forked from HulkMaker/darknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreorg_old_layer.c
118 lines (104 loc) · 3.02 KB
/
reorg_old_layer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include "reorg_old_layer.h"
#include "cuda.h"
#include "blas.h"
#include <stdio.h>
layer make_reorg_old_layer(int batch, int w, int h, int c, int stride, int reverse)
{
layer l = {0};
l.type = REORG_OLD;
l.batch = batch;
l.stride = stride;
l.h = h;
l.w = w;
l.c = c;
if(reverse){
l.out_w = w*stride;
l.out_h = h*stride;
l.out_c = c/(stride*stride);
}else{
l.out_w = w/stride;
l.out_h = h/stride;
l.out_c = c*(stride*stride);
}
l.reverse = reverse;
fprintf(stderr, "reorg_old /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = h*w*c;
int output_size = l.out_h * l.out_w * l.out_c * batch;
l.output = calloc(output_size, sizeof(float));
l.delta = calloc(output_size, sizeof(float));
l.forward = forward_reorg_old_layer;
l.backward = backward_reorg_old_layer;
#ifdef GPU
l.forward_gpu = forward_reorg_old_layer_gpu;
l.backward_gpu = backward_reorg_old_layer_gpu;
l.output_gpu = cuda_make_array(l.output, output_size);
l.delta_gpu = cuda_make_array(l.delta, output_size);
#endif
return l;
}
void resize_reorg_old_layer(layer *l, int w, int h)
{
int stride = l->stride;
int c = l->c;
l->h = h;
l->w = w;
if(l->reverse){
l->out_w = w*stride;
l->out_h = h*stride;
l->out_c = c/(stride*stride);
}else{
l->out_w = w/stride;
l->out_h = h/stride;
l->out_c = c*(stride*stride);
}
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->outputs;
int output_size = l->outputs * l->batch;
l->output = realloc(l->output, output_size * sizeof(float));
l->delta = realloc(l->delta, output_size * sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, output_size);
l->delta_gpu = cuda_make_array(l->delta, output_size);
#endif
}
void forward_reorg_old_layer(const layer l, network_state state)
{
if (l.reverse) {
reorg_cpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output);
}
else {
reorg_cpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 0, l.output);
}
}
void backward_reorg_old_layer(const layer l, network_state state)
{
if (l.reverse) {
reorg_cpu(l.delta, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
}
else {
reorg_cpu(l.delta, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta);
}
}
#ifdef GPU
void forward_reorg_old_layer_gpu(layer l, network_state state)
{
if (l.reverse) {
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
}
else {
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 0, l.output_gpu);
}
}
void backward_reorg_old_layer_gpu(layer l, network_state state)
{
if (l.reverse) {
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
}
else {
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta);
}
}
#endif