-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtest_incremental_pca.py
185 lines (148 loc) · 6.52 KB
/
test_incremental_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/tests/test_incremental_pca.py
import pytest
import torch
from datasets import load_dataset
from torch.testing import assert_close
from peft.utils.incremental_pca import IncrementalPCA
torch.manual_seed(1999)
iris = load_dataset("scikit-learn/iris", split="train")
def test_incremental_pca():
# Incremental PCA on dense arrays.
n_components = 2
X = torch.tensor([iris["SepalLengthCm"], iris["SepalWidthCm"], iris["PetalLengthCm"], iris["PetalWidthCm"]]).T
batch_size = X.shape[0] // 3
ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size)
ipca.fit(X)
X_transformed = ipca.transform(X)
# PCA
U, S, Vh = torch.linalg.svd(X - torch.mean(X, dim=0))
max_abs_rows = torch.argmax(torch.abs(Vh), dim=1)
signs = torch.sign(Vh[range(Vh.shape[0]), max_abs_rows])
Vh *= signs.view(-1, 1)
explained_variance = S**2 / (X.size(0) - 1)
explained_variance_ratio = explained_variance / explained_variance.sum()
assert X_transformed.shape == (X.shape[0], 2)
assert_close(
ipca.explained_variance_ratio_.sum().item(),
explained_variance_ratio[:n_components].sum().item(),
rtol=1e-3,
atol=1e-3,
)
def test_incremental_pca_check_projection():
# Test that the projection of data is correct.
n, p = 100, 3
X = torch.randn(n, p, dtype=torch.float64) * 0.1
X[:10] += torch.tensor([3, 4, 5])
Xt = 0.1 * torch.randn(1, p, dtype=torch.float64) + torch.tensor([3, 4, 5])
# Get the reconstruction of the generated data X
# Note that Xt has the same "components" as X, just separated
# This is what we want to ensure is recreated correctly
Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt)
# Normalize
Yt /= torch.sqrt((Yt**2).sum())
# Make sure that the first element of Yt is ~1, this means
# the reconstruction worked as expected
assert_close(torch.abs(Yt[0][0]).item(), 1.0, atol=1e-1, rtol=1e-1)
def test_incremental_pca_validation():
# Test that n_components is <= n_features.
X = torch.tensor([[0, 1, 0], [1, 0, 0]])
n_samples, n_features = X.shape
n_components = 4
with pytest.raises(
ValueError,
match=(
f"n_components={n_components} invalid"
f" for n_features={n_features}, need more rows than"
" columns for IncrementalPCA"
" processing"
),
):
IncrementalPCA(n_components, batch_size=10).fit(X)
# Tests that n_components is also <= n_samples.
n_components = 3
with pytest.raises(
ValueError,
match=(f"n_components={n_components} must be less or equal to the batch number of samples {n_samples}"),
):
IncrementalPCA(n_components=n_components).partial_fit(X)
def test_n_components_none():
# Ensures that n_components == None is handled correctly
for n_samples, n_features in [(50, 10), (10, 50)]:
X = torch.rand(n_samples, n_features)
ipca = IncrementalPCA(n_components=None)
# First partial_fit call, ipca.n_components_ is inferred from
# min(X.shape)
ipca.partial_fit(X)
assert ipca.n_components == min(X.shape)
def test_incremental_pca_num_features_change():
# Test that changing n_components will raise an error.
n_samples = 100
X = torch.randn(n_samples, 20)
X2 = torch.randn(n_samples, 50)
ipca = IncrementalPCA(n_components=None)
ipca.fit(X)
with pytest.raises(ValueError):
ipca.partial_fit(X2)
def test_incremental_pca_batch_signs():
# Test that components_ sign is stable over batch sizes.
n_samples = 100
n_features = 3
X = torch.randn(n_samples, n_features)
all_components = []
batch_sizes = torch.arange(10, 20)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for i, j in zip(all_components[:-1], all_components[1:]):
assert_close(torch.sign(i), torch.sign(j), rtol=1e-6, atol=1e-6)
def test_incremental_pca_batch_values():
# Test that components_ values are stable over batch sizes.
n_samples = 100
n_features = 3
X = torch.randn(n_samples, n_features)
all_components = []
batch_sizes = torch.arange(20, 40, 3)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for i, j in zip(all_components[:-1], all_components[1:]):
assert_close(i, j, rtol=1e-1, atol=1e-1)
def test_incremental_pca_partial_fit():
# Test that fit and partial_fit get equivalent results.
n, p = 50, 3
X = torch.randn(n, p) # spherical data
X[:, 1] *= 0.00001 # make middle component relatively small
X += torch.tensor([5, 4, 3]) # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
batch_size = 10
ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X)
pipca = IncrementalPCA(n_components=2, batch_size=batch_size)
# Add one to make sure endpoint is included
batch_itr = torch.arange(0, n + 1, batch_size)
for i, j in zip(batch_itr[:-1], batch_itr[1:]):
pipca.partial_fit(X[i:j, :])
assert_close(ipca.components_, pipca.components_, rtol=1e-3, atol=1e-3)
def test_incremental_pca_lowrank():
# Test that lowrank mode is equivalent to non-lowrank mode.
n_components = 2
X = torch.tensor([iris["SepalLengthCm"], iris["SepalWidthCm"], iris["PetalLengthCm"], iris["PetalWidthCm"]]).T
batch_size = X.shape[0] // 3
ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size)
ipca.fit(X)
ipcalr = IncrementalPCA(n_components=n_components, batch_size=batch_size, lowrank=True)
ipcalr.fit(X)
assert_close(ipca.components_, ipcalr.components_, rtol=1e-7, atol=1e-7)