forked from AprilRobotics/apriltag
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpjpeg-idct.c
388 lines (350 loc) · 11.6 KB
/
pjpeg-idct.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/* Copyright (C) 2013-2016, The Regents of The University of Michigan.
All rights reserved.
This software was developed in the APRIL Robotics Lab under the
direction of Edwin Olson, [email protected]. This software may be
available under alternative licensing terms; contact the address above.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the Regents of The University of Michigan.
*/
#include <math.h>
#include <stdint.h>
#ifndef M_PI
# define M_PI 3.141592653589793238462643383279502884196
#endif
// 8 bits of fixed-point output
//
// This implementation has a worst-case complexity of 22 multiplies
// and 64 adds. This makes it significantly worse (about 2x) than the
// best-known fast inverse cosine transform methods. HOWEVER, zero
// coefficients can be skipped over, and since that's common (often
// more than half the coefficients are zero).
//
// The output is scaled by a factor of 256 (due to our fixed-point
// integer arithmetic)..
static inline void idct_1D_u32(int32_t *in, int instride, int32_t *out, int outstride)
{
for (int x = 0; x < 8; x++)
out[x*outstride] = 0;
int32_t c;
c = in[0*instride];
if (c) {
// 181 181 181 181 181 181 181 181
int32_t c181 = c * 181;
out[0*outstride] += c181;
out[1*outstride] += c181;
out[2*outstride] += c181;
out[3*outstride] += c181;
out[4*outstride] += c181;
out[5*outstride] += c181;
out[6*outstride] += c181;
out[7*outstride] += c181;
}
c = in[1*instride];
if (c) {
// 251 212 142 49 -49 -142 -212 -251
int32_t c251 = c * 251;
int32_t c212 = c * 212;
int32_t c142 = c * 142;
int32_t c49 = c * 49;
out[0*outstride] += c251;
out[1*outstride] += c212;
out[2*outstride] += c142;
out[3*outstride] += c49;
out[4*outstride] -= c49;
out[5*outstride] -= c142;
out[6*outstride] -= c212;
out[7*outstride] -= c251;
}
c = in[2*instride];
if (c) {
// 236 97 -97 -236 -236 -97 97 236
int32_t c236 = c*236;
int32_t c97 = c*97;
out[0*outstride] += c236;
out[1*outstride] += c97;
out[2*outstride] -= c97;
out[3*outstride] -= c236;
out[4*outstride] -= c236;
out[5*outstride] -= c97;
out[6*outstride] += c97;
out[7*outstride] += c236;
}
c = in[3*instride];
if (c) {
// 212 -49 -251 -142 142 251 49 -212
int32_t c212 = c*212;
int32_t c49 = c*49;
int32_t c251 = c*251;
int32_t c142 = c*142;
out[0*outstride] += c212;
out[1*outstride] -= c49;
out[2*outstride] -= c251;
out[3*outstride] -= c142;
out[4*outstride] += c142;
out[5*outstride] += c251;
out[6*outstride] += c49;
out[7*outstride] -= c212;
}
c = in[4*instride];
if (c) {
// 181 -181 -181 181 181 -181 -181 181
int32_t c181 = c*181;
out[0*outstride] += c181;
out[1*outstride] -= c181;
out[2*outstride] -= c181;
out[3*outstride] += c181;
out[4*outstride] += c181;
out[5*outstride] -= c181;
out[6*outstride] -= c181;
out[7*outstride] += c181;
}
c = in[5*instride];
if (c) {
// 142 -251 49 212 -212 -49 251 -142
int32_t c142 = c*142;
int32_t c251 = c*251;
int32_t c49 = c*49;
int32_t c212 = c*212;
out[0*outstride] += c142;
out[1*outstride] -= c251;
out[2*outstride] += c49;
out[3*outstride] += c212;
out[4*outstride] -= c212;
out[5*outstride] -= c49;
out[6*outstride] += c251;
out[7*outstride] -= c142;
}
c = in[6*instride];
if (c) {
// 97 -236 236 -97 -97 236 -236 97
int32_t c97 = c*97;
int32_t c236 = c*236;
out[0*outstride] += c97;
out[1*outstride] -= c236;
out[2*outstride] += c236;
out[3*outstride] -= c97;
out[4*outstride] -= c97;
out[5*outstride] += c236;
out[6*outstride] -= c236;
out[7*outstride] += c97;
}
c = in[7*instride];
if (c) {
// 49 -142 212 -251 251 -212 142 -49
int32_t c49 = c*49;
int32_t c142 = c*142;
int32_t c212 = c*212;
int32_t c251 = c*251;
out[0*outstride] += c49;
out[1*outstride] -= c142;
out[2*outstride] += c212;
out[3*outstride] -= c251;
out[4*outstride] += c251;
out[5*outstride] -= c212;
out[6*outstride] += c142;
out[7*outstride] -= c49;
}
}
void pjpeg_idct_2D_u32(int32_t in[64], uint8_t *out, uint32_t outstride)
{
int32_t tmp[64];
// idct on rows
for (int y = 0; y < 8; y++)
idct_1D_u32(&in[8*y], 1, &tmp[8*y], 1);
int32_t tmp2[64];
// idct on columns
for (int x = 0; x < 8; x++)
idct_1D_u32(&tmp[x], 8, &tmp2[x], 8);
// scale, adjust bias, and clamp
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
int i = 8*y + x;
// Shift of 18: the divide by 4 as part of the idct, and a shift by 16
// to undo the fixed-point arithmetic. (We accumulated 8 bits of
// fractional precision during each of the row and column IDCTs)
//
// Originally:
// int32_t v = (tmp2[i] >> 18) + 128;
//
// Move the add before the shift and we can do rounding at
// the same time.
const int32_t offset = (128 << 18) + (1 << 17);
int32_t v = (tmp2[i] + offset) >> 18;
if (v < 0)
v = 0;
if (v > 255)
v = 255;
out[y*outstride + x] = v;
}
}
}
///////////////////////////////////////////////////////
// Below: a "as straight-forward as I can make" implementation.
static inline void idct_1D_double(double *in, int instride, double *out, int outstride)
{
for (int x = 0; x < 8; x++)
out[x*outstride] = 0;
// iterate over IDCT coefficients
double Cu = 1/sqrt(2);
for (int u = 0; u < 8; u++, Cu = 1) {
double coeff = in[u*instride];
if (coeff == 0)
continue;
for (int x = 0; x < 8; x++)
out[x*outstride] += Cu*cos((2*x+1)*u*M_PI/16) * coeff;
}
}
void pjpeg_idct_2D_double(int32_t in[64], uint8_t *out, uint32_t outstride)
{
double din[64], dout[64];
for (int i = 0; i < 64; i++)
din[i] = in[i];
double tmp[64];
// idct on rows
for (int y = 0; y < 8; y++)
idct_1D_double(&din[8*y], 1, &tmp[8*y], 1);
// idct on columns
for (int x = 0; x < 8; x++)
idct_1D_double(&tmp[x], 8, &dout[x], 8);
// scale, adjust bias, and clamp
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
int i = 8*y + x;
dout[i] = (dout[i] / 4) + 128;
if (dout[i] < 0)
dout[i] = 0;
if (dout[i] > 255)
dout[i] = 255;
// XXX round by adding +.5?
out[y*outstride + x] = dout[i];
}
}
}
//////////////////////////////////////////////
static inline unsigned char njClip(const int x) {
return (x < 0) ? 0 : ((x > 0xFF) ? 0xFF : (unsigned char) x);
}
#define W1 2841
#define W2 2676
#define W3 2408
#define W5 1609
#define W6 1108
#define W7 565
static inline void njRowIDCT(int* blk) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
if (!((x1 = blk[4] << 11)
| (x2 = blk[6])
| (x3 = blk[2])
| (x4 = blk[1])
| (x5 = blk[7])
| (x6 = blk[5])
| (x7 = blk[3])))
{
blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3;
return;
}
x0 = (blk[0] << 11) + 128;
x8 = W7 * (x4 + x5);
x4 = x8 + (W1 - W7) * x4;
x5 = x8 - (W1 + W7) * x5;
x8 = W3 * (x6 + x7);
x6 = x8 - (W3 - W5) * x6;
x7 = x8 - (W3 + W5) * x7;
x8 = x0 + x1;
x0 -= x1;
x1 = W6 * (x3 + x2);
x2 = x1 - (W2 + W6) * x2;
x3 = x1 + (W2 - W6) * x3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
blk[0] = (x7 + x1) >> 8;
blk[1] = (x3 + x2) >> 8;
blk[2] = (x0 + x4) >> 8;
blk[3] = (x8 + x6) >> 8;
blk[4] = (x8 - x6) >> 8;
blk[5] = (x0 - x4) >> 8;
blk[6] = (x3 - x2) >> 8;
blk[7] = (x7 - x1) >> 8;
}
static inline void njColIDCT(const int* blk, unsigned char *out, int stride) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
if (!((x1 = blk[8*4] << 8)
| (x2 = blk[8*6])
| (x3 = blk[8*2])
| (x4 = blk[8*1])
| (x5 = blk[8*7])
| (x6 = blk[8*5])
| (x7 = blk[8*3])))
{
x1 = njClip(((blk[0] + 32) >> 6) + 128);
for (x0 = 8; x0; --x0) {
*out = (unsigned char) x1;
out += stride;
}
return;
}
x0 = (blk[0] << 8) + 8192;
x8 = W7 * (x4 + x5) + 4;
x4 = (x8 + (W1 - W7) * x4) >> 3;
x5 = (x8 - (W1 + W7) * x5) >> 3;
x8 = W3 * (x6 + x7) + 4;
x6 = (x8 - (W3 - W5) * x6) >> 3;
x7 = (x8 - (W3 + W5) * x7) >> 3;
x8 = x0 + x1;
x0 -= x1;
x1 = W6 * (x3 + x2) + 4;
x2 = (x1 - (W2 + W6) * x2) >> 3;
x3 = (x1 + (W2 - W6) * x3) >> 3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
*out = njClip(((x7 + x1) >> 14) + 128); out += stride;
*out = njClip(((x3 + x2) >> 14) + 128); out += stride;
*out = njClip(((x0 + x4) >> 14) + 128); out += stride;
*out = njClip(((x8 + x6) >> 14) + 128); out += stride;
*out = njClip(((x8 - x6) >> 14) + 128); out += stride;
*out = njClip(((x0 - x4) >> 14) + 128); out += stride;
*out = njClip(((x3 - x2) >> 14) + 128); out += stride;
*out = njClip(((x7 - x1) >> 14) + 128);
}
void pjpeg_idct_2D_nanojpeg(int32_t in[64], uint8_t *out, uint32_t outstride)
{
int coef;
for (coef = 0; coef < 64; coef += 8)
njRowIDCT(&in[coef]);
for (coef = 0; coef < 8; ++coef)
njColIDCT(&in[coef], &out[coef], outstride);
}