx, cubic_approx):
assert p1.isclose(p2)
# G1 continuity: normalized end-tangent == normalized start-tangent of next curve
B1 = Bezier4P(Vec2.list([(0, 0), (1, 1), (2, 1), (3, 0)]))
# B1/B2 has G1 continuity:
B2 = Bezier4P(Vec2.list([(3, 0), (4, -1), (5, -1), (6, 0)]))
# B1/B3 has no G1 continuity:
B3 = Bezier4P(Vec2.list([(3, 0), (4, 1), (5, 1), (6, 0)]))
# B1/B4 G1 continuity off tolerance:
B4 = Bezier4P(Vec2.list([(3, 0), (4, -1.03), (5, -1.0), (6, 0)]))
# B1/B5 has a gap between B1 end and B5 start:
B5 = Bezier4P(Vec2.list([(4, 0), (5, -1), (6, -1), (7, 0)]))
def test_g1_continuity_for_bezier_curves():
assert have_bezier_curves_g1_continuity(B1, B2) is True
assert have_bezier_curves_g1_continuity(B1, B3) is False
assert (
have_bezier_curves_g1_continuity(B1, B4, g1_tol=1e-4) is False
), "should be outside of tolerance "
assert (
have_bezier_curves_g1_continuity(B1, B5) is False
), "end- and start point should match"
D1 = Bezier4P(Vec2.list([(0, 0), (1, 1), (3, 0), (3, 0)]))
D2 = Bezier4P(Vec2.list([(3, 0), (3, 0), (5, -1), (6, 0)]))
def test_g1_continuity_for_degenerated_bezier_curves():
assert have_bezier_curves_g1_continuity(D1, B2) is False
assert have_bezier_curves_g1_continuity(B1, D2) is False
assert have_bezier_curves_g1_continuity(D1, D2) is False
@pytest.mark.parametrize("curve", [D1, D2])
def test_flatten_degenerated_bezier_curves(curve):
# Degenerated Bezier curves behave like regular curves!
assert len(list(curve.flattening(0.1))) > 4
@pytest.mark.parametrize(
"b1,b2",
[
(B1, B2), # G1 continuity, the common case
(B1, B3), # without G1 continuity is also a regular B-spline
(B1, B5), # regular B-spline, but first control point of B5 is lost
],
ids=["G1", "without G1", "gap"],
)
def test_bezier_curves_to_bspline(b1, b2):
bspline = bezier_to_bspline([b1, b2])
# Remove duplicate control point between two adjacent curves:
expected = list(b1.control_points) + list(b2.control_points)[1:]
assert bspline.degree == 3, "should be a cubic B-spline"
assert bspline.control_points == tuple(expected)
def test_quality_of_bezier_to_bspline_conversion_1():
# This test shows the close relationship between cubic Bézier- and
# cubic B-spline curves.
points0 = B1.approximate(10)
points1 = bezier_to_bspline([B1]).approximate(10)
for p0, p1 in zip(points0, points1):
assert p0.isclose(p1) is True, "conversion should be perfect"
def test_quality_of_bezier_to_bspline_conversion_2():
# This test shows the close relationship between cubic Bézier- and
# cubic B-spline curves.
# Remove duplicate point between the two curves:
points0 = list(B1.approximate(10)) + list(B2.approximate(10))[1:]
points1 = bezier_to_bspline([B1, B2]).approximate(20)
for p0, p1 in zip(points0, points1):
assert p0.isclose(p1) is True, "conversion should be perfect"
def test_bezier_curves_to_bspline_error():
with pytest.raises(ValueError):
bezier_to_bspline([]) # one or more curves expected
class TestSplitBezier:
@pytest.fixture
def points3(self):
return Vec2.list([(0, 0), (0, 1), (1.5, 0.75), (2, 2)])
@pytest.mark.parametrize("t", [-1, 2])
def test_t_validation(self, points3, t):
with pytest.raises(ValueError):
split_bezier(points3, t)
def test_control_point_validation(self):
with pytest.raises(ValueError):
split_bezier([Vec2(0, 0)], 0.5)
def test_split_cubic_bezier(self, points3):
left, right = split_bezier(points3, 0.5)
assert (
close_vectors(
left,
[(0.0, 0.0), (0.0, 0.5), (0.375, 0.6875), (0.8125, 0.90625)],
)
is True
)
assert (
close_vectors(
right,
[(2.0, 2.0), (1.75, 1.375), (1.25, 1.125), (0.8125, 0.90625)],
)
is True
)
def test_quadratic_bezier_from_3_points():
qbez = quadratic_bezier_from_3p((0, 0), (3, 2), (6, 0))
assert qbez.point(0.5).isclose((3, 2))
def test_cubic_bezier_from_3_points():
cbez = quadratic_bezier_from_3p((0, 0), (3, 2), (6, 0))
assert cbez.point(0.5).isclose((3, 2))
class TestBezierCurveBoundingBox:
def test_linear_curve(self):
bbox = cubic_bezier_bbox(Bezier4P(Vec2.list([(0, 0), (1, 1), (2, 2), (3, 3)])))
assert bbox.extmin == (0, 0, 0)
assert bbox.extmax == (3, 3, 0)
def test_reverse_linear_curve(self):
bbox = cubic_bezier_bbox(
Bezier4P(Vec2.list([(3, 3), (2, 2), (-2, -2), (-3, -3)]))
)
assert bbox.extmin == (-3, -3, 0)
assert bbox.extmax == (3, 3, 0)
def test_cubic_bezier_curve_with_one_extrema(self):
curve = Bezier4P(Vec2.list([(0, 0), (0, 1), (2, 1), (2, 0)]))
bbox = cubic_bezier_bbox(curve)
assert bbox.extmax.y == pytest.approx(0.75)
def test_cubic_bezier_curve_with_two_extrema(self):
curve = Bezier4P(Vec2.list([(0, 0), (0, 1), (2, -1), (2, 0)]))
bbox = cubic_bezier_bbox(curve)
assert bbox.extmin.y == pytest.approx(-0.28867513459481287)
assert bbox.extmax.y == pytest.approx(+0.28867513459481287)
def test_closed_3d_cubic_bezier_curve(self):
curve = Bezier4P(Vec3.list([(0, 0, -1), (2, 3, 0), (-2, 3, 0), (0, 0, -1)]))
bbox = cubic_bezier_bbox(curve)
assert bbox.extmin.x == pytest.approx(-0.5773502691896258)
assert bbox.extmin.z == pytest.approx(-1.0)
assert bbox.extmax.x == pytest.approx(+0.5773502691896258)
assert bbox.extmax.y == pytest.approx(+2.25)
assert bbox.extmax.z == pytest.approx(-0.25)
def test_quadratic_bezier_curve_box(self):
curve = Bezier3P(Vec2.list([(0, 0), (1, 1), (2, 0)]))
bbox = quadratic_bezier_bbox(curve)
assert bbox.extmax.y == pytest.approx(0.5)
class TestRayCubicBezierCurve2dIntersection:
@pytest.fixture(scope="class")
def curve(self):
return Bezier4P(Vec2.list([(0, -2), (2, 6), (4, -6), (6, 2)]))
def test_no_intersection(self, curve):
assert len(intersection_ray_cubic_bezier_2d((0, -6), (1, -6), curve)) == 0
def test_one_intersection_point(self, curve):
points = intersection_ray_cubic_bezier_2d((3, -6), (3, 6), curve)
assert len(points) == 1
assert points[0].isclose((3, 0))
def test_two_intersection_points(self, curve):
points = intersection_ray_cubic_bezier_2d((-1.4, -2.5), (7.1, 3.9), curve)
assert len(points) == 2
expected = (
(0.18851028511733303, -1.3039451970881237),
(2.5249135145844264, 0.4552289992165126),
)
assert all(p.isclose(e) for e, p in zip(expected, points)) is True
def test_three_intersection_points(self, curve):
points = intersection_ray_cubic_bezier_2d((0, 0), (1, 0), curve)
assert len(points) == 3
expected = (
(0.6762099922755492, 0.0),
(3.0, 0.0),
(5.323790007724451, 0.0),
)
assert all(p.isclose(e) for e, p in zip(expected, points)) is True
def test_collinear_ray_and_curve(self):
curve = Bezier4P(Vec2.list([(0, 0), (1, 0), (2, 0), (3, 0)]))
ip = intersection_ray_cubic_bezier_2d((0, 0), (1, 0), curve)
assert len(ip) == 1
assert ip[0].isclose((0, 0)) # ???
@pytest.mark.parametrize("x", [0, 0.5, 1, 3])
def test_linear_ray_and_curve(self, x):
curve = Bezier4P(Vec2.list([(0, 0), (1, 0), (2, 0), (3, 0)]))
# ray defined in +y direction
ip = intersection_ray_cubic_bezier_2d((x, -1), (x, 0), curve)
assert len(ip) == 1
assert ip[0].isclose((x, 0))
# ray defined in -y direction
ip = intersection_ray_cubic_bezier_2d((x, 2), (x, 1), curve)
assert len(ip) == 1
assert ip[0].isclose((x, 0))