diff --git a/docs/source/developer_guides/torch_compile.md b/docs/source/developer_guides/torch_compile.md index 13c81a4f03..8d88f758b9 100644 --- a/docs/source/developer_guides/torch_compile.md +++ b/docs/source/developer_guides/torch_compile.md @@ -43,6 +43,7 @@ The following adapters were tested successfully: - LoRA + DoRA - OFT - VeRA +- HRA The following adapters **don't work** correctly for training or inference when using `torch.compile`: diff --git a/examples/hra_dreambooth/README.md b/examples/hra_dreambooth/README.md new file mode 100644 index 0000000000..11530edc3b --- /dev/null +++ b/examples/hra_dreambooth/README.md @@ -0,0 +1,98 @@ + + +# DreamBooth fine-tuning with HRA + +This guide demonstrates how to use Householder reflection adaptation (HRA) method, to fine-tune Dreambooth with `stabilityai/stable-diffusion-2-1` model. + +HRA provides a new perspective connecting LoRA to OFT and achieves encouraging performance in various downstream tasks. +HRA adapts a pre-trained model by multiplying each frozen weight matrix with a chain of r learnable Householder reflections (HRs). +HRA can be interpreted as either an OFT adapter or an adaptive LoRA. +Consequently, it harnesses the advantages of both strategies, reducing parameters and computation costs while penalizing the loss of pre-training knowledge. +For further details on HRA, please consult the [original HRA paper](https://arxiv.org/abs/2405.17484). + +In this guide we provide a Dreambooth fine-tuning script that is available in [PEFT's GitHub repo examples](https://github.com/huggingface/peft/tree/main/examples/hra_dreambooth). This implementation is adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth). + +You can try it out and fine-tune on your custom images. + +## Set up your environment + +Start by cloning the PEFT repository: + +```bash +git clone --recursive https://github.com/huggingface/peft +``` + +Navigate to the directory containing the training scripts for fine-tuning Dreambooth with HRA: + +```bash +cd peft/examples/hra_dreambooth +``` + +Set up your environment: install PEFT, and all the required libraries. At the time of writing this guide we recommend installing PEFT from source. The following environment setup should work on A100 and H100: + +```bash +conda create --name peft python=3.10 +conda activate peft +conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia +conda install xformers -c xformers +pip install -r requirements.txt +pip install git+https://github.com/huggingface/peft +``` + +## Download the data + +[dreambooth](https://github.com/google/dreambooth) dataset should have been automatically cloned in the following structure when running the training script. + +``` +hra_dreambooth +├── data +│ └── dreambooth +│ └── dataset +│ ├── backpack +│ └── backpack_dog +│ ... +``` + +You can also put your custom images into `hra_dreambooth/data/dreambooth/dataset`. + +## Fine-tune Dreambooth with HRA + +```bash +class_idx=0 +bash ./train_dreambooth.sh $class_idx +``` + +where the `$class_idx` corresponds to different subjects ranging from 0 to 29. + +Launch the training script with `accelerate` and pass hyperparameters, as well as LoRa-specific arguments to it such as: + +- `use_hra`: Enables HRA in the training script. +- `hra_r`: the number of HRs (i.e., r) across different layers, expressed in `int`. +As r increases, the number of trainable parameters increases, which generally leads to improved performance. +However, this also results in higher memory consumption and longer computation times. +Therefore, r is usually set to 8. +**Note**, please set r to an even number to avoid potential issues during initialization. +- `hra_apply_GS`: Applies Gram-Schmidt orthogonalization. Default is `false`. +- `hra_bias`: specify if the `bias` parameters should be trained. Can be `none`, `all` or `hra_only`. + +If you are running this script on Windows, you may need to set the `--num_dataloader_workers` to 0. + +To learn more about DreamBooth fine-tuning with prior-preserving loss, check out the [Diffusers documentation](https://huggingface.co/docs/diffusers/training/dreambooth#finetuning-with-priorpreserving-loss). + +## Generate images with the fine-tuned model + +To generate images with the fine-tuned model, simply run the jupyter notebook `dreambooth_inference.ipynb` for visualization with `jupyter notebook` under `./examples/hra_dreambooth`. diff --git a/examples/hra_dreambooth/a_purple_qwe_backpack.png b/examples/hra_dreambooth/a_purple_qwe_backpack.png new file mode 100644 index 0000000000..c2784a37c6 Binary files /dev/null and b/examples/hra_dreambooth/a_purple_qwe_backpack.png differ diff --git a/examples/hra_dreambooth/dreambooth_inference.ipynb b/examples/hra_dreambooth/dreambooth_inference.ipynb new file mode 100644 index 0000000000..9cab0d0d24 --- /dev/null +++ b/examples/hra_dreambooth/dreambooth_inference.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 19, + "id": "acab479f", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from PIL import Image\n", + "\n", + "import torch\n", + "from accelerate.logging import get_logger\n", + "from diffusers import StableDiffusionPipeline\n", + "from diffusers.utils import check_min_version\n", + "\n", + "from peft import PeftModel\n", + "\n", + "\n", + "# Will error if the minimal version of diffusers is not installed. Remove at your own risks.\n", + "check_min_version(\"0.10.0.dev0\")\n", + "\n", + "logger = get_logger(__name__)\n", + "\n", + "MODEL_NAME = \"stabilityai/stable-diffusion-2-1\"\n", + "\n", + "PEFT_TYPE=\"hra\"\n", + "HRA_R=8\n", + "SELECTED_SUBJECT=\"backpack\"\n", + "EPOCH_IDX = 1000\n", + "\n", + "PROJECT_NAME=f\"dreambooth_{PEFT_TYPE}\"\n", + "RUN_NAME=f\"{SELECTED_SUBJECT}_{PEFT_TYPE}_{HRA_R}\"\n", + "OUTPUT_DIR=f\"./data/output/{PEFT_TYPE}\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "06cfd506", + "metadata": {}, + "outputs": [], + "source": [ + "def get_hra_sd_pipeline(\n", + " ckpt_dir, base_model_name_or_path=None, epoch=int, dtype=torch.float32, device=\"cuda\", adapter_name=\"default\"\n", + "):\n", + "\n", + " if base_model_name_or_path is None:\n", + " raise ValueError(\"Please specify the base model name or path\")\n", + "\n", + " pipe = StableDiffusionPipeline.from_pretrained(\n", + " base_model_name_or_path, torch_dtype=dtype, requires_safety_checker=False\n", + " ).to(device)\n", + " \n", + " load_adapter(pipe, ckpt_dir, epoch, adapter_name)\n", + "\n", + " if dtype in (torch.float16, torch.bfloat16):\n", + " pipe.unet.half()\n", + " pipe.text_encoder.half()\n", + "\n", + " pipe.to(device)\n", + " return pipe\n", + "\n", + "\n", + "def load_adapter(pipe, ckpt_dir, epoch, adapter_name=\"default\"):\n", + " \n", + " unet_sub_dir = os.path.join(ckpt_dir, f\"unet/{epoch}\", adapter_name)\n", + " text_encoder_sub_dir = os.path.join(ckpt_dir, f\"text_encoder/{epoch}\", adapter_name)\n", + " \n", + " if isinstance(pipe.unet, PeftModel):\n", + " pipe.unet.load_adapter(unet_sub_dir, adapter_name=adapter_name)\n", + " else:\n", + " pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)\n", + " \n", + " if os.path.exists(text_encoder_sub_dir):\n", + " if isinstance(pipe.text_encoder, PeftModel):\n", + " pipe.text_encoder.load_adapter(text_encoder_sub_dir, adapter_name=adapter_name)\n", + " else:\n", + " pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)\n", + " \n", + "\n", + "def set_adapter(pipe, adapter_name):\n", + " pipe.unet.set_adapter(adapter_name)\n", + " if isinstance(pipe.text_encoder, PeftModel):\n", + " pipe.text_encoder.set_adapter(adapter_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "98a0d8ac", + "metadata": {}, + "outputs": [], + "source": [ + "prompt = \"a purple qwe backpack.\"\n", + "negative_prompt = \"low quality, blurry, unfinished\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d4e888d2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 14.47it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.72 s, sys: 495 ms, total: 2.22 s\n", + "Wall time: 2.28 s\n" + ] + } + ], + "source": [ + "%%time\n", + "pipe = get_hra_sd_pipeline(OUTPUT_DIR, MODEL_NAME, EPOCH_IDX, adapter_name=RUN_NAME)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "f1c1a1c0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/50 [00:00" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5, negative_prompt=negative_prompt).images[0]\n", + "image" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "60fa38d2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDx+ETzcRRs5/2RWrp8F9Z3EN40BKxnLITjdXRWFoQpW1+zxEHaVJ+YfWrFz4fMcmL6OQq/SeGQ4B9xWU6rXQwdTUanidrXxDb61BarG5wJlQAAj6etevTRad4o0xLu0nRpFTeOeQe9eLadpVt9rm029iViykwXDHBq/aSa14G1KCJ+YrggI3YA96anpqtATOjEur2c7widJogfukYK1ueG7W3uHjlmmjgmDndtyB/hWRq9rezG2v0hRHI3GWEsPM+o6U23bWdrTXECs0n3fKXC49MdjXH7X2c7SQoydz18w21xD5LbZOPauZ1fwdYSymaMCGZlK70O05rJ0rxLcWSxNdRSIoGCWFbln4p028QXEt1Dyx2gH+YrvjVjLqaJxe55ze+EPGum34m0i++0RnorPjFRmf4lwXiNJp3myR/dIYYr1Nra3vHF1b3TKOv3uKswSSgM8ssboOmK006MFBPU4HRbzx9d6htlsre32r96aTAOfpXRyxeMoA5+y2NxvHISUg/qKn1q2a5gM1lIgkHQEkVnQX+uw2WDncP7rH86WwuRXOR8TePdWsrpbPUtGmtnTAzuyp+hFd/4X1WfW9OjmVgIduVDDnNcl4lhfW7CNLm7gd0+Zg4w2ay1OraZAotLqCNMcIewrGVSUJd0KzTudXr7eLrDUw+nWMN5b5yAX2msfWPEPiGaF1m8Nnztu0gOD+VU4PGerxMDLI0m0YyD8uatN8VDBHmXSjJJ6Y601iIPZ2BW3OUh0zXZ2dVDWQdix3jdn0FU5NQ8TeGhKZ4POjYYV4z0rodY+KNtqFqIf7LeBv4sjBFZdn4j0i6BgmmaJicgOeK4K1SpTneK5oi0WxBpXxKtbaKGK4sjE6H5nHBNexaN4it9X0dLzS7qObAyyE8g14z4u0nTdRsftdlLAJohkheCRWb4Dae3uXkW6aBZDgL2/GtoYmLp8/YblZXPoqDV45Rlyqy/3c9a5vxd4UOuR/abL9zc92FcND40ttIv5LO9cSAtkPuztNdZa+M4lMTyyb4JOFZO31pxxCavNWFzr7Rb8J2Wu6DCIbm1NxCTjehwR+FdBd62bW5RpbeSIE4LMuak8O69DqJeLBDj7ue4roJbeKZMOoYY6EZrrjNNXWxotVoU/Ni1KyYI4ZXXt0rDb/hJdLXy7W3tLyAH5dzbGAraS3it1aO2ZUI521h2WuSz6tNazoYhEeGz94VY2jJ1FfE19erJLpcUaJ/zzkyTxWj4f1hrWf7HdQPEWOAXrpYnNwCUI29jmq4to3kK3AUuejAUra7i5WjVAVkyMHNcx4n8J6ZrNsxmt087+F8YNdFaxvAuwtuUdKS9hFxbsucNjg+ho6lbnMeGNMso7I2ckSGSL5SpWrGpeD9Ovo5w8CjzF4OOhqO1gvdN1AGbEkbHG5RXUoRJGD2IokJJM+dNf8GXmkaifsV38pOQB29jW94d8M6pqbQrNmNFIyzLkH6Gu08S+Hpn1mG7V82rcPGPX1ro9KsltIQiNlB0ri+qqU22tDL2a5tTi9a8DXNtbpNp94wbcA6sM5qEeHNct7UPHKkmeqsOGHpXo18Q1o65qPT2DqQWyB2qpYOjLWxfJG55TdeEdcuIy8dog7lQawV0GSa/FtLE9vOONsg4P0r6ByqccYqvc2NpdYM8KMR0JHI/Gs3godAcEeH3/g64trcySI5X+8Kz9D8Nx313tnm+XPX1r2+4SwVDaTMDGw4ya46+8KrYyCewmGzJbGc1zVsI4Pmpq67Gcqet1sLpvw604s377cpHIzWZ4i+F2yJ5NPl4PVWGa1tNvpbeUS+btx95TXeW11HeWgO4HcO1b0oUasWlGzBQg9Gj5q1bwvq9gu3yi6H+JRU2hQGJSsxcOvUHivXdXgn0y83uokgZs8joKntoNBvkYmOIs/XJrhq4V1L0lKz8zKdG+iZ5TfaykeYpEBQdGxVe3v7bUCI1QkjpnrXqOsfC7S9Vt98EzRvjKlDxXkniLw9q/g29DSJuQt8kijgj3rJZdKEdtTOVBxWpel8NNdszxxOhHYA811vhe4j0m3+x3cLndxk1ieE/iUkFxHbatbAI/wAokxwK9C1uzt77S/tmnyqHxuXaM5ruw9KUVzJ6roaQppapnCeJvCTXUj3umxZzztA6159dyT2U2y6tnjI45XFfQHhaS8mtwl7EAenStbU/B+l6ouZbdGY9yK6/Yxn72xt7NPVHy3JeddhK55NdX4d1yC0sHEud+OoNes3Pw60iEMzaejoOwFPtvCXheSIwG2WNzwQRg1nUwrnGwcjWx4dfeJZJZXAyVzxmrmm3Et1bF2k+Udq6Pxn8LvspNxpEu9SeYz2rO0TwrNb2mLqQo5/grjr4XlhaK1MnFp2I9Esk1bVFi5IB5AruPE2j29joRCFUcLVjw7oFrocT3jgBjzzXGePfF8cyvBE2TyBiu3DU/ZQ82bU42Wp5nfyNLdmFBubdgY716z4O8PQeGNEfVtRIWVk3fNXlWhyIuuQ3E6kxhsnIrpPGXi+TViljbEpaxjkDjNdysl5mhkeKvEUuu6m8m4iFThRmsKOOSVsqhI9auWOnPevnkRjqa7CG2tIbAQwR7pMdcVnOooEykoo5iOeKKDYQQ1OtNHuNSYvGp2DvWgnhe6vJmYgqM+ldZpmi3Fja+SM5Ixms2+xnKocBPINOkMH8Q60+1vDJxjJ9AK6u98CNcO0287mOTVO28H3NtIS2azlHTzFzLc9b8WeEYNUtnu9Jjijv2fIY4AYdhxXmV1feKdAudmq6bK8I4IjGQwr1uz1DTNYsFkjyAM8KCCvqKw9Qh16AteWN+jWUefkYElh2HPSu2pFS1Zty90eYal4otb2a3YaXdQyxt8oX+L2xU994xnv7RrO90y5lRf8AVMyfNH6DNb2uXd7qE1nfyWISa3YYKYGRXQw30b6e893NAjy5BTYCR9a5mk01cfs01oc34c+IckOnLpR0sXJAwDPOEP4ZpLfxN4mt75Y7ayhw+QsRuFNOtbnw2Xnt9RhEnP3wmM/SsG70TTDfG4s5TDZ5ykZY7/zrGpLRN9CJJqNzsNS8VeLHgiivdEswyqVjIkUg59aJo71tE/tGSLTYp0HzQow3GsGPQbm8Rpo7tFG35AxLfnmqn2PxJBEpWO1mAPHHIrnhWU23NJ/gLZXsbFn8QNVihW0XSX2g4MhFdfovigQjN8gQNztDZrzsaxrtspSbTd4YYKgdaS5vRq1jDA+iXSvGNu+EkMa0pq0+ZK3zuUnbU9rt/E2j3QdVZXK84FaGmajb3TEDygvRcEV4NaeG9iFYtK1bfIP9Z5u3FTWfhHWIZS41i9sVP98mvQ59NTS56l4s0q11EsisI5EUncg5IrgrTw7calbS3MF3NI0TbNueVUVLFoHiSNfNsPE0dzIOMOmayorfxx4euZZLfZOZWy69qiUYyeqFp1RDfT2tjG1rLPMJl4VG4BNV10nU5YlulmBwcqq81o3WgeK/EOoreX1hBGQBtAIwa6GOLV9NgWKSzTHQ7RXO6KTbY4xTd2cc1pfSySG9sWO7owWnxeCre7RWAkSR+NuyuongiKbpp543J4VuQKsp9qtlBhvFKkccc0LliXyrscNJ8NdfV2ECyHHROeRVNfD+u6UfLeGTB4246GvXbPxJrFovmSBJgONuOtGp+Iry62tFZQJIOcsuc/Wh1qNrNkOMep4ZeeGtbNy0hspmZup25rQ0y/1vRFYXFhLJEBtCsterv4u12OHbDY2TMBzuSsDV/EviS/jMcmnWca44KoM0nXoSVri916MzdC+JL6NcpLcWbAZ5U9h7V3j/ABt0RrcmOOcPjuvFcJGlprtnHa6lYpDcLx5oGK3V1C38K6UttNpNlexAYEhxkD3q4ThHSMtBJaaFqf4waJOgcrIk46Ad65Z/GMaao+r2+qbw3/LvL0HNZOs67p2oK5j8ORQnOdyDitzQfCPhrxRpUckUc1rOo/eFQcZrfmctmS0dLpfxbt32wPasCwyoQ43H2pH8davFefao9Ml8gnBXdk4zVG3+GvhmG4TzLu4l2g55I5rUuPhzp7WbyWGtXNswHy/OSM/SomqrWjFJS6HU6X8TtGliAvlmsXHBM6EA/jXU2ev6TqCbrXULeUdflcZrwezsPFnmXFm0UF5bxsMGYfeHtXQS+HoIPImOntZykDd9nPQ/h1rjeLnH4o39CFOS6HoV3418PQ6i1jPfRCQcEE1M2u6bFGptryJwei+YK4rUvCXh/UNMEurtDBJj5Z2ba1cbD8PtPnvttv4utxbHp+8+YCuyNSbV7F3kz1PVPG9lYWTy31uVRe6sCDWZoXxR8P6ifKac27A8CTgYqbQPhzoNtbZll/tMkctJJuH5ZrhtZ0a0stcmhtdPicwtkRSJxis69d0UpSWgpz5dWei654v0dbUQx38XmSEKMNVbQ/EUEOoyw3FwhTA2turK8M+FvDevWhN1pqJcK2Sn936Va1L4SaFIxkgknts9SshwK3hNzjzIpPm1R3SX1ndgCG4Vz1+U1YOGj2nvXmtl4a/4Q+X7ZHfTXdsDyC+SK6XT/HWgXp8tb1FkA5RjgitL6alIq65oaxTfbfMZlB+5mqB0j7fb+ZaXksfH3c9DWrqPiPTDdQ2xuY3SU4wDTNe1CHw5ZpfxKGQkKyr3FZSpxd29hNHnN5qkuk3T2V6GkyeGHU1p6Z4instjRiY2/X5u1c3418UWd8Vkht28wjOSvetXwhcXer26R3NsyxEcEivKhSmptwvuZqL5tGeiwa7pms2myWVOmCM964TVIrXSr8qkx8qVvlKnpXb6X4G0pQZjGS7HOc4qTVvh5pd/Edm5JMcHPeu3E4d16fLL4u5ThzLUw/C2s6nY3f2a4lFxaP8AcY9Vrs9U02y12zEc6q46jNeU3XhzW9Ju/sq3BZSfkaus8PprVtGI533gdzWODddfuqyvbqOKsrGTrng6CwXzBZJPGMnCqK5q18SW2lXyW+2aGIHHltnFeyLJI0OJ1BHeuN8XW/h77M8lz5KSDpnANdssPF6x0K5V0N7RfEen3ECbJE3HsDWnN4itbZwsjgZry7wZbaPNcM0Vxzu6bq7XU/D1ndxqRL05+9WyUrajOxt7yK6iDocginG2t5TuMaE+uKo6TbQ29mkatnA9atS7bZC4bAFFugHJeO2j0zS3uIlAYDpmvPdBa61OT7ZcsVgTkA11fiSVteuvspkxAp+bnrXAeN/EkGiWg0zTnHmEYJU9Kynq7Iya5pX6DfG3jvANhZPyODjtXEeG9EufFWupbFiQTlyfSsDzGkkaSRiWPJJNbXhrxLP4c1MXUKbj3FXFJas0t3Pcbr4R2cmnLFCArheorl774JXCQM8NySwGQCK39G+NFpJGn2+MxnvxXc6b4vsNagzatuyOKtWbKujwvT/DUmnXf2G7YRt05712Nn4USEbkG4etXvFHgrUda1IXcU5jK8rgVDpc2s+HXWDU4zNDnAkX+tc1Sk+a7MJwu7shMKWMuHXAz6Vdki8yASRLu47VrXq2t/b7lC5NZ0VyumpslXKHocVjrCVpPRmVuV2MyC+VGMcoKkHvV93hkQNgcdK5rXLqCeffFng84qXTbxpYsMeB2pqo4Oz1Ek72MrQviCLDf+/Rg2P3bphlA9DXRJ4/srxvLbMYblsEYP515OfEEAkG/TYsnHStOPV/D+0PcWUgJHQcV18zPTXK+p6Jf6rYXkKxR3kS8AY2Ciz0y2jWSWO7T5x0bkV5qNf0uGctb2riLsCetbVn40tGQRjYiepHIqWk3qh+73OkQ6XGJYb0xAk9SMVU1DU/Ds0kgUARoMFhWHf6rBeLiIxXCE8s4wV+lSHwMZbeLULdjNGT86LzmsKlLnVloRNNqysRW2raJaI5gnmZ8/KHbgVQuvF94eYS5CngYAFZWs6ZPbXDKmntbx/7XeskwX2CEikOPRazhhYRlz7sw5Gt2dfF8RdXhdZPJik2jAUqOlPk8f61JKk0NokJU5wicGuKCXi9Q+fpVgXepQ45kHp8tdLT6D1Z6JZfFrWbNNt1ZK491wabe/E2+vnHmW3yN/ABXnEuoXbtiZyT70qapdRtuR8EUrS7j17nrmkfEmxtiqf2f5Kj7zMvNblx8SPDRIlkdg684xgGvDG1i4k5kcH8K04vFEv9nmxmtbWaE/xOg3D8aLzRR7JD8XvDUaD92d/pUWr/ABU8O3NqVWGTzcZUgd68RiWzwXa2LAngA1NbXcNuxaO2LDurdqbm+wWOxk+J0jEq1grqDwx9Kd/wsZpdm6wCAHg4rjZ9Tj8wPHZovqPWrUPidolAOmW746ZWsZU1Jajv5naReP1G4sgXjjIqtL8QN5A8vJP8QWuLvdZjvScWccJPZRVRNUkT5I4l49q5ngab3v8AeS9ep6Rba5Be5aSdo/oKkGoW6SEmaaZfSvLWvpy5YSFc9gacuo3QxsmYH1zWTy2HRi5UekT6pZNz5Tr9az5bqHeQRJKhHRjXDvf3Ln95Mxx71NFq1xAwZGBPoa0jglHZhY6CS5ZpfKSyaOInjJzmtPRvGF94WDrb2olgY5KGuPk1i6dg7EZHQU+TXLqWExlVC9M11RhKLVh2TPR4fjPa7WW40lkY/wASEUwfEfQbpiXvdStAeoWMMK8oKKSSQOfSozGmeBXQ4p7i5Uz2rRvipoGnuInkmkT/AJ6Ohya7jWfHek2fgs65BiVXGIcrtLt6DNeDeA/BFx4v1tEKFLCFg1xL6j+6Pc1tfF3U4DrdvoVgAlnp0YXYvTcf8BWkKKUbstR0uzkdW1++1y7kuL+5kbcxKpu+VR6AVXVrI2hPmyLcdsdDWerKD8+cVIbeORN8UvPo1NWQjQsNe1jTG32eozxEcja5xXq/hTxHaanoC6nrV5nUIpfLcgcuO2fwrxDcwJGa7PwNdR+RqNpIyq0iq0TN0DionQ+se5FXfT1Dk53yo900rxt4Wto2lWXbKfvHbzW9H418PX1sxF9G6Y5xXzWfGM1rM8U9kiyo21+K07bxxY4VVs44x/FhcZrh9piIaOGxndrc9J1P4ieHtMvHgyJoG5x1rz7Xda8Nalfm6tlMErtyV44qSW20TxApkVEinIyPem2GheHkk8rUWCyjOM8ZojiPaaS37AtTGuIYGZDa3zsN2QS3Ir0jQFkksBBqd6ZYyQV3815V4g0600+7L2E5KZyBmuj8JeK7Uj7NqbhQMYZq7KNtylZHaeKtBtbmxT7LEpA5Liuk8HxFNIjV2UEDFec+I/GVvZQGHT51kDdgc1qfDC/uNYgnWac/K3C5ray5h3PV11ZLVwivurUtdTjmXnivKNRuhoursslwQDyATWzo+uJdvuWUbfrVcqegi/461YWMUdyMbVYc+1SaL4lt7nT1lR1Y46d64P4i6gGQRvONh/hz1rhtJ1qfTLtZBIxg/ug1yVKjhWt0F1Pf38QWkqGOWRVz71kX3gjSvEIM8wZ88jk15bqWvT6heW0lhbysQcsFFeh6d8RrXSdORdRtLiBlGCWjOK6FJPYbIYPhtp9rcIYWkiOedrEV3en+H7e3hCNI74Hds1xjfGLwywz5hz/u11WjeJrbWLD7XCGWEjhmGKpLsGhpOlvYnPmYA7Zrg/HXjuDTLR445cyEcAGub8bfENI7+SwtH3MOpB6V5Pql9PezmSdyxPqawlJ35ULfQ2ZfG+qP5nktt3d65i6nluZmkmcvIx5Jp/nqsW1RzUCOVmR8Zw2cU4xsGiJ5NPuYLdZpomRG6E963fDXhibUJkuJ4We3HYDrXQadaXnj27srRbYw2MON7Ada950TwzaaXp8cCxD5VA5FaOKa3Hvsed6R4R8P3vDWZjI4+cYrvdE8KWOlgfZVwh54rYbSYNh+VR9BWdd6i+jjLAtGPSs4U4x1QrWH6vdS6codE3LWdLNFqkGZE2mqPiXxTBPozmJX3Y4wO9eZ2fjnUoz5ElrIQDjIXtW6krDOy1WX+zyRA3I7HpVO0umvkPmKGPdayr7VPtlmXKsGx0xXPaZ4iuLC/CyK2CfSuGc4c9+xEopM7OXRYpAzqv1HpXPTyNYXBTbx610jap50IuF+XjnFczqUyXRMitjB5rOU6NeL5HqRKKex5614LWdomtoWKn04qZ9T+1EG5soZQBhQuBio7nQNVMjSSWj7zydoxVYaVqQ+7bSflV/uns/xNLLcmS4WO43yWSMOgizxUF4pkk3xWXkg87QOKY1jfqSWhfIPNTxLqZICpJx0GM1onFa3KiQWxnjlP7gtx0JxW3oXinVdHvRKkkphB+aIcjFZM0eoKTvSQN9KbbyXyFliB3HsRVcyaGjtNT+IEd3ei4TTlI7q69aW3+IcEVx5s+mREEbQgXpXItaahw0kZBJ6EVr2l59m/wCPvT4pgB8uR0rKU1bTUvle5sT6jo2oypMkbxsxyVSt6x1Tw6IvKNqjSKfmaTrXELqFukjN9iCKeRgdKtW40i5zLMJEc9hXDVct9UC5+jO3utL8Ma9GFjgWN8feXgVyEvhOysLxvMUywZ6g5qYXdtax4gWXBHHB4qs+pxSrhp5V9cjpWCqVnor2Jk+5oQ6DoDoS8ezPcmtOzh0bTFCnTLS5XHBfrXFPqgMhUuXQdOMVD9u3cL5hXNawpYha8xF5Hsek6v4S8tFn0WFMnB2jIrsbGLwfdA+VZWSn0ZBmvnK2uL7z1SLKqemTxXW6bouuXo8xL63iPfL9q6HXq0/iaDU9aOieC3vC/wDZ1oX6FtoxRcQeC4G/e2VkAvfyxXn0OmaxaykSX8Lo3B2kcVbh0SO4Vl1KRpQDxsHGKFjKknZRGoy6HaXmg+CtStt5tLUJ1yigVDFZ+CrC38yKxtSoG3lASfzqpbeHtMksRBCGwR1DGuO8W+HbjQbZri3dnh7qTnFdEqlTlukhtNHov/CD+EdVgF3/AGbBh1zuC4rD/sDwnpVz9nj0EXKg8uEyRVHwXrGqXNpFHPaSLbgcOTwRXpVrc2PkqdyBgKqMlNX2EnocmPCHgi9hNzJpscIxzvG3Fc1ceG/AL3zW8GnyyydvLBw30Nek6tHptxaEzKrr6L3rk7y/srC3t0srFsK2N2MbRTnypXJcrDNG+G+gJH9rfSwF6hJOTU50/wADtdfZJ9LhjfpymM1JpdxrWpX7xCQx22OpNaV14OtJiskj/vOpY1F5SipU194nKT+EyH+FvhG8uFkjRY1Y52K3WtS2+FfhG3Gf7MSTPdzmtKPw7b7EaCVgy9G3VjeK/EzeBNBa4uJPPmlbZApPeuqmpTajbUuN5PlE1a80nwhCtjp9vHbqzZZYxitKTwH4U1MC7m0a2lkmAdpGXlie5r5l1jxdqOtXz3E8hLM2cCvp7wb9ufwXpBuflnNshYN16cfpXZiIxjCKi9UdFRJJWM6f4T+DLgEHR4190Yj+tZz/AAS8GMeLWdf92Y12k7agp+SNWA9DQL6aIDzYHz3wM1xOVtzn5jzbUP2f/D90SbS9urU/UP8Azry/x/4FX4dz2MUGoSXRvAzFmTbt2kf419OQatDK2DlT7jFeNftDwF10O6XlB5qE/wDfJrfDztUTRpTfvHj7GPWpoleSOG6bCmRzhX+p7H3ropvhN4pgVW+yI4IyCj5B964bcQa+qvg7rj654BtluG3zWbm3Ynrgcr+hFbYqKmvaLR9Sqmup4TH4c8TaPciV9MmIAwQBkVQ1TUNQnnBu7WRMdMpjFfYJt4n5aNT9RVO40DS7v/XWUL/VRXmulFy5uphZHxpLK0pJkJ9hWlY21lcwkOdr4719O3/w38N6gCH0+Jc91XBrhtf+DFnApn0p5FP9wniiSlbQGjxWfRyjkpICO1WNB1668M6l50DHnhkzgV1KfD/XYppDNEwC9PeqWneHLW9mnS6QiWNyCB2rnqYn2C5pg9FqY2veJ7rXtQ+0SOY+MAA06w1nUbCMm2m3E+tbDeBIL278m2lkjPupIqw3wsvo0zDqUZ/2W4rKWY0UruVr90xXucxdvreuyeZKrOR0rVsvCGstB5rjA67SK1Lfw/4q0v8A1UMUyDupqV/E2v2LrHewLGmcECsXi3N+40/nqRfubPh2WXRhG13ZEheCdtdRN478OTxG2voVXjHzLxUekCx13T1AkzKRzz3rH1LwBbvdbpZRsByQK9alVfs1JbFXvsXIPhjoGsyjWrd9lsfmCD7rVz3ir4g/2ZHJo2mRKvljYXA4FP8AEXjw6Jpx0bTjhlXblQOK8mlkeeZ5ZGLM5ySe5pxm56rQqwPK8k7TOxZ2OST3prOzHLHNNNAAzz0qrDNzw54W1LxNd+VZQnyx96U9BXsugfB3SbJVk1GXz5R1DHj8q4jwv4xura0j03R7NEwMPIRXTwXOtyqzXF4xB/unGK8/F5hSwz5XuNI9U0vS9L0qIR2kcaY9K0/PA6EYrwX7ff22pKP7QlUZ/ifivRdF1syBIpJPMOOorTC4yFdaaCO4FypOCaqahHb3EW2TbWZPfIhBzXEeMfGn9lR7UbLE9K7mklcLnVahZWa2nlbFIPHQU/TdA04wZMKFj3xXk9348S50v5ZT53Zc1NoHxHnRRFdAhRxnNYxxMNb6CuegX+lWMNyV2KF7jFZdx4Y065k3xxrWNceM4bm5XoV9c0sfiIQ3gYSfIe2a4frtJ1HBrfqRzE1/p62UTRrnb0rkbh1SRkYV2V3f/aoWZAGzXGTIZbl3ZcEGuX6sqFfmh8LHZk1he6dqKNbajJNDcOflO7DD3xVXUILe3H2CzmmeUnHnMfvfQVQ1GWGNraSaUTXLKAZMDj/61PtVOpyMguBHPAfkGcc1xezcXzptR7eZzN2fkW18OR6cWnvLyWUOBtUNkZ96vWnhVZXEpvjGp52o2aoWWtGC4ntb61OBj52GQamu9SsYgXs5lDLztFZylieazfz6G8L7mxa6ChVg1zEzA4G88msfVNIntLgO1opUDh1NWdP1mWZVZrSFgf4mPNb0Vvp1xATeTld3GNx4qozrQkuY2jN7mBZ+IbO0stlxbI5HAJ5IrHu76xu7gSeUFQ9OcYrSl8B2t3M0tvrMcak8B6jvvhnf2tq1xFqNtNGBnrXqU1Tauma8zsZwgtZZQfNjCjsOafIkMLEh4ynUHFZiW1zGjBQpwcHbWxpk0tuq/aNOEkY7kVNWFldO4czWpPaarIo2r5TE/dytRNb3lxc+Zsh2E/ODxU897ahtxsyobpsHSqct1ZD5md9/YEkYrhtK+isc1Sbe5qPp1pbRCWVYWz1A61PbQ6XNGV8lU7isRZbS5iAk1EwD17ilXStPdSYvETA+jDg1KhO3vTafzJ5Wboht3iIWKEsOm41Wj0q4vJ1WOa2tRnG4OaxW0e9YE2+rQuo6gdaupbarBCMMsxIxkVvBuO8lL1Eoyi+5058FalEUkTU45I252B6mgbWNLLQykFD0Zu1cvb32uW5IMJ923dPwqb+0L+XdHcQySKw/v8j6Vu+WWnL+JrGTT2O20DxLdw3ptpIA+TxJXVeInnm0KTFuk2VywPNeLf6YsgKPLER0O6tS217WvJkt5tZREIwA/WuujJJcsjW9y8nimJLPyI5vswTjaOamt9at2QOdTePI5BHBrzu607W/tUklvA0sZOd6DIaoRd+ILdSjW7qv+1HXHPA82qn+JhKF3qehnXHilJF5POhPAx0rWtZrnUI/LkbEbcrg/N/KvKZfEOslQJVCjthMVJbeLtXspEkRgdgwARWbwNRfC/xJse36XDcW7KqXcm4How5qbVPEBtXMU0zZA9K8b0vxf4n1HWII7NfNuJW+WNRnNevaP4UklmjvdfkWWfbzDH9wH39a66OFrShyLTzuDpylsaHh6/1K8ZWhVmhJ+8eBXIfGq2l1C50m3Z8KiO5+pIH9K9UhdIECQoFQDgAVl6zo2javfWt1qq/6kbI43barE8817eDjHDzTldnTh1GlO8tUeBeGPBEuqa7bQqjtAJAZnAwAo5PNfQl1qU1uohgXy1QYXvwKfHrOnWM/2OK2ZEQ4BijHljjPWpbjUdHuV+eSNgeMqwzTxXPU+FWRVebqfArGbFrN7k5cH8KeNbuQfmVcVZSx0QvlW/8AIlTHT9Kcj5jx6PXAqVXuc3LMzDqhdsPEpB7gVwfxcg/tHwtAwPMVyCF9Mg16g+iabOuFmdf91qs2ukWFqvCCU/3pfmNa0VKE1J9DSm3GSbPjtNHZm54r3T4LWk1ho9/GHAhkmDDPrgV6NqHhXQtUU/atLtpD/eCBW/MVVg8Lw6VZNbaU4hjLFgknPP1r1K+Jo1KTjGNmdlatSlTtCNmWL+9uLRlKSKeelOfVJkgDhNxxkgVw3iLSfFMcheOBpox3iOT+VYA8Y6jZILa4jljZThvNXFeBOrKEndOx5cptOzR61p+t/bJfKaFlar9zew2yhp2CqeMmvLdJ8cwpNkOrnuBV3WvG+n6hbfZ5QqjrnNH1uChd7j9qrHor+RPAWAQgjriuT07wjYW17cXoVSXkLE1y8XjmysNNeIzkkDgZq94f8dafeac43Hfk8ZqoYmlUWv4ijVUmjto7LToj5ixxhj1bArnvFnhKLVrRpLS6e3mA4aM4rzbxn41uLWUjT7kqRzgHpXdfD3VL3VvDsdzqL5dutac1OsuVrQvmUtDlYfCHiaKB/s2oO79g3IqtbfDHX9TuDJql6QgPQDrXfaz4507QrmO0LB5nOAo61z3jH4qW+maYYbMhruReAD92sY4SgndLULLYfp8mi+EZGtDKDMo5JNebeNvG9xcauf7OuCsYGCQa4m81W8vruS5nmZpJDknNU87jkkk10Qp8q5ehaRNLO9zI0kjFnbqT3qM0oIAp0Mf2idYwdoJ61qtBiRp5jgFgoPUntXTafb6FHEFdJbqduOBwK6vwz4H0y+t1PmJJLjkE1v6j4dOlQ4t7JD7qorkxDqct4pmqpvqchBp7abGbi3VYy3OKcuvXUIwz59qfqsNyIt0yOi1zbMg53k+1eGqftbuorsJabGrfXjXkRd2wR0xVjw34wGi3GJiXWseKITRnnH41lzQR+cVJrsw0Ywdl0IbPZYfiTpNzExk+U4715p4s16PWb4GAZQcZrHSzV1JD80DTZmBK5Nel9ZTVmxMiER4xmui0nwveamoMMigmsg2lzBBveM7a2NJ1C7tE86KRlUVx15txvBkpK+poXPhHV7IAsu4DuKoXEV3bgeaCMVux+L7qbCyTKw9DVTWtWiuLbARd3tXBKUuZJIbhC2jDTfEv2SMJMuQBWvpNzZapM+GVS3rXnzTCQFWODUNvfS2FyHicivXpqSVpBGVixo+jXmtyXIg3bLaLeWbJ/Cs61kmW7aFd4kJwOuQa3PC3iFtGlnV5m2yx4wo+8fQmnT+IbaO2dYbRY73fve4XkE+1VKMrvTQTirBbTaxY4GY5Ax4EoyP1q3LAbpybwxQsfvGEDArFfU0uyGu5nKMPm2jB/CqyShIs28/A7P1xXOsPO99EyYpnQ2tpbS52ai6xxnHK1tGKaNTLaakkqH+EDJzXG2+s3EC8ygg9QQMVdi8R3Nvn7OqHPJOKTw873epvTcV8SOjtby8tZybxElQjgdKtXOoxTWUimGdCegDE1zUOtX18F88cZ/u5xV+O9nt3SbzVfB+WMrjNZzhGG6KlVhGyYzSLmJblgkL+YG5VxWrqGpzTny7aNVfGCuOlZt9fPJL9omtfKB7pxV7TYZ7jdJZyQhyvHmnNW3G3MXColtqVLOe/h/dlY2bP8Qq1P4eu71kd3RVbnKLkCkuBe6fCkknlGXnOTUdt4m1i7ha3jQrCOGK84qZQk9VZE1J8ys0E/hqOKFhLIzsOiha5gWsEF4wnMiKOxFdda3aac/nzagzHrsZc1Nc3UWqSGX7NCwIyGYYrCNaSfddzmThJHLhLQxk292Y/qetPjtNRlh32upKQOxatu1i0NZALmNA7cHaelC2+jiSWC0Ulj331spvz+4ajY5CW91eGRg0ztjqR3qsdZ1JTnzXroY5raC6eKVWbB456025iiUm48lSjdB6V2xceqHexzp1u+3bjM24etPbxBeTR7ZmVwOm4DirqarDa3e9rGCUD+Fh1rdfxto09n9nk8N2yNjG9K35V2Grdzl4Nf1C2wYrp0weADxW1H4v1W4UCW+U8cbkFYdwtnczF45FhBP3SOlMNguRsuEah04voK5qTeIL1yyzeXLjoQoqzpviC3Z0iu7JHBONwHNY7afdBMxgMPUGrunWhtrV7yZcOQfKB7eprfD4P6xNU1t19DajSdWaij1b4W6pptzrd/aWmmLHJFHvWcnLMM4I9q9RCiR8ngeleXfCDR/sOl3Wt3AIN2dkQA+YqPT6mtLxT46t9IQi6lwwHy2kJy3/Az2+ld0qUFPlp6JG04LnajsjrrzWoIIp0tpo1eMfNNKP3af415l4m+KOlWso+xp9uvEXDSEny8+oFeZ+IPGmpeIJSJZTFbjhYk4GPf1rm3OTx0rNzjD4NzFtLY6jWvH+u622yW9eOHPypF8oA/DrXufgaCwufCtm0BV22DzGPJLe5r5kjXc2K9a+FfiOW2vG01ydjDKVtQhKpCTe50UYOUJM9UnsfKkLIqnv8wqSJEYjesYPsK0uZlB6cVDMIrSJpX7DPSpWunUjm6DwbaBPnZQPc4qUqkkfmRPkf7xrwjx/46uJ7x7SwlKIpwxFbXwv8ey3VyulalJvc/cY96udFx66lOl956hcTXcIJSFnH+zOR/Oqkmr3SQM8lvfrGoyxV1bA/nWzNabjkH5a5Txjqf9maLOqN8xQgY4rKL5tDOMbuxJY+OLHUXVrHXkPIUpKMN19DWtNfC9hIvLG2vot2zO0ZPuM18lvI3nO+SCWJ4ra0rxlrukuhgv5GRTny5TuWs3KN7SRHu3sz6EufBHhrUdwsg+n3J52A45+hryrxV4X1fRNRaCZtydY5QPlYVp6P8V7e7CQ6vCUIwA2MqPoeqnJr0cXWj+KdJXT7+UtCQPKud4JRu2H6GuerhoTXNHcyqUItXieJ2+i3V5HkuC+O4rs/BngKJgLu8vMZ/gBxxWN4u0fXvBl1mQCawc4juUHBHofQ1x58Q6lLcBku5Ylz/Ca41StpNXOTkl1R7F4p8OeFtOs98wjLMQM7uc1sxxxaN4RL2ZwFjyAD7VwXh63sfEViBd3BlmTk7z0NbWo+J9NgtG0iSYK4XbjPWsqtfki7RIm2lc8Xv9au7zVJb55SZixwx5wKzpZZJ5DJK5dj1JNdFqnheZbwixUyI/zD2rEu9Nu7FsTxFfet6dWnJKz1OqDVlYrUopuadW5Rf0rSbrWLsW1om5/5V0Fn4RltL8w3zBX/AIQK2fhlPZ20skshUS9s0/xTPKniJZy/yt0FROSVkaQS3Z0XhTwTrIuWuIJRFEx4Oa7i98OatFaFjd7yBnGK4fwx8R5rS/isZkyhOAa9C1zxQo0wPGcbhWdRpQbNb66HA6taTTRGO6Hy9MiuRuvDEBUtDcYPpXcXepC9s8NtAPWsJ4LNlIMnzexr5WeImpXTCpZs4qa0ksnx5gYGs+4CE/L19q7OXQbeZd3mk8+tM/4RiyWBnMgLdetdkMdTjbmevoYWZn6J4Xm1OLzEk28VZl0m40xmSRgQKWz1CTS2MME3yj1NPuJpr1SzzAn60VajkJtWstxkvn3FiyBV21mRu0Vs8WAO1XY1ZIWHnAe2ayZ92W2kt9KVGO8ehPMyBtsZJJ/WqtzcDbgManNhdTLkK1VpbCZeHQg16lNwvqxalITkNmleXeM1IbJvQ1PbWO7hq6+eG4ylGoMgDSbAe55xSllViAdw9emahyKStyiffG5wV2jFRFuwNN60u2gCVWjUZILNVpdUdQAkaoAOwqkUAA+YEmlEee4pNJ7jTa2L8WsXEchPmMFI5C0wX7uzO5Oe3NVo4gSSx+UehppaI5wDUezj2E9dzUXVjLCIZy7IO2aI9SWJ8xeYoHoaqQR2zxlmkIb0rRtI9KVl84s+RkilyRWiRURF1NJziZpmGeMtUw1Q2qP9kLxsR3NXLWw0XUDIsTmA56selZ9zoqPO62t2jhfU0nGL3LdySLVbhIw0ksbE8kHmtaHxDZyxiOcMExghBXHvbyo5QjkelT281zbMNpxx1IzWU8NTn0MXCL3NyfVNKaJ1+yuBjAI61kRXsFtKJERyo6gmplu97L5si4zknZVi9Fg8cbRSq7fxArinBKHu2ZSsZV1fLNMXiUoPTNMOozlNu8lfrWnqEunQrGIbdGOOSDVeK909QRLYb89w2MVurW2HZGa0pbvzTN5q3PJZPnyomU+5qmcdqtCaHiTHajzD61FU1rbS3lylvEMu5wKpJydkCTbsjf8ADNnJe3LTyuRbxfe56+1dJaabL4n16306BSIpWBfaOI4l6n6mq0Ihs7QWMBHlwpuml/vGuo8IRXKaXNLbqY7u++9L08mP0Hua+op0vq2H5I/E/wCvwPdhT9hR5V8TNvxT4nbTrNtF8NoAbePZJOPuxADoPevB7m+luZXeZ2kdicsxyTXtuo2MGm6S1rEvLg7j3J9TXhlzH5d3KhyMMa8zEUvZwjZnJVj7OKsQEc0oGTSsOaFHIrzup5/U0rSzLx7wM11XhNDYamlznayVT8MNbSL5MgMkrkLHEgyzE/y/GunvPBWpzIZW1Cx09P7iO0sg+uAB+tfTweGpUl1dtke/D2NOknu2tj0vTPENq0YDzrnGeT0rm/FvjaAobO3mBZuODXnGn2Vg2vfYL7V9U2k7d8Mapk/ix4rspPhl4fnjae31fVGdRkB3jyT/AN81wrkjLn5GcMeWMuZxZw8+hfaGabcG3HJrJS1n0zUI7qAlXibcMV1FzfaZolw1lcQ6oSrY3NNGePUYStaDwlpmuQ/abXXLiNWGdstsGP5hq66tSjLeLT9DuqVcNNWcWn6HqHhXxCmseHo5/M/eBMMM9DXlHxQ168OqRWMDsq7dzkd/artroGo+GPms/Edr5bffjmiZAfx5xXN65cz31x5t0qmWPKkodynvwa46WGUqmjsmclOjGU/ddjhplKynPU8mmVavgPOJquBXmYmHJVaOCtHlm0Kj7T8wDD0Nb+ia5Ppc6taXO1d2Wgl+41YO2tHQtFk1vU0tVYIpPzu38IqaXM5WitSYczdke/8Ah3xVY+JNNOl6lECkg2vbznII9VPcV5p8Qvh/P4bka/00NLpjNwerRH0PtXoel+G9G0XSVS0h2TKNxmJyxI78/wAqXS/E0N8Z9K1RI2ViUBf5RKPp6101MO5J2NJ077HE+BPCWoto1xq0s7QArlR/WvPbxLu51Sd8PI4cjOM5rrfG2pa94Z1J9Kiu5F06Rd8AxxsPbPtXG2ut3FtL5igFs55ry5U0pbanE42ex0mmX+vafEGfTriRAOuzNZet67cX4KTWxjYn+JcGvR/Cfxf0y0tEttWsiCBguqA1rX/jz4fapjzLVWOerRVh9XpKfOtxWseHSadLFbCdvumqlep+Ln8MX2nMdMkVSBkKDXlxGCRWsJ8xrJWtYvaXcyW95G0blea3vEF+1xcWxZs4ArmbZgs6E9M10GqwxzLBJEc4AzSna6bHG/Qs6SFk1mF26LzWx4u8TSbI7WJmXbiq1k9nDAJVZd6r1965jU7k6hfs7sevFKVrWNJXSsbmm+IW2COVyRV/7ZFI48rqTXKRWkZIPmYrUjgWIArNXkV6FO946MizZ2+l6Z9pb55QAe2asXXh87ikcxbPauSsr29NwqQyH610Nvq02nXSPcsWzXkSw9RVUuZDS02Ob1Pw9qMN1sSJiD0NdF4f+H91exiS4nZQR0Fa114ngk2vHBubHHy1Qk8b6lCvlWtswOOoHFe/TpJpKWouSJdu/h5ZW4PmXTA+7VjP4PAYrZSea2enWsu81zX7+ZvO3KD25rq/COryaagN1Cx98Vbw0ZdbBp2M2Dw5q1u2024qpqfhzUAd0sAA9q9Fl8XQzTqIoCR/u1rxzWupQbZUwSKSwFNPmi9Qv0PEY9AkkPA60y68N3kClwhwK63xRaHRLwTQMWjZunpTrTXBPBslQEEelcOIlVw77otRi0eU2x0hIsXNrPI/qsmBVS5Fq75to3RfRmzUe1TzuxSBcd+K95KzuYjNnvSgDpzUwCbR6+tPVIyu5mAFO4FYRk09LeR2wkbN9KtYtAnEpzT7e8Fo4aGU+4pcztoOxFDZeZIVlzHipJbK1jz++JHqKtza7JMu1LePPrtrPeXzZcy4AJ5AFR7730FZg8UbMiW4LH+dPuf3bKghKMBzursdSbQ9O0eynsola6xzk1y91cTapcmTy1B7AVSZdrFW3ch2zGWJFOSFxKS29V65FWksdQkGYoc7e9Swm7dyjMkZUc7h1qXIOVmU8jCQkbsepqMszHO8mt2XT5lj82R4irelVfsMB+bzcD2oVSInFrcyyX9cUBvU5roLfSbZ3U+aAD03HitSfS4EhCi3hkPrEcmpeIiibo43apTIB9zigOqqy7Ac9661be0tkQfZZ15+YOvymnT+HrW6nSWGRAj9lPSl9ZjfUehxRFNrrNQ8FXUDZtXE64z8orBk0q8Trbt+VaxrQlswasUOlb/h23lO5oEzPL8it/dXuayPsdwZljMLhmOBkV6Fo1mljZjAAJGCa93KaHtKjqdF+Z6OApOU+fsUr+2EUNvptvzJNIN7kck16fpcEen6UpKhCqgZb2rgNKg+3eKY3PKwDqfU1s+OvEC6bYi2gf8AeMuAM9K9iuldt7L8l/mejVSu5PYwvF/i1FmeCB97j0PSvN5pGmmaV/vMcmllkaSRpHYszHJNW7jSL21s4ru6hMUUvKB+GYeuOuK+drVp4iWi0R5FSpKq9FoilHHJNIscaM7twqqMk1px2FrZMG1S4ZT1+zwEF/xPRf1NR2+otBGYrVBDuGGdfvsPc/0FUJEdnPBNZOFldambgkr7nURapYSeSLDTY7NYzy+8vJJ/vMf6AV3miXayxopZjkcgV5VYAqArcHNd94dnaMKuePrX0eCh/s/mezhl+5NbVPDfm3a3kA5HTjmrFjcvbyIHYlgcMM8VsLK7WuFyCfeuVvLScXhm39eaum+a8ZDpvmupGt4n0CHXtNM8IXzkBIAHWsTw8sumRCCfK49uldNo8/yBZX+U9cCmaykCRM6sikjIzUQ0lyMqK96zOX8V3xawKLIDk4NclDqEFnZSpdRNNDJgEK+1lP8AeFWNSuGnuGLNuA4FYWoHehRDRim6VN27BiHyRdhtxAJWMlvKJ4+2BhgPcf8A66qgHOMU20R0fdkgr0rSS8iLgXcCyj1U7X/Mf1zXg+z9rH2jdmeM4qfvN2IYYfMXkE+mK9b+H3hT7NbrfzAhnGdp6AVydj4fxPayQPEJpMOljev5cjD1yOMflXpo1+TQ9GYarpF3ZKFwJVAkj9vmU8fjXpwcIU7U/i6nZHkULR3Oe+IvioabGLKybErDDEHoK8qh1q6imWRpGbBzgn+VWPEWprqN/LMH3lmJBz0FYeM1w4mvKFTlpy0RzV52lyxZ6pLrNn4z8OG3mQG+tRuiz1x3H5VyB02B8fu+TWp4X8Ozm3W/W6EMgYER/wB8VdNqIdQdZAB83SuPM6U40o1rWvuZ1aclFSaGaT4OtL1AXXFa7/DeBl/dITXSaHaRmBWSRQetdDcapHaWuX25Udq+QSrzk5Oo0jkZ5mPh4+11CsMCvPtVsH07UJLdxgqa+itL1eK/SQhR+VeLeORG/iSUqMCvUwinDWUr3H0OSCkdq1bJZp4WG84AqEQ5XIq7YlolZFH3hXVWn7uhLdiW2lkS2dEjDY7mq9rpk2oXJVflNIt1JaMyNnk9K6Lw5b3d0TJbwEj1xWNaU4xbhuXe5Qk8L3EIx5wHFU7jTLy0UE5ce1dNNp9692yytID6Vppo+oPbbUh35rmg69ryd/kUos4+xvpYXGEKn1rXYTXrq8kgGKddaNc2xzJAV9TWZcXDQNxkAdQTWcoOcrxVmF2j0zQLK2aAGdomAFb9rZ6MJDhYya8ctvEv2dChDAexqxbeJ/342KxJ966/aTgvhByR3PiZ7CC4RIVTc3QAUyRo4tKMjIR8uelcPdatL9tSaVDtz3rpB4osJ9NMLFdxFbQqKcbstSTLWgapZsSZGAwTwa7XTdR0yRwqSKT9a8TmKAu0TkAntUFneXMU+5ZWUj3p+3S6GbZ7xrmh2mqWZwRnHHNedz6ZJYlkXBANZH/CZ39nEE80sPc0reMllT96ASetZ1OSrHYqO55nkgUuT704Ie9L5ZruMxgNLnjH61Yjtty5KyH6CnLBFglhJke1K6K5WVeKXgU5kCnHP41NHaoy5eTbRdCsRRzvF909aaXLNubk06SFVPytkUCFT1ei6CzGmRmwGYkDpzTlkKtlSR9DSmJez1MFht9rqwc9xildDsEd1OgOyZxn3oaeRz88jH3ptxNFJgom1vQVBupWBltJHAI3kj0zUouwqhWHy+lUNx7Um6hwTA02u4pBgLtH1q5bXUNugKSMrnvnOKwA1LvqHST0EdQviG5JMUl2Hjx0K8VNfXcJtlkhu48kcgLiuSEhBzinCcjqBj6Vm8PG90Kx11hf6iyrHb3MLZHQtih9WuLa5Ant87TyQMiuTFwOMqB9OKsJdkkKjOD2ANZ/VVcFHsddHcLfNGwQDbz0wc1fuZ1t7XJxwKztOQpEu489ST3NZ2vahnECHqcGvvsHSjgsIo9f1Z9NSiqFBXOm8OTi306fUJBhmcnPtXCa3fXGt6ywUNIzvsjRRkn0rqLqd7bw9bWcKs80oAVFGSSegFdh4K8BR+HoRrOrqr6gV3RxHkRf/XrDHN8qp99WcuKbaUDnIvAFn4d+y6hqV19onRPMe1KjaG7A+uK5DXdRl1fVXeVsgnArtvGes/arp0Viexrz4DF4CfWsvq6p04xirX3NvYKlSUV13I5NMeJgw6VOdsEGWQbu1dKll5lqCFJJrntVXY5THQ10Tw0aEXUgOdGNGMpxKtu+ZM9ya7Lw/KN4BAOK4iA4YV1ugP8AvVPeqwE+aDTM8JLmi0z0i1YGMcce5pbi0WRenJHTFMsDmIZHXtV6R9gGOPrWMm1LQiV1LQwpIfs+QgwfXNYGs3UgjJycEdxXQ6g6tu4PTjFcbrEv8OSQfU9K7aOruzvo66nN3j7QTWOX3SZPNXtQly20VUt4zJMq4714+OqOpWVOJ5WKm51eRG1p2mfaEGVzmu08J+ELUX63VzB5hQ5QNyAfXFM8P6YRHGcAZ/vCvT9Ot49qlV256iu7EuFKCgo69zbEOMEopanO33hOyfUk1HaTcIdwNUPFGsSw2BHJBUq6McqwPHIrt7pRFnJ47V5l43uU8soD161GFtJ3aJw1pS1PKbq38u6YKDsJyv0pYo+enAq3eLGYUYMfMBx+FRxRlkwOSa82OFSrO2xj7BKoyc65dooiRyqr05Nal7qNxcaXb36hg6kxufU+tdB4V8AQX0SXl+SQeREOPzrU8QaNax2M1haxLGpUlVA7iuz2FStCdOo73Wi9NjV0qkoyjN/I4a18X6jaJtjk4obxZqEwKvKSOtc8VZXKkHIOKdtZRkg18y6ML7HkHdeFfE10t/5bPiNutQeNYo31BZ4mB3dcVyMNy9u4dCQamn1Ce5OZGJx0qPZcsrrYLq1i3DG8mFFaFnZT/a40GMucVhJdSRtwaspqc8bq4f5lOQaidNszaOn1fwjeQ3MBCb/MPavTfDk1poOjKLqJY2C8kjFeY2Pj66F3bteqHjj46VreK/HNpqWmCG1A3MO3aqimkbx5dWibX/F9qdU32yggHqBV3TviLbQIEkTt1xXkjTMzEknJoV2J5NVyC52ena744tL2I+WoBPtXn97fm4mJ6A02FYWXDmpobCGe4Vd+FJ5paLVibbKShm5AJq5ZC4jlDomfwrvoNB0Y6YFWRfN2+tc/Pot5bEtAwKg8VzvE05XiS0SQRy6hIsU8WF9cV0lv4Js50XDYY981k6T9r580DP0pt5q17Z3AKykKD0rkpzip8iQ1Y0dU8IJZQkrMcY9a5GSwulc+UpYCr2peJry5j2mT8Kk0XVGCsJVDA98VvJNaxQOxzc7S+ZskBBB6VFMpVOK2tRK3eo4jTaCeta48MwvaB2cZxW8ZJJFwhzbHHxxLcvhmCCtD+zLRI9xuFJrHFxH6UGZGH3jW7TGpI6C31G3tojGqK+OlbWhR2+o7hLHGu4964aMxBs7quwX32c7o5mX6GlymkZ9zvNU8K2MVi8y7cjnIpNL0fTb6wAaIZA6muOl8Q3U0Ria5YoRjGaLXXZ7SPZFLgfWhpj5o3O2k8FadcKVXCn1FUz8PdPDkfaCPxrnovFN6Gz9oxSN4iuncMbr9aWo7wfQ0tV8DW1jGHS5O33NVY/BAmjDRXIOar3OtG9hEc1wdv1qS01hLVNqXJx9aLyF7l9if/hX8xXIuBTT8PbvGRcLipR4o2jH2mpU8XJsKNMcY7UXmFqZzep6F/ZTbZJ1Y+gqK10k3iExyAEetR6nMt3dNIJmYH1NNtrpbZSAx/OtdbGDauRXNo9tIUYgn2qAj2q1Jco7Enmoi6GmiSHNG6nMVNMOKYg3VpaNbfaLsOR8qc/jWZjPArrtItDb2yrj5zya9PLMP7Wsm9o6ndgaPtKt3si/NKLe2J4zXLw5vdUXccjdz9K3tUJ8rywMZrN0+NbAtdzRFlVgBxwTnkGvexd3Uiui1Z62Ju5JdD0fwDbw6lqFxqU8O6O3xHAWxgHuRXV+JNRVbVyGxhaztIvI209JIoUhVhkRoMAZrF8VX3lWJU9T3zXLyurV5pHPCLqVrs8+1a5LSSOx5JNYcDNJcjHXNS6hcGWUgdKdpUBkuV471dSTqVUlsjWtU9pWUVsjutPjH2FQc5PvXNa/blXJwetdlYQhLNQwIHbPeua8RoATjHPPWumbUoyibVHzxkjlI/vD610+hPiUetcygG+ui0XiZc+vauXL1a6OTB6NnqGmPmJTkg+9W7kfJ1I9wao6WwMK5PT86uTkBeMZIpzXvlSXvGFfnCk7jn2NcLq0xDvnoOldhrNwscbZx0rz7UJfMdueprri+Wm2dqfLTbMiTdJISfWtTQrXz75Vx3rPlYDgV1Pgqz8673kdDXnYWmvb3erWp5dCCVW716noGj2+ySNAWDDoCP1rubSPbGvGOORXO6dCftalscdCO1dVCu1OSKzxc+aZniJc0rmdqjqkbc9q8O8a35e7dFOcH1r2HxHcCK0c98eteA69OZ7+Qk55rWn7mHbXU1p+5ScjPsEF1fIkh4JwTXa6N4Wf7Wsjnfb5yjjo1c9p/h/Up4kurK2efccYQZINem+C9G1rS7OWPVrZok3ZiVyCfce1Y4X91dTWu9woe4rSWu9zo9KhMUKrnA9u1Q6tYK4WTglec1qRKqjcVxx0rC8Q6vBZwnc4B9M100ZSlVujSnzSndHkfiGGPTtdnUR/K53r+NZct2sgwEArc8U3NvqMUV1CwZ0JR/XnpXMV4uPpezryS23+88rExcKjSJcqe1SKU9Krinrz3rgaOUmwhobaKiwaGQmlYLDmAI4pmKdggU08UyjY0nSY7y3klkcLjpzWdNH5UrKpyAaYlzLGpVHIBpu8k8nNKzuO+gcj1qeKVkPBxUW8YoJ9KGrhY1IL5o2BMjce9a48QssO0SZ+tcluOetPVWPeuaeHhLVoVjoH1yf8AhfFQNqDTHMpyKyfLI6mnKvHJoVGEdkUkawkt5FOetVJbo274iPHtVcMq96Y7qa0URtFiPUmR9xyTVt/ENwybQxA9M1kDYTzU8aQ9zVOMewlfoZv4UtLxRkVsSJRS5FGaAEwaOadvNJnNACZpefWijFABmiigUAHNFL0pM0AFFGaXPtQAlGKXNGR6UAJRinZWlwuODSAs6ZB514pIyqcmuzs1wu7tiuf0eALCGx80hz+FdDykYUYGa+vyyj7Kjfq9T6PA0/Z0rvqUbkG4lyB3o1u2S1+xWisySsd00RBBB/qK7Dw94eklhbUJRiFWwpZcqG/2x/dI7+tcvrFwmp+MCsPMEBEUYzuwB2z3FZ16iq1eSJM5+0q8q6HeaP8Au7CMcH5fWuR8b3oZ1iU5IHNdQkn2eyzxwM15zrk5ur2Rj0zW0I6uSLgtXI53YXck1v8Ah+AG4BPGKyWUKcCum8M24ZtzLkVFKCi2yKUOWTZ18ahIEC85GCD2rkfEg+bPeu2CbYD1ODxjnNcZ4nUBvl69+KKety4O6ZyKoS+fet7SMCUZ6isROGrc0r/XIfeqw0FFtojDRtK6PSdKf9ypODV65PyHOenGKzdJOUXHFaM5AQ4xwO/eomvfHJe8cP4ik6jPHbiuIupPmPNdX4ruQkhXgmuKlk3E1WJqqEFFblYqooxUepHgu+K9R8BWOyDzSG+grznT7YzTqMdTXsuh2wsdKVwAARjk1hQg4U5Te7OalBxg5Pqb+loPOkUArn8iK6HAWEDHQVj6SOCx5z69a15CViJzXDVd5nLU1kcL42vRBZScjkYrwu7kLzs3qa9P+Il98xiB6mvKnOXNddd8tKMTeu+WnGJ7F4Hu49P8JS3bAZjUmqf/AAtKedTBcWkRjLcOCQwq18PLaLUtCexnz5cg2nFdHp/wm0KyvVnkaS4CnISQ/LUVpJcoqs+VRM238QLPZmRW3Z6GvOPFupy3ErKWOM9K9B8aaMug3P2q0jKWcx2lF6I+P5V5JrMvm3PJzXTUnFYZzh1Ouc4fVnOPUrWcbyxXHXATcfw5qrketdb4b09JbWRmGQy4I9qnNz4WsZDFLZO8icMD615GNwzpUqcn1X/BPMr4dxhCTZxmaUHFdjHqGh6lcLa2+mLEG48xu1ZWuafbabdCON1cH0ryrq9jkdOyumYoYil8w1JmL0qaM2w+8uaLkWKu8mjJqzM8J/1a0kaKw6UXCxCMDtSVbW3UtycVMbWBVzvGalyQ+UzqMmrmyMnFDwxqvBo5kPlKeaXzGFWUjQKcmoWQZ4p3TJGea1Akapo4Q3apDAo61LkgK6hpDTmgcDpU6bYzxg1Z85SnK1Dm1sgMplYdQaT5verspVjwKaqJjmtFLQRRyKK7GP4carLbCZJYyuMkYNVovA2oSyGPzEDD1Bq7o1VKb2RzHFGK37zwpPYSrHPcICxxnFalv8O7q5txNHfRYIzyKLoPYzXQ4vFLj3rfvPClzZzCN7hDk4yBWnafDm/vIg8V1GRjpii6F7KfY4zFFdXc+BL61fbJcR/lUEvg27jQubiPFMPZT7HN0ZrTfRZEYqbiPir1j4PvtRBNvLG2KXMiVCT2Rz1FdLJ4Lv4H2STwqffNTQeBrqY4+2QCndD9nLscrRXbr8MtTlTdFeW7D6Gs+68DalaPseeDP1oDkl2OZpK6dPAGuTJuiWFx7NTH8A+Ik/5dEP0egXJLsc3T4U8yVU7E8/StmTwX4hj62BP0YVTjsLmwu3ju4WilUfdbrzW2Hp+0qqJpSpuU0mjd08DdkYAHQV0mjaU2p3Rd1Y2kRBnZRkqPXHesHRbWS+uorSFcySEDrXqlilvpNgjWXEkKkLOo2sWJ6Oh6jGeRX0+IxHs48kN2e5Vq8q5I7sTX76HS9OFtap++SEhZN3MaemR94H0IyK8u8OwGS+ad+TknNdzrpP8AZk7EDdLyxxjJNc5pcS2yf7VLCUFFc3UvD0lGN+pf1q8WCyKjuMVwcz7mY1u63eGZyFPy9+K5yZsZFdUvcjY1kuSJF1eu38LwKEVv4s8VxMC7nFej+HIilspwpz0rDaDZzp2i2bTArFjBX15riPEw5x8v4V39ygEQB54zx2rg/EoAJ4HJqKGtwo9TjD8r1uaQcyrmsYxEsa1tJGJlFaUE1IWHupnoumPiME5z/Or93JiA5I6Vn6eD5K9PrS6lLsgbnHHFKSvM2cbyPPtfhmu71tg+UVi/2bMG+YVtX940dyzA96oz6ruXAHNVVpUL809x1KVBvmm9TQ0Gz3X8SYHBzXqzjyLSKPHBx9DXmXgvddayuQDjn5q9OvH/ANJijUntuB6/WoqSTjFR2M6souEeXY3dMG2NRjnqKt6jKIrRiemM81XsBiJR1wOtU/E90LfS5GBH3a8xLmqpHnpc1RI8X8Z3v2jUJOcgVyCDc4+ta2szebcufU5rPtk3SqPeunErmqqPYvEe9V5T1b4fbreBWxwTXraXiR2ZYt0HWvMPBUQjt13ZGePWuq1a5mtrBlTpjr1oxME5qJWIgnJI4HxV43e61ubSpQH09htcZwwPqK82u4/Mviindg4B9a9e0nwJpOqySX15ukmbLFQ2BXC6loJ0bxS1vJ/qsh42PQqaKUFP915hCPN+78zX0HTmttNMh4+XkVx/iBBFqrkjlwGr1SB0/slyqIw29u9eY+KYx9pSUdOVrozOPNhXp8LR046F6Dt0sYol2NlTg+ooeZpTl3LH3qGlr5I+eJMUuBUeTS5oESbgKUTYqKkxRYCYzmm+YxpmKX8KLAPEhpfM96jKHbu7U3NFgJ/NpPMqLNFFgJxORQZie9Q5FANKyAk805pfPaoutLRZAPMzUnmtTaSiwHvPhDxMLmPyJUHHHSu2S0spyWRFBI9K+edH1ua2kCjPmE8Yr2Xw3/aEmni5m3AYzg1N2dCZz3jbwrcX06vaAZB7VVt7O9sNMMb7vMA6Cuks/EKy6+9nIMsvrV7V7uCOdAqA5o3Nrs8euYdWubts20jAHgkV0Hh/UNU0+9RLi2k8onFdld33kxh47Ev9Frnb7xJIZhGumyBu3yUmF33Oo1bRxq2nedDHiXGRXAXui6zCrI1uxWuy0vxY1jGPtiFAezV19rr+k6nCFzGSR04p7oltrQ+ervT3imVXBV2OMGvV/h54eEVoWlHLetM8ReG7Sa9F4gAAORUun+IvsCiCPJI44rnpU5Qk+Z3M6NFxbdx3irwZJPOZ7eTafQV5/fWOsaaWKqzKO4zXoV5r2qynKW7FTV2wtbvU4sT24APXIrpuauPc8ss/F95YN5csbH6mq+o62uoSiTcwb616zP4Bs533OiZNZOueD9K0uyMzIg2imRrtczPBt4ZFAkm49DXU6gLkLutl3Vx/hqG2uLwtG4VAema9JtLmziQQl1Y0jXVI5Jb28Qk3Ee1FGSfavJNRvW1TWLm66mSTCgeg4Fe0fEe8t9N8I3UsQAkmAiUj3/8ArZrxXQolN0krAER4ZRv2kkd1J4JHWvVwCUU6jNqMteY7XRLWHTbMmYqWkQSSE4wU/wCmbd2HOV610EN0dQuAQ8jxKMRtIMuR7n+ledyaubi6IMg8jfuwF2h2/vlegJ9q7/wxPBM0eHUn612qLbc5GyX23uUvGE72thGmMBiB0rmVuWW3xjBPvXZePoo3WHeRhTnk/pXAmTexI6elepg3enc9DDu9O5Bdkbc/jWNISz1sXeNlZH8Rqq+tiMR0LVmg8xQQTz2r0zQ0C26ckY5znk153pUW+5Q4zzXpemxqkKDv3FZVdIWMp6QsX5xhCNpzjsOtcB4kyZSD+hr0K5GLfnO3FebeIJB9oIA/Wow27ChsznXG01f0s/6QuR3qpsDVd05NtyuMGuqEXc0pxfNc9D0/iAHrnjFQavKq27jOAB3qexOLcdFNZfiB8WxxycdqzSvM0irzPP8AUJsztj1qjtLc1pTW29ixqsyBDisasG5XZyVoScm5HcfDi0P2l5SOPr/Su3fE2okg52nAPpWD4At1TTXlJ65/Cukt0zMSeMnvwamq7Oy6IdX3bLsjfsRtiHIrmPHd15WmMuR+FdTEdsXBrzn4h3f7kRjua5cOr1bnNQV6lzym8ffKxqXTYvMuFGO9V3Usxz61teH7fzLtcjvXRTg5Vrs0pRc6t2ep+FofKgX5fwrq5LdJo8SICD61i6HH5UCDOeeCRW7J9wjjPrmufESvUM68rzMrVLi20fTpXiAG1c8V4nd6zPrN1NLMzMUOYz1wvpXqXiC4eNCLiMNA3DccYq74a8BeHwRqVpG7M6lXjZ8oVPUYqJSdJKaYuZ00pI860/XJUszD0GMZrF1wie0c55U7q6Lxb4cPhvVSkJJspSWhJ6j1B+lcxdsZIJQT1U161SarYd26o9OclVoPzRz4paYKUV8WfLDxilplLmgQ6kzSZpKQDs0ZptFAE6nMRFQ1Ih+Uioj1oAWikopgLRSUuaAHA0Gm5ozQAuaTNGaMUgPpP/hW+lRzJMkajaciunYw2WnNEoHC4FcM3iLWFKLJC23virt7qs32As6Nux6VN+x0qD6nEyedF4quLtQQM4qjrvii6S+jCoxC9eK6Xw9bzavq3zxNszySOtemDwXpbxBpLZC2OpFSkVKVlZHm/hzxotwgimtWJA/u1rS6xby3aAWLEk9dtdZH4X021ZjHGgP0qmlvbrqITYowe9VqCd0YGv6CmrWa7EMffpXMQaZJok4ZnbavrXrGr2/l2ReIDgdq871t7i/s5IYYcydOlSUndXMfXvGMMVqY0kycVl+ELi61TVgyxsy564rAm8Lam11/pKHaWr1zwHaW9hbooh+Yd8UO2wouW5sanLJp2nbltt7BewrK0LxFqVwWBs3QZ44rq9aa5mt9lvBuJHeqOjafqSr+9gRee1UK+mpjahrWqxXafum255qPU2j1u08idiC3GCa7z+zIXUNOi7q5jxToWy3a5s32MnOBQ7olSWx55qejPoVuZLaQr+NR+FLi6vb7MlwevQmuktrFvEVmYZWw44PNc2fDd94d1tCCzRFu1CV1c05+xZ+LcrQaTp1uXyJJC2M+g/8Ar15xHI0enCNdwRzzyNu76YyDiuo+Kl8Z7rS4DkNHEz4+pH+FcZZ/OyZVsFvvN3r08K/djDuyqcuZqJHd748Y7CtHQvEVzp93D852hhmnapa7oN6jtWFbLm4Ue9dWLjOlXUVszbEKVOqkjuNa1yfWbwysxEY4VTVWL6/pUUSqFGRnirCcV78UopJHtR2RXvOIzWQBlq1b37tZqj5qzqatGNZXaOg8PQ7pw2OlehWoZIVIUZ7ntXEeGYwZMt6+tegWx2pxjp1PNY4l2sjGto0iG+AjtyWyMj1rzPWWLXTHPevQ9XkIhOSD8vU15tqTbpXPvRQ0jcukvcZURuccVpafHiZSf51hxsWn5rodOH71SeR6V0UZ8ybNKEua53Nio+yDJ4HIPWsPxCcRHHG6t+xwLYMe/A5rmfEjDgZ78c1FP+IVT/iHK3DlelVUQvIM+tTzNuOKksot9wgIyCRVNc0gkuedj1TwzEttoAzzuGORitO1Bafg8AdTUFsPJ0WFCD07c4q1p4y2c5J5+tefVd3JnFX1k2bDHZCT7V5P44uPOvtmRxXqt2/lWpOe1eL+JpvO1JznpVYOPvNhhY6tnLumHNdV4Ttg9yD6VzWMtXb+DocsTgfjXZTVk2dFONryPSNLTbEvXg9SK0ZVBX0qrYqQijPB/Orz42YPSvHqO8jzJv3jOAgkBiuYw6HqGGa04ZdP0XTne3KxxqucDtWHqThEyDg+tYEsUut2slkLpoC3RutX7HnV29DVUudXb0MvX9bi8VW2oooDG1/exP3yOo/KvO52BjYjuK7keBtQ8Oyi7knSWE/e2ZHHvXF6rZvY3ksR+443xn1U/wCcV2U5KMeVbG8ZcseVbHWeGfhdb+I/Dtrqkd5IDLuDoMfKwJGP0qxL8I0jm8v7VLmuj+DesJB4aubSZh+7uSVz2BANdLqetQJffJKpx2FfMVkoTaPJ5FzNWPPj8GwE3fa5BXP638PP7JiZxcM2PUV3eu/EFbL92hyas+HNQtfFEe2cBiexrG4uSJ4jBpgnlMYlAIOK0P8AhFpuMSZz7V6j4l8F2dhMLq3jCDOTiqjfY4LIPgbgKLhGnF7nBp4JuWUHecH2qCXwv5DESzhSBXSN4lZrkQwrnnFWNV02OSwN7cPhsZxmi4+SHQ81lUQzMgOQD1rqNH8C3OtWH2qCcAYzjFcpcMDcPt6Z4rv/AALr8mnQeS5/dn1p3sYwScrM47U9Il0y8+zSOGbOMipU0C7eMOuMGu38W6Zb6tF9rswBNnPHeuSWXVLaIxsjfL3ouU4JPUIfCV9NGXGMCse8s5LOYxSdRXY6JrF0WEMoODwaf4g06GdA8afOepouN001dHBUVsXmjtbRB6zBESaLmLi1uR0Zqz5GBzUZiouFmfRHgrUk1yITzx5HuK9Ej0ywuItpjQg+1cn4F061g0GNY2UnaOlaEY1K1vZNh3R54qFobyuzpbTSLO0P7mJV+gq60YK4rkJfFM2nyqlzC4BPUCtI+JYBbiQnAI707ozcWW7218uFpFGSK8P8VeOJtM18RIjZQ/Ma9qs9Xt9STajg5rM1HwHo+qSmaa3RnPcih6lRbjuct4c8awa7GsUuVyP4q6+LSrTyzKiKcjPSuUvfhwLK8juNNOzackDvWrfalc6NpbNKjYReSKn1NG77BDpkV/qRSWNBGp6Yrq7bSLS2QCOJR+FeSeFfHTahrkq7WC7uM16xb6gJlBNNNEzv0JriWC1TLgACobfVLObISRc/Wo727sthE7Lj3rAkj0x5C0LBPdTVNoizZo67cyrbM1swzjsa8l1LxzqltPJZXMeQeA3Nd/NqVrb/ALrzQ31NeYeNry2e7UxhQxPWuPEptXiwkpJXjuLoniCay1HzWf5GOSBXoU/iDTLq3QyshbivLoNJlubDzo0JOM1FJp13BZvO5YKoya4YVq1P3TL309TH+I+oxX/ikmA5jiiVAB+tc0kgjkjAPCj0xSu5ubt5S6HJ5DHlqjlUhtxBANfTRcoRjLqdEG17yOpjlW4sducnFYFvBtvT7GpbC6KDaTVmIBpWYDvXu3WI5JPdHq3Vblb3Rfj+6OKnU8Z6VXT/ACanGdtemj1I7FS8I9apqOas3RyxqGMZas5ayMZq8jqvC6Aks2QAetdxDhUHBO4dO9cr4UgOwN6niu2+z7YQSBk9PauXEy96xhiPisc9rhP2c5Y9OnpXnl8cSPxgV6BrxCxuMAYBGT1rzy9bluc1rS0hc2p/AzOg/wBfXT6agMiknBHeuctVzJnHeuo00AMp4+hrTDK0Gx4eNotnXW0ipa8EA/Tg1xmuzzXN2ViR5Mf3VzWzPqAiiK5PHWtTw74l0m3k8q4jTJ6nHJNKSlTTkldlSTgnJHmMizRvh43U+jDFamjBnvIhjqwr1PxBoNhrFqLi1jHPOR2rlbDQWstRjLAlc8EiihNSXMKgl8Vzq7hvKsIVHKkAcnkVo6dGdoPUAd+tZmogBoU+XOBwD1re06MpApzn6mvPqO0bnBVZW12YQ2T8447CvGNUlElzK/qe9eo+LroRWTLz065ryS63O5OO9dmFjalfudWHjy0mytGMv+Neh+D4FMQJGcnqOorhLaPL9K9L8JQBLVDyp/nW8ly0mzS3LSbO0tQNowSSKtS8R9aigjCgYP4064IEZ5P4V4ctZHjy1ZzWr/MCBgZrKsUaKcOGxk59RWpf7WYhjkemagtoRnK4b616ENIWPQhpAqeJ9ckjsPKZsgjB964G/hF5oYu0SZmhk2lyDsCn+Efj3roPGcXl4kBHPpWD4fJvrW/00h2Z4mdNzny48c7iMgD6806rVOMbEYh8lKLiVtD1KfT47hYGK5YE/lV3+2ZwryyElj3rBtJhBJIX6EDNb9tJY3NthmAOK+dx0UqzZw1Pj0OavLuS+uccmuj8OapPoLiUE49KrpY2kM+4MKkv1R4MR+lcjaMFFrVnV33j1dWhEHc8Gqog+0220Nwa4exhMVzknjNdQdTS3twFbnFJhF9wt9PgsrvzHx1qn4n1U3arbwt8ncCs6/1SSVjgmqUO+4nUYJJpWBtbIx54zHJg966bTbZl01ZFB571j6zCYbhQR2rdsL2OHQl9c0TvbQzgkpO4p1uWxYRk5Wti11/T57fEqLuIritQczNvHSnWtpLNEWUHj0ppaD52mbs2rWsV3uhAxmteSZL+zDowDAVwUitG5VwQau2WpyWzBQTtpNdgVTXUkv7ifcYpOgqgDzW9LHHfw+YuN2Kyvs2yTBoRMou9ytIxxUO6tSS2Xy81nSR7WpoiSaPVPBVx4qto4wIHNseQSa9q0W4e4hUzoVfvms2DUdNtNMDqECAdAKxbLxnZ3WqGG3cYU9jUrQ2aurHe3GnW1zzIinHqK4/xXo/nWbRWr7GI7U/WvGtvYWjFXLSAfdFcVZ+N5729Zp43CdsiiT0HTg+pZ0vTdS0TEgmdwOSDXS2vj0W5EdwhyOM1zF340tZLuO0VsNIcVc1DRVbTzcRFTIRkCo16GrSe52UfjG0lQMTge9V77V9P1OIwZR93GK5PT9LmurMJMm0+1Z9zZTaDercfM0eeRRdk8kVsaV9oNro1u95bxrGfvZAqv4a8WS3V2UkJ2A4zW1PcrrWjlY1yCvSuFtSNL1BoZE2nPFJ6bGiXQ9ZfTrPV4xvfOfekbwlbRwssTEZHrXCm+v41EtrKQBzjNbWm+NpUj8u7BDDgmn7r3RlKEk9DzvxtY6poupF4nYxE1z1lpWo6/cqWDEDvXst5Np/iF9sm0n3p1hp9jpMvAUAms3HXQTWmpzC29x4f0nMkW9VWpLu8ivPAN9eRRqGELHJHSu9u7e11KzaIhSCMVxXiO0TRPBOrQRAFXiYBQcda1irNXMnqeCW6kAtvVgfTqKv3FtutgQM4FUY1WON/lKNnBUnpW7YFZ7Mr1OK9vDQVRcjOzCxU04vqc9FIQRW5ZqTGDWRcW7Q3hQ+tbVrlUA9q68BGSnJS6G2Di1UafQuBeByKf0WkRMgEmiQ7V7V7aR7aRSnwWNJboXkAAoI3tWvpFiZLhMoSM1mld3ZCjeV+h3fheyEVohOOeprQ1jUY7OM5cdOafbBbKw+bgbeK818UaxJc3LqrnYD0rkUfaTcnsciipzc3sjQ1TVUvYj5TE46jNcldEkEUzTppGvQOTk8irF7Hicj37VtFqVNtG0ZKUHYr2yFQO2a6GzJjQEkc9KwovmlVRW2rFIwMcV0UV7tjalHSyK+qXHyn5gW71zckkvmbwSOe1ad85eXpxmoXCLGcisK8XN2TtY58QnN2vax13gnxeYZFs7whlY4BY13kAV9QDxkNE/TPOPpXgElx5U26M4I7iuz8GeJdUutasrFF80M4z7Dua4Y14XcZPX8zmhiYfDJ6/menXFuJb5VA4Xt6V0AQQW2ME8VBbWpmvC+3kd6b4hvY9OsXZjt4rKT55KCMJXnJRR5/4wvleUx5B9QTXGHaxq5f3TXdzJIzE5PH0rGubnyjXuaUqaTPb0owSZowQ4kXHQmvSPDahY4xxkDOc9K8s03UQ0wVia9R8LKWhXK/L7jpWdacZ0bxMq04zo3jsdrDjaMfpVW+lVFIJxVzHlw/N3Fc9qkzPlVY8ds14lOPNI8WnHmkZVy3nylQcVbtomiGSQfrUVtbnd8wBz3q7O3kwnjp3rvb+yjub6I4PxxOpCKDyD26VyGkzi21i3kZUZS+MMpYc+w61p+M7wvdcZwDXOK5cK69V5HNRiHrydkTXd17PrY27qyjXxZNayMPKkl6gqcBuf4eB16DpXSTfDuWaHzLC4HTOM1zHiCU/bdPuxuHm26EHy1QcHsFJ/M8mrth4r1PSZgSXZfQmvDxk17RX7Hkp8yTZRv/AA7rWnORNDIwHcCo0nkij2yKwPuK9Q0Dxxaa26297AAT1yK6q68N+H7i280pEMjPauJ2YrW2Pn1rhg+QMVYgWW7cIuSTXrqeB9KvpD5MYP0qxbfDqKwn89UHFS2Frbs8sHhXUWUP5DMD7VftPD95boHNo+R7V6TfeJdP0RxbXMY3dOlSReMdFkj5VR9RS5l1ZS0eiPCfE0M8d4POjZB7inWkM0mib0RmUHqBXS/ErWtP1F40tFG4HJIFS+FNf0uz8NfZrpFMnPUVTtYySvN3OSW2nmjwsLt9FrofDa+RN5NxbuM+q13HhjxB4e3lXSMc98Vt6xrvh63gMqLHuA7AVNy+Wzujgde8Mwy27TxJg4zXn81o8UxU9jXfap43trzdDbrgdOlcldyozlyRk0bEyUXqQ2ly1uME0y6uNx3A81VkcFuKXGV5pE30sNN2+ME1H5m6o3XDUi8VRlc9lXxJZLpZs5jtfGOTWL4c0ySW/nktnIUnI5rmfEN/b3dyGt125OcCut+H5mTUF858Rkcg1kk7anYpLmMTxDqWoWGrGORCyjpkdaig8YmFdklsBmur+JNlGCLuHbu6bRXnv9kXs8BmW2kYdeFq7W0E+a+hpWpTVdTWcPsZTkc10194h1HTljjE2+NT0rz9I7yzbzBFIn1XFMfVbh3/AHjE47GjlfQSmktT3bwz40trqFEmXYcck1P4p1yyazYB0JxwK8dg8QwxWm0KA+OoqnZalNf34SSVtmehNLUNL6HpmgeJ4bZTFIwUHpmpdc01NUU3ds/7zGRtrz/U0igKkSYb2Na/hzxUbGQR3JzGeASag2ui5/bU+mQmK5VlKjHNQaVr0WpagYXXljgYrf1RNO1+3/clNxHUVY8K+Bra1nW4kIL5zk1SSInJli18MzpMLqGV1HXAqDU3uXuFg80hq7vUrq20zTycjgdq8b1nXJ59VE9uDsVqiokkSm2ehWc1zZQL5hLD1rhPG/iRZ86fcmX7PL9/y/vD6etdXpV3PqthgY3Yrl9S0SHUtehs7w7ZERnAXgvxwM9vWkpaolq7seVHAMgXOzcdu7rj3q/ot2IbpVc4U1U2ZmuIzyVcgH8agB2v6EV7FKbptTQ6c3BqSOq1jTAdl1HhkPORVSDJIAOKrwancNa/Zi5KVPAxr6Kg4TfPHqevCcJS5o9TVhAxy2arXL4Ygcip7WCe7lS3tLeWe4b7saDJNdLpvw71G+s5ZNRZtNuAf3Szbdrjv3yK1rV4UtJM6qleEFZs5C3QM3JrufDNiZCJCnA7n0rMufCUmmSZl1TTDGp5JlI/9lreh1CCx08wW9zaSXBHyhLlBn/vois514Sh7jJdeDhaLI/FWsxQQGCJzuxjANeXXk7TSnkmtzV7XVbmVpWs52DE4KDf+q5rEW0nSXZLDIr+jKQazdmlCJlOXu8kDU8OWXnXYcg4BqbWIfKun4x3roPDenGCDzD+eKoa5ZyzzMY0L/7ozXUkoxcUb02lHlOesxmXPpWi8gVSvOKrvp93Zrue3lC/3tpx+dVnnJHPWnTmoxNISUI6jZjucmqF3IcEA1LNMRVJzvauKvUumkefXqXukQCMyN0r1b4PRabbalcm5dVvJFCxBvTvivP7KzaXlVNbOmwyWt9FPuKCJg2elRRwPuOT3YqGEdua259DSCHSrR5pSF79a8e8WeJH1a8aONyIVPr1pviDxneaqggV9kQGMDvXK78mtsJh/Ze9Pc7MNhvZe9PckkfEZNYF1IZJSo5rRvJjt2qOtQ2dnuPmScfWtK7lVkoRFib1ZKnEXSrB5biPg8noK918N6b9mtIjtC4Gc1wXg/RZdRuxKkX7lDjee59q9Mvbq20az8sOu8Dkk1hiOWnFUYPU5qyUIqlAfe3iJlQ+MCsNyLiXqSfWudk1aXUb8pGwC98Guu0zT/KhDuxI75FYcqpq7MnFUo3YRwCJMkYFYmt3iwRMdx4HrW3qF/DbxkFkAA9a818TauJgyKQeeoNdGHXM+ZmtFczuzjvEFyZ7knJOTVGxbc22o7yQyTnNWtNg3Asa5Lurim0c93UxF0aWp/vNJ0uQI42M0Zb7PsXr035O88e2K9BsvCaXlssxUYK55Fee3Cu2i4Ecz/Z7jlt/yKGGcbc9e+QK9Dg8Vx2JhtS3G0CvGx8PeicMfdk0zjPENrJod/mA7Wzxiq669r13EsQuJAntXo2p+Fj4jtRdxdeorgdTS40OYwSQnjoQK5ErIcu/Q9m8ATQ2ulI91NmTHJY1d8Q+P9L05WjEylsdAa+fh4j1LaY4pXVfQVm3Mk00m+V2Zj6mmZO3Q6fxB4hTWNS84fdB4qsb+NY8A81z/lyBchTUeZRxzWbgmV7Rok1OTzpMiiGMtAABTmt/3W5zzU9urJGNoyDVdLAo63ZVVpYXBXIPtWkkrTw7ZZCfqaSSAsu7b+lViGDbVOKNx25SNrbY5KmqsrvuwSa3YbCR4s4PPeo/7EmkYkIcU0yZU3bQzrSBpR61K8RR9taENq9kcOuKbcW8rjzFjJHsKV9R8lkUGtxtzVR1CtVx5DgiofLZ+QKaM5JdDT8PW0VxcC4uWCxJzzW7FrUSaqotn2oDgEHrXPa2JNNnfTolwq8E1Dpu0lQ3BFYWb/eFQm1oeq6r4cu7+wj1AzbwAGKeorvfB9jYTaSmbdQcchhXmFh47FlBHatGZB05NejaP4otDZhmAiyM4q4yutTadn8JzXxLjsLAKkMA8x+MBa4Gz8NQXUJknQoT6ivY9mn+JLwN8j7Gz61Z1PRtPis2TCA49Ku3YXN0Z88aloAt3PkybkqDSEFveAupPPaux1Kwtk1AxCU7Sema1rbw7YJAJkKlyMgUX6D5Fe6OK1yFp0DxxsPfFZERIi2yKc+tepQeH9RvwUSBAnQGq178O9SjQsLcMT2FSkwla+5wGm6xNYT5Vzt9Ca7rTPHpACM+3HeudvPB17CxEtu6e+KSDwsNnMpBNDErnbS+KrPU4vLmlHvzXL6rfWEEm2EjaetTaf8ADue8bes7Aexqh4l8E3ekx7w7OAM81MoKW5XNKK0RteHdcmt1ZoQWUc4rP1/XxqWh3GpvEYZzJ5cEoJVl9cHvVTwbqKRs9vKMsqkn8Ks+Ni+neHdJtikJiklaTYoBB7/1qaMPecX0M4ybUpHB2DAyMW/iplwu2QkdKvCC1lUuI5rdsdYzvX8jg/qaVNLFycLqNsD6Sh1P8iK9lRlyWtcUU+Wy1K9sRjJNaETqBzVCS2NpOYjNFLgZ3RNkfyqZHA5bpXtYOp7ivodtGo4lhLr/AImEZjLqUP3kOCPoa9X8HeJRNIouI4JMMAPMyzKPYk15EHgeb93lWx1PStDTXe2u0kju1znlQeTVSUZ3UrM0S9pe59T2rWV/EFMSuvoyA1m67ouiR2UlxPplvJ5ak8xrz+lcf4R8VLsEUkuMf3j0ru7mW21jTXt2kwsi43A14lSjKlPyOGVOUJa7HgE3he58T63LJYwJbxE52xJgDHsK6qx8NPpAhK30wZeJEaQ5b6en5V6Fp1lYeH4RFDtZu7dzTn0231K7W5YggcgAV1/WEpaLQ6/bJS0WhU0XRo5rQGdZMdRk4JrC8caPqsGlzzWE9vcQqMtBcW6M6j1VwAQa7wslvFhewrntSvhIShYYPVT3rCEpTnfoZQk5Tv0PCbfUTgLvu7cg8eTcEqB/un/GnvPcH/mIl1POJ7cMfx61p+KtAk0++kuoIiLaQ7uP4a5o3B6GvbjRpNXPXjTpqOv5k09xKrEu2nyD3tQv8lqsJo5WBFlYE+g3L/Wo5UMoODWnofh+e7njd4mFuT8ze3tWTp+9ZbGTpNy02/ryNHSTcSN5UVhYRt/ee4KgD8TVW8aUuymSzUg4KpKxH8q67U9NsYdHMVs8W8LwGABP415s5eOZlcYwa2U2l8TsbuTit3b+vI0GjIAPmWxz/tP/AIUhXZz51v8A98sf51T8wkcGm/aB3pNx6tibX8z+/wD4BefUhFjfLbceloh/nTY9edpo47eJJnLDCm1Rcn6DNZskCXDZVju9K6rw3o0+msl5JbPvb7pZe3tWa9tKVo6R9TCUqvNo9O97notvca/HpNsTqkcEpTJjt7BDs9sk/wBK4fVtd1aXXFsZdWudrthnNqgIPt7V1mk3OoXVwEiGSOqmuzvPB1lrFnFJcWypcodwdeCK5KrVCXvdexyylGm9epylh4T1z7Kvl67cqSQVcRKAV6nI/CieXxNoviKxibWbqfTpJVDM6g5P90kLxXoNqpsoFhkOdowDSSi3ly2QPYiuP20m9dUc3tG3rqijdaHDepI63FzDv5JGxh69CDxXnvxCtrHTbIvdrZ6gzqURhAIZ42xwd6ABgPQiu61LU/saviU7ceteGeKNXl1vUZx5hMaBggz19a3w1KT1b0N8PTk3d7HHSIZD5gH1rX0uMGEg5FM063UlVkHyk81rS2X2P5dpxjg4616WGoOMvaM7MPS5Xzsxrx9qupRMEbg+PmBHHX0rp7Lw/c6vJFOmdu0EHHsK5S+bczAHdjj9a91+H/2Q+H7OQsjO0KjA5wa8HMrc+nc8es/3kivoettoIWxuhkHgGq/imOw1KJpdi5NL4z02R76J4h/FxxVrT/CN1qdum9iFxXmxegk1uzg7HSLNnYEDrWhF4GXUbxCuRHnmvTNP+G9tDhnJJrdfSLXSrfcAAFptCc01Y8u1fwRbWGn5RRkCuIbQ5HchYCfTivSPEWvRPfR28coZS2CDXY6NpNjcWMcpjU5GaiLT2DndtT581XQ7i2tt8kZQVY07R55LFHSPcMdcV6d8TbS3t9Kby41z7Vc8FWdrJ4chZ4xnbzxVWbDm6nmUej3TsEMJANU7/So7O6j3Abiema92fT7RBv8ALAH0rz7UdIj1HxfHhcxIOg6ZzRa2oKV9DY8OeGbe/sU3KCCM4xWndeD4LYLsQY+laNjjS4/kyABQ3iOGSXy3YDnvRoDcrnP6j4JhvLbeqAEVLpPhSzFk0MyLuxjmu1t5op7fCHORXOazHe2btLACV7gUWBTbZ5D4n8LDT9VdYvuMaqSaUlnab2x0rr9QeTUrgFwQwPSs/V9FuHsjtBPFSzRKKOVstI1LUt11cQO2/nJFRT6UI5GXeUYdq+l7XTNLEAiijTHTpXD+LPhs+oSPPYkox7CnZmWljwuZZbSTIbdjvWra+LbiGLyyAw6V3ukeAjaNINYh3DsxrB1nwNFNqWNLUmLPzY5xS0e4uVpXRqeBdS1F7x5YshHPSvRXVJC8l5NjPYmuW0mzg0LT1+8JFHIpLq2u/ER/cXLxr0IqbvobcqS1G614e025JlinAYnPDVhSeVpCjN1ux0BarN14S1iybJuJGjPcmuQ1bRr6WcIJjIScYJo66jb0ujutC8diO8SBcMM44r1G21Zri2V/K4IrwfSPAmvROl2iZA5FdvH4vudBRIL+3dSOMkVaZDXMrs6/VZo5EIe3z+Fc+mh294GKpsNTp440y7t8syg470Qa1DcKxtmGfanuNaDIJf7CyGfKCs7W/EVrfWzRkI3HesLxHdahNK6/wVyMouI/nck5qSm2ixZ26x3+oXEYARYCOPVjj+tc7rjO2oyw+Y7RwuVRSchee1ddpkZj8OzzS8Pd3UccfuAcn+VcfqH7y+nfuzk/rXfhqXPTk/NfkZ8vuMZay4ULmppVGd2TWfGxR6vRsJAAx4NduHmpx9m9yacuhDjBNGRxmlkK+ftX7opDhXBPTvXVCqoxa7G8ZJISS6NrLuRc7hgj2rU0EQandsZrZZduAIvNMYcn1brWLeQsR5kbAr6Z6UtmzRWDSAsG85cY9lNeDipyk5crsczn71zsdSitNNsbS+i0/UNGE0mI2F150b46nBGR+fNdFonxJSwj8iR470YxuL+UfyPFeWX9/cTrBE8sjRxglEZshfoKZFc4YEiJu2HWlQr1Iw5Zu5ftXse8ReP9Hmw01jepu6sgDr+hrXtPH3hhAFa/aH2kjYV8+wTqvItYsgdY3ZT0A7H1rWivmBACXYXd0WcsD82Oc9sY4rp+sXVmi1K571L4y8O3Ee2HWbTOP4nx/Osf7fpk1wH/ALTsmHqLhP8AGvI11BfKLMzBlTdmW3BGc8k47YyKsrcQB2Um0IEmCrQkfLj7v4nH51pCsorQ0Ta2PaLoaFeae0El/asWH/PVT/WvFvEWjrZ6i8dp++iJyrR/MP0p2+BkeQw6e7rDI2Q+AWHfGegqzHa2j3CRfYbVV8xAx+14yCuTiumhjPZJp63OmlWlCPK1cqaFoFze3qLLBKkWfmLLj+detQ6ZFb2CQxxgEDGQRXnsUNkLXzvstqGSDzHC3THB37cn/ZxirgsrP5/liAEpjz5zHjaW445PpWlTHXtZWLlXk1ZbGnq2lSqjN5TSED+ECvPdStpvPbNpIh/3DXSzWunNG8scc7gJIVCuR93b19Byaik06ya6W1WO9XdcpDuMuBgpuJ+vpVxzFKNnEpYiSVmji2jlXqjD6rRFZ3F3II4IZHb0VSa6i4Wzjs7eeBL8vceaqr5h42HAJ9B3NX7W4sbSe78m1u2FsVyGuygYM2Bz2xz9c1H16m90zN1ovdF7wN8PbiW6W81GJkVTlUI5r2eLSLP7MsDxBlAx0rx5dYjVnQLOBEkrNv1B8goeSR6EYFI3iGEIHZ41zaCcCW6lJyy7hnH8OPxP5Vw18Vz25bpI5as3J6aI9WTwzZW1ybmFyp9Aa04pFiG15xgds14sdfsPOVBc22xZlRuZW+UDLd+TkjH1FZ9z4lgWONlFo7MVZlVpAB8zAjOf9zj1Fc8q8p/Fqc7be57bfXVuw++PruFc7eanFb7v3g9/nH+NeFX3idpVJ+ypkqed74zgEHr+lZE+rNISFgiUficdM9T/AJzVRxHKrWBVLHqPinVpru2aK1dPm4yZkXj8SK4RLRFTEt3YxuWyWa4BOPT5c1gPfu8ewRRDByCE5FNSeWR/mQdcfd6V0Rx9RWSSNo4ua0VjoFT7O/PQHqO9bFhf29/Elnd2n2iQE+VIlx5LY/ukkEH2yKy/Ja6UKpy56L3NRG1e0/1iFT719TOm5pR6Huyg2kuhZvYra1LRtowjkzndcXDuT/3ztFdF4Klv4xc6psP2ZXEO2IYC4GcAfiK4qac8ivYPhwI4fApeQAie4diCPoP6V4uZU6cMO1Fas8jFwpxj7h01xNa3mmx3RIOBnmtfw5qSzWw8tflHcVw3iOzun8N3aaUxWTaSEB/lWh8JvE1nqHh0WEx8u+t/lkVupPrXzMZNLU4VqrHpq3i7aoasi3to8W7GRXLax4gOl3myXhCeG7Uf24LqHMUmcj1rWLT1I5eh5hqvh2XR/Eqzyzs8DPnDHpXq+i6xbNZRxIQeO1eVePtTuUG3aSxPBrc+Gul389uLi68wKegapSs9Ni/I1/iMr3ekMI0P1pvgnVYotJgtpGAIGOa6zV9MS7sWRgMAV4Zrt5c6Fq37gkIG6VVtSuh7tqRU6bI6EcLkEVxHg2Y3erXTyc7XIyam0rxC2peGGdnAOz+lZ/w+n2zXLNjmU9aGJaHba6jpaM0a9uwrx7U7nULe8d2Rxg56V67qfiG0tsrMQVArK0+fSNfkkRERmHtRYpI5zwt4tm8xIpXOPevSnvILjTC7lT8ua8e8cWcOgXqy2xCZPQHFN0vxuZtOa3Z8EDFBLRNPqkB8UG3jOV3dq9PtLOzn05S4XJHevKfDui/bLya9OSxbIq/q3ii40qZbZWOOmKlsHdI9ksNDSyA+dmx3JqxcatY2Z2TSqvbk1k/8JdZH935gyfevLfiPPFP/AKVHdsNp+6rdaV0tEUqcnue0SRWWrWxClHBHUVS0/wAOWun+YVRTuOeledeCPE8llpqeasjIB94iuysvGdvqN0IIMuehwOlNSTCVOUTl/GOpWeiXW6VRsbgDFbHgy60vVrQPbbQ/UgVD478INr1h5qA715HFcL4XnuPCd4YpMgZ5zWbfK9TdLnjZHrWp6bNPGY1A2nvXm2u+BtWhuDd2TByp3bTXS3nxHto7VtpBYCrfhHxJLrW5p0Hlk8GrumZcs47lTwX4guGP2DULN4pV45Xg1teKvC1vrFmz+WCwGRxXRnT7VyJFjXcOcij7bbrmJnAI4waaXRmfNrdHyl4htJdK1J7f5lweK09C1h7GMbmNeyeKfBWna5N54VfMrz/X/BEljbkwKeB2FDRpDe5nT659qk6ZFCWsms3MNnbx/PIwBOOg7msqw0qWJWmuW2RqcZau/sLaLwto9xqV28Yu5kxEoOSqHvTjG+prdtWOU8V3EFjq9lpNm2YbJSSfVsYz+dcTeAbmbuTXVa5pjx6Vb63cbhNezvtB/uAcVys6h4d2RkGvoMJT5cO+7KUfcaM9hhqkjkwcUjjmmHivJcnCd0ebezHyN82RTlkDLioieKRD81ae1fN5M0UmmMuIyoyhIHpV+z3RaXCWUFZZmIz7AD+tAg8yE4x071ZnzYW2mwsuD5BkYH1Zs/yxWNeCUkl1CSszMvgpuF2jtVcoPSrVy4muM4GMdqiK4o9i1TUhuDtciEYzU0asCNski/RqbT0OKIJX1JjuWkFyF4u5sdMbuMVKbm+T5vtsn3t/IB+b1qKKTpVnasuK9ilQoVI6LU9KnThNabkIvLxlI88lSpQ5iU5UnJFP/ta8R932rDB1fmAdVGFP4CrIZIkwAKqzw+YpdauWBgleO5pPDWV09SeLX76OJ4lvVCOgib9zyUDbtv0zzWoni7V2kMzanAWM3n4aBsb9u0Hp6VztuqEneOauF0RcKBWUMJGS5mxU6HMuZyNVvF2pR2ptxfWhVlZCfKIJDEE5OPUCoX8ZaqZUk+2WbOkxuFyv8ZG3PT0rCnlGegNRogeUM4AH0rlq0kpWiYzi07JmuviPUEiWJbq22JG8anvhz83NSHxHqsvW7tirBAy4ABCnI/XH5VUQwKoBiTj2qK6MRQMiKpHtTlh+VXchSptK7kXG1/VGeXfPCxlR0YgLkhzlj9T60yTXNTkXa88TKVVSNi4KqpVQfYKxFZe+JxnYBTGI7CuWUY7pnO3bW5rvrmrP8zXKbt7S7giZ3kYLdOuBVZ9W1E4BusKOgCqMclvT1JNZ1NIrFoyciR5Hbq+f84poaRuN5NIsZY1YSHC9MVvSw06hUKUpkIWXP3j+dWbVF35llOc8Ac5okCInGS1NgB3bq7aeFpwmk9TaNKMZpbm5BKdpeMgOhqSe6luIh5jFsdM1lI5AbJ4qaObKEV9BTr3dme5CtdWIZuCa9s8A2pm8BaeuD8zSH/x414nNya+gPAkG34b6Y68Nsdv/AB814+afw/meVi9jatNGKMCTweteXfELw/c+Etci8R6SrJG7ATqnAz610Vz8QP7Ku3trolcHg1n6x4ystf0uaylZSsi45r53Q4LGlouv2Hi3S1jnCmXbznqDT4IINFkZXcbe2TXj+jao3hrW2AcmInj6Vu+JPFY1REW0Ys5x0qVeLstjZSjKN3udlqN5pV3co8+xgpznitey8eaRYqttFIgPTiuN0Dw5c6lpheRHMhXvXJ3/AIPv7TUGaQ7E3cH0rbUOXayPXdd+IdhaWTbZQWI6VxsMUPimwmutoLNkiuB1fTZolDeYXA967r4Uy+Zvt36Z6GktQWjs0c2muz6FHNp75BBIANXPDniF7feVfbuOTWt8SvCMiTm/t1yP4hXmSXElu+FODT5TPmsz0O7urvXbwQJLtQ9Tmu78O6TZ+GrJriScGQjJJNeH2urXtu/mRE59alvPEuqXKFJLhsdwDRYrnW5uePNcXV9UKxOSiGuYtlm8z5M49arqXYlmzz3NXbW8WFCCKVrE3Tep6F4W1yLTbXE8gGR3rD8S6nb6lqqtCeB3rmJLl5IyAcA1VWVo2znmo5Qkz6asvDNjPpG4HLFchq88k8MwHxE0V7O0luGyFY8V0i/EDTNIj+xPJgrxWDYzJ4x8URixkZIUOWYd6nS2h0N2+LU9FibR4LAW9vEjELgBRXPWepWPh+5lmlgKb2JHFeh6f4etLOJMRglRySKp+IvD1teWbMLdWYDgYqmmZqabsVPDvi618QI6JwFOOayvEPh62v7zKkKW64rzDUdS1LwrqkhtrV1TPpxVZviDqssomeNlAqXdlxSi9GdfqPw6DJujlYj61Y0m1GiKLWOchicDnvWt4S8Sf23pp844cjHNc/r2hXsmtwz2cxIDZIzUGmvU9C0l9YiixMqyIehzzisXxVoGs3p+1WFw0Uq84HQ1rQ+IF0rT4/tnBUYOat2Xi3T76MlJUOO2a1ujnd0zxqTxzr/hy9EGqQOVBxu7Gur0jx3p2toEmKjPY11eq2/h/WkMdysLOfWuSuPhppm4y2L7G6gKelP0KTZs3/hjQvFGjyae0phDnIeM4INc5YfB2YXyf2nrst1YxH5YRkFh6E5qSDRNU0KfzGui0I7E1v2Hi21WZYnuFz0xmrUnsDXVHK/GaCOysNFt4FCRqXCqOgAAryAtldua9a+NN7FdwaJ5ThgfNJx2+7Xki17WGb9jFIuHwkRFMYVaaPpURiJyK5a2FqJ3sc9SjOLIAOKaeDVlY+xpjw4rm5JJGWpd0mE6heQ2QnWEzHYHc8A1q6zpGqXGtPJe232a3iRUaZj8uxRjI9c47VzGCDxwRUk13czqEluJZFHQM5IqJayTfQu66jpHSa8keNcJu+Ue3aiRfSo4gRzUjE16NL3qWqOqGsNSFhimhsVMV3CoimDXLUpuLujCcLbDlarEc2O9VQKeta0ZuL0LpzcXoW/M3U9ZD931qvHVuCLMgPavVpuUtj0qblLYsjTw1vvH3utZ7bkcqw5rfX7mBz7Cs+8tC8m5RXXWoJRvBHXVo8sbwRksheTpxUkzAKAo6VbEAjUgn5qqSxMre1cUqPJB+ZwVIOKfmQiYmlyXHPSmsgHSm5IFeRNSi7SPOk5J6jWwDgUCgilUVgotvQytdhinLHk05VqeNa76GHu7yOujR5nqKkQAyaZJKBkCnyvxgVW2FjnBrqrT5VyUzpqvlXLEljVZByeam2BFwOtQxRspyRgVLnJx1qqLtD3lZmcNFqtRVRmOBT9piPNM3svAFLhm+YnIroptN+ZvCS+YFtxr6H+Hkiv8PtMjPOFdSP8AgRr55QfvAD619BfCmP7T4NtlOSFmlX/x41yZkn7FPzMMV8KbKnjHwFDrds8yDbKBkECvJdM8Cazd6w9mC0aocb/WvqiVIYLc78YA5rhr7xBo+lXjSl0Vs14GxxxXMcInwTeUq9zfOT3ro9K+GOkaORI37xh3bmszXfiykRKWilveubtPildy3ObhTsoNLJM7XXvF1p4chMFvAxI4+Va8k8QeNrzVZGCL5Yz+Nb2v+OtPv4yiW+XI5JWuCuWW5lLxRkA+lPcJS091kkOpzM+J23L711PhrxJbaNdrIMAE81xJXbwQc0KpbgA0zJTaPpFLu28UaT8pDKwrx7xN4fj0bUWaSP8Adk5HFdX8MtQjt4xDO+PQE13XiPQrDWrFtxUtj1qlqirnzxdajEV2QKAKiszA77pjVzXNDbT9Ue3T7ueKy5bd4fvVJHM73Zp3txbeXshArJLHNNFdB4c0F9XnJ/hWgTbmzCDMBSEnrWtrliljeNCvBWsog+lBLPTtf0DRr6zN1BcD7Q/I5q74NuF8IWjXFxGcdd+KdafD5RfLG924Q8hd1dhq/gyS60BrO1IZyuATWFnsdz5b3aNHw18VNP1u4NqiP5gP93iu6+3wtB5h+7ivFPCul3fgYSLe6f57ZJ3ouc108PxB+1MYY9JusdD+7q1LuYclyLxp4k0ISNDKqGT3FeaazPb31sBY2xIJ5IWrPjdJL66+0LYyxgHnK113w9m0m7tVtZo0EwGMGptzM21irB4Ws7W00QHfskIycnFZJ8WDS9WdLg7o88N1rf8AHXhueKEPpspiUnkCvK9W0DVY4/MlDyL/AHhUKDTuy3UvHRHSeKPFcmqQqlsB5fcjvXLDXLrT03xI4B6kVh/2lLauYyOB2NbdlrVnd2T280ahyMDiqszG6k9XYpHxVqEl0JFnYHNd3beLLzTNDXVUmaaLIWQZyVNcpoGj20kkxnTIzxxUsc0UT3+jf8sbiM7AezDpTemwKLirsu6r8QrzWV2BzGhGK5ppSriRJm3ZzndWGjFDt5yOKsRuWIGetdkeVKyRnz3R0GrfbX06wkvJHcSKzxbuy5x/SsdPvYrsPF8sMstjawYKWtpHFx645rkChV69zk5IxR1uPLZEysAcGhnVTmmcMaebbfCW71u5TcHyatGzm3H3Sq8o3kjpSeZu4pGhYDpUaKQ3NeFJzUveR5Ur31CQc1GBzU7gVHtrOUdRE0bALQx3HgVGtTptFenQ96KR6NH3o2I+lNccZqVhzxUbDiitHQVWGhEKkWo+9PU1xQdmckXYmQ4NW4pdtUlqdOlenQm+h6WHk09C/HeBTzioJ7wkNtNQSriPOeapeY2cGtq+KlBWN62JlBcrHfbH3c1KtyG+9VM9aeteOsVUi9zyPbTT3JZCCeKiopKzqVXN3ZnKTk7sMc1IopqjJqQCt8PT6s2o076jkXmpTwKEXApWUmvTUbI9KMbIrscmpYm20ghJOabI2z5VGT6Cs4pxfMzOzi+Zkkkxc4/lTohxk8VXhV/M+YEfUVak4Xit6X7xOpIUffvNj2dQmcCkjnBGzAxVZWYkggn0AoijZn4BzTjWba5Rqo200WFH70Y9a95+Et+lt4RAdguLiTqfU14bHGFHzdc10dtqFzZaFEkF0YdrSMRnryKjH0nLDv1THXpOUD6A1m+juLJkEyrkdc15HcDQrXUil7KJpZHxjOa4e68U6rJFtk1CQp6A9KztIvbcawL29dpFh+f5jnJr5pxPNT5dD3e30TwlPHGssUKu44DYzVyT4baBPEWhijwR1FfPGreI7rUdRNzHI8QB+QKcYFdPoXxU1XSbQQSEzADgk1NxOaubvij4UOjPJpxH+7XFR6Ve6Pc+RdWhOe4HFd3oXxQn1C+8u6i4Y4HNd3JNodzb+dcmHeRn5qZainqjh9I+Gttr1qtxIxQkZwKo614HtPDoYn5l9TWze+No9HuDFYupQdBisPUtR1DxNGX34T0rOUlsRK17I5oXXlzf6KxUj0OK3tL1jVC21rglfQnNc9/ZjQXWx5QvPWur0/QY0tvOF2N2M8muafMtjJwkzk/E80n24SknfWQLW9vwCkLMPYVv6jpVzf3zDepC9DUscl7pACIIjxit4T93zBLuc6dJlt1JnQr9RW34V1+LSb/y3A2Pxmq2o6hPdZ87aD7Vgy4D5XrVpths9DvPE2gC7c6lAdyNycVx081vH8m0ZHWug0rxOx002U5zxgE1yt8oa7cqDgmmayaSvE9W8fam+mTRy6feguDnAPSm+FPihdQyiPUmLof4q8xvr65vJTJcOTWpoF3axv8Av4w47g1NtBxk5Stc+jofFmhX1isryxEEZ5xWlpUumXtu01okbLnqK+e9V1DSvsDLbDa2OgNaPw38dnR99lcnMWcqSaabvqXOKT5UzrvH3iWK1ley+wkyEfKQK8sgl1ywvlvoLaZBuzhR1Fdb4n8XWuoa3FKsalE9q9P8KXWjazp6ERxmQDBBpdRy20POfEXj+efw4iKjrckDO4YxVzwT4w03UbUWuqhFkxjLd60/iT4LN3CJrBAuOWAFcxonh3w9eWy290dl0vBycHNJvl3Ic2vQ7DWPh5oWvRGW2VFdhkMtcFp/w5fS/Eq/av3luD8vFdl5M2hWmbW9DLFyEduoqjDrtxrcjyROvmR9EHUmuTE4tQg+TWSMJ1YLZXZuyaPpUSqyIE/CuZ8RxeGdPlWWQL5w6EdQawNR8cTy3wt3jMRhfDL6mur0jwbp/ijyru+mV953lQ3b0qIYibtzx1ZCxEpPltY8Y1m0+x6rMF5idt6MOhB5qC35uEHbcK9M+J/hWw0kJ9jlwUHyoW7V5jbkidcjpXpUKinb1NE05G5LcmWQknOTVWZhg4pgb3ob5hX0E6vMmdjnzIgEjbs1chuMptyBmqjJjNNjO2TniuOnVnRnr1MITlBmjkYI4NVJQA2cVOHGPWoZVL/dFdmKV4XibVleN0VHfJpA1Si2c5yMU3ySpryOWV7s49RBVmNAwqDbipYielejhXbRndhnrZk3lgLUZAq2kRK5zUTwkc4r0ZQ0PSlTdtik6YOaaKsMvY1ARg15dalyu6PLrU+V3RItSqcVAtSg8VpRnY0oysPY5UjNVgASRU2fWo3TByK3qe8rmtX3lciePHSmCpgTjmoyOa82rTW6OCpBboSlAzRipY4yTU06LkwhTcnYVE4p6pk1KqcVIkea9mnRS0PVhSskkWLDT59QvILO2TfPMwVR/X6V6HY+HtE06JFmtYbpi2xri4UybmzjhAQFGfXJrK8AWm6/vbsOFaC32rlc8ucf0I/GujuykK3StIUdJlVi3KZDbgmAOFJ59/WvNx9dxq+xi9v1OHGVWqqpKVl1IbjQvDcsrxSadaIvK7o3a3dSDg4JO33561wvibwvJ4ZvFuIZHuLORiqSSJtdW/usOxx3712d3rV7OEglUjc4IAZMSEH7vTp3/Csvx3qaP4eVWfzJbiZdrE8kIME/T/PeubD1q0ZK/wA9fxOb2rp1ElK9zijL5qhmHNLGitnPNVIHLR1L52xTX1CqRaTZ7KnzK7NNY7WOIELl81dY2a2W9I9rDgZrDjn3qUzz1q/aRC8AjMgBHbNbU6kX8KR0U5Jv3UUstJOAB3q3ryvb6bZ7GIGWB/Q1orpnkyAtjjqap+IpA+lKB1WQY/I1y4um/q1RvcxxFNqjK5ybsSevNbOl6FJqGkT3YyArbR71hsc1tweIJ9P0+OxiQbB8xz3NfIHgxtfUqnRLhTzViDwxqVwheGFnA9KP+Eglc/Mldl4f+IllplgYZrMs+PSp1H7pw/2a60+Y71aNx3qw95d3ShZLljjp81X9d8RwavO8kVvsz0GKwkt55HwkbnPoKW5LfZkruy9XLEVs2PiOe2t/KiQs2MDAqjbaDqEx/wBQ+D616/4O8C2tvpgmuYA0rDPIosioQdzyRbXWtWuSUgkye+K108P6tYweZeXTRr127q9an0TUIo5DYWacfdzXjXi2XXo754dSRoxngDpVNI0cYx13GHUxFPs84nHG4GluZreVN3nkt9ay7HTpLzO1STXV6D4HlvSxlBHoKmyNIRlLochJMHcruJFJ9kLLuzXWa18O9QtZS9upKdcVzk8FxYEpMpDD1pmbhZ+8h+maRJdT56KOtaWtWllYQhdytJjtVSz1KdY/Kt0y7cCul0T4e3+qXIudQz5bduamzvctOMY2irnO6z4Y1PQ5lttVsZreRuVbGVb6GqVtaKkozkYOa9dvNQuNNuYoNaS5aMnaUnh82PH++OlNvfB+j67HJqdin2KST7sCOJI/z7UlJM5YSTdjzK6giuAUijOO5qi+nNDgozE+grv28NXmnxtDc2TRsR8rjo1ZOj2i2upTy6lIggjPQnFRUqqlFykdM+RatnFMJ1kIYPn0xXU+DNVvdL1NZd7CPIypOKh/4SSzfVmDWqG33YB9q2J7PTtXZWs7lYc9gafNJrsEYJ6xZ6PcfEPT/J8qfDZHPNcHLq1jc6k9zBbMpBOCBW7Y/CQahYo7akSW5BFRaj8L9Y0aEzadeC4IH+rK9awr06lSNjGrGUlyxMqeY3FoJbtjufoua5uS/m8OXy31nlSOx6GujtPA/i27Qz3MCR7eQrNXI+Ip58yWVzbmO5j46cVy0sJKE7y2e5zRpNasv63JZeJrRNUsbaSK7X/j5VRwx9ab4T8XX2l6nHDFJui6c84r1fwDa6RceEo4o44xI8e2TIGc964rxv4Ag0JI9R0yURgv+8B6CuqWHi4cv3Grp9jG+I+qPqV1DcM20MOVBriIZSr4wDnj6Vra9DeARvM3mxnpIvSsmCCSR8oMjvW1CnKlFJ7i5ZR3LSmng1EKeK9mlJ3N4Mk4xUDxnduBqYYqSOONgdzYPau2cFNHY4KaK6k4wKmibacnnFGMA1HzkgdTU+05DFvlFlusE1UM5Jp7277jlajeEqM1503OTuzmbbepIjhhUirzxVRDtbFXInzzXRhZJyszooSXNZl2AsRgmrGAwIxVaORQPepllHaveg1Y+gpyVrNleWP2qk64atUqHQmqNxHjmubEU+aNzkxNK8boripBUY608cV50NGedDQDThgjBpM5oziuiMrGydhrx46VHt9qlZqanJ5pSimyZJNiKOa6fSvDMt0sUlzKtrHJjZldzsPUL6fWsGBA1xGpIALDOfrXsSwwQWjMPLy8gHyozeY23cq44446dKwxeKhgqanLrobU4TclCna77nMDwZYFVH2rUN7dMW6n9A1Zuo+E57OzmvbO5S9tYSBMVUpJF/vKe3uM12k+paVDDdD9zLLOghWNAFKc85x93nv196la6e1d5lt1uJZYhG4lxkR4Py9QCK8qnxBDm968f8Wz+Z0/VcfH3uW6+4850LXV0i+cMxEMyhZMdRg5B/A12lzrun3kQ+04BkRVdo+Vlx0Ofb8+ea8t1GNRdTIi7VViAM5x7Zqipmj+5Iyj2NetioUq01Ocde63PNxNKNSXM0eo3msaVCUlEjOgTBKgqB7En+lcFrWpTa5feeI1SBBsjjXogrMdp5iPMkd8dNzE4qa2doTtOdppUaUE7JNL8TOhQhF2asiVF8uLHehV3DmnLFJJJhQTVkWkgIDKQfQivVjCT2Wh6MYOXQiS2csWiBIxzV62tZIAsokXHUDPNEavCwaPrjGKjWVt2WGPUVpGlGLvqbKEIu+tzba93D5mB4qlLp93rMC21nFvlaTJ9gO5quD+7yprvfASxwG7upELKFVAQM8k5NPH1P8AZplYuX7lmf4Y+G9nZsL3X5gxXlYgcL+PrUniXw5pF9cmW22KAMDb0p3xW1G3kNpFp12Q3WRAcEVw2lxavcHCTOIu5Y18XKLex4KttYnPhy3e8S2jlHmMcZzxXY2fwljljSSS5wGxnmuHk8+G5LiXLxk85q6PF+tMqwxXT46ACp1S1Bcq3R6zZ/C3RtPtGuGUSlRnmuXuvEWhabcSW8FnumU4wFr0bwNNcz+GY21FyXK87q4TU9P0qLxm0yIrqx+YDpmq6G0NdEZena9JcaijXFqIYM5yRiu5vvHWnWOnYikXcB0BrkPG08clultp1tiQ91Fc3Z6dbQ2xbUZCG9CaL2Ro49D2Twd46s9Zf7OW/ee9b2u+GdJ1uEm6ijJPc1812+pHRtWF1YPwPQ16H4c8ReJfF+oR28SvDaIPnkx1+lO/c5XozqoPCGiaZLvARQO2aluNf0LR3WPzIlYnAArTv/CLTaYwaV2l28c968D8W6ZLpOqgXDsWDZGTmh6Dc3bc9/XV9LmtBLKybCO+K5HxJ4X0bxFGzW0iCTsVNeRaz4imuLGO3ildV9jUOiarqNlKssVy5A7FqL23Hza26G6/gbWtMvVaCMSqG4Ir2/w3a3NvpEYulw2ORXn+i/ESFNq6goGO5rpr34maQlg/kSgyY4UUJoltLY0vE3ijSLVDCRHeXfzE7BlB6k4zxXmH9qXt1uaxsLKBuSRaM+SPUjpmiTXrPTBYrbvfQRWwEgjA8syt3LEjlSe3NZN34nbU7w/aJopSSWV0JtTGT2HHP5V5c8TVrO8Y2R5cqs29Dc1C91GTTLRr67SK2u0/dvOSCxU8oMd/Q9ao3enxX0RurIjUbYrtEnKZI/hAPUiktItQsPsGoX9tdpYbGdJ5syCJ8Eggdjn2rAudcmmUPIs8jNJlyUOBnnK+h+lZyjVdl2Jam2XLvRLfUtLjXT4HivkA/cyDFY0uk3Oj3a219ObG6fnyXBJU/hWzb6/MqfM8t3FAxe3m3bCMc/MD1wa0LHWLLY4v0edrs+Y88h3Yz/dc/wAq0jUqU/iV0awqyhpJHW6BBqaaHG1pqryzBOgHB9qs6NfeIrPUVuNZvNluTjaOgrV8K36RaVcmKKCRUj3QBUxJIo6lvert/wCMfDE8UNndDPmqOGQgZxyMnuK9GKU0pRZ3KatdGtJ4hjmtDJZKbgdP3YzXk3jnw/r2u3kdzaaHMBjlgOtdFa+NdM8MXphs5Yp7N3+7xlPxr0DR/F2m60CsBAYDp61W++5Tfu6bHhXgq/1Dw5eXFnf28sTE5Cvxg11VjZ3Hju+mt75nSwXgGPruroPiD4Pl8QLFc6ZtWVTliDzXCDxhqXw/txZHTSJM8u5GCaXLaV+g/s+hl3mmy6JqFzpVwCyRN+7L/wAS9jWffQ262c2NqHb2FW9b8Zt4rWK6ntkguoOCU/jU+tc9d3Zmt254r2KdSM6SudSmp07vcyY+nBzUoqF1EbDHQ1IDkVzQdmcEWPzTlOTUYNLu2iuhVdDdVNCfZxk1Gp2yg09SzAelLGoEmTUvVpolu5oKgmh4Xmqk1mwzxU0N+kThTitRXjuIieK9ilSp142vqerRo068bX1OSmiZG5GKbE2D1roLizWTcMc1jT2kkL9OK87E4KpQlzx2OOvhKlF8y2LcSb0BBFP27OSar27lF54pzSbj1r04TTgm9z0ac1yJvclEpzxTZCGSkGCKNpIp3bVi7tqxUxzS9KVwQxFJXA42bPPcbMO9OxkU2gHFCVhbARgURAFuaD81OjGGrSKuyoq8idFVJUkJ+VSCa9xsp7G7t4pmRkkh27i7HbG5XaM89cdO3vXi0UHmKQcV1ujeLIoIYrPUJHs7qMKgu1Xck6L90SjqcdAfSsM0wFPF0VCb5ez7PzFip18O41qKv3Ny98DzxWbtbzCafzC37wbCR/d64xUcWnajp9v59+7QxpERuJy3XOPwq9L4x8mPeDZzpjh4bhdv4g9K8/8AFPjW61mM2SNthB52nOfxr5n+yMalbGTi6fS279P1NVxDiasHThCzfV9PNefYwZ5Dc3MsnXc5OfxqLysHofyrZ8JW0N3rNrFOiyRs+GRjweCa9G02GwvLNrpNH0qCFXZAZgzE4P0r6lSUYJtHNPERhZNHkHl+x/KkKH0/SvZpEsgp8u10Nj/15u39KpzRwOM/ZtDU/wC1YuP/AGWj2qfQy+uQ7HAeHLqGO8CXG3B6E16GlnpV0qFiokz16iorHTootb09bzS9Gltbmby90UBDVmeO3t9L8Xy22nRrBCkaZjTpuxXZSxTdoO/qdtDF8/ulDxBpiWWpII3UK+WBrmLyctMyoB74rppboXtnC9wQ3luMnPY1eufDWn31qJIInjkPRgODXXUUpxtF6nfNSlG0TirWQswU+tey/DTXNI8PeGNRuNUmRVe6CqrDJc7RwBXj7WT2GpGGQjg9RUWoX7xRiDPCyFwffAFedi7/AFVqfc5asb0Wps73xTqegeIPETan9kWJdoUKDjdjuRWFfahBHbvFbqsaEdQa40Xpbkk01rp5SEzwSK8BzVrI891IRjaKPofwn8LtOn8MQTaiqyT3CCQt6Z5qxN4I8MeF4xcyxxHB6tTbv4laXpej21rG4LLCgyvbAFeY+KvGo11iodinYZrFtWOZOx6fdarY6lpbwaXdIjBSAAea880+c6LqUh1QbwWyHNcppuqLo832iNyx7rmrWq+LV1RQHhFZSvvYrna1On1TxxpMc58mBWI4yRXHatrceqvnGxc9q6PRtY8K3UEdneWGZjxv212Nv8HtG1NUuYpXSJvm2A1a1Npzm476Hm/hTTbfV9bhtAu5M5Y4r6X0TR7PR7NI7eJUwOSBXOWnhLQ/CVoZ4kSNkHLnqa5i5+KQWWVIAGEZIBHem2o7mTSaPW5pcRFsZ46V4J8Q9G1bXNeUWlg7AHlscVu6b8Y4PPEV9EVB4zmvStK1fT9WshdQlGUjNNSUloZ+h87XPgS8hgD3m2IjsarL4Wkjjykw/CvUvF/h++8Uam0drqAhgjGSqeteUTpquneIzoqSNPIGwMd6l3N4zgt4mnpPge41PKmbBB7CtDV/h8mjWbXVxcEbRnk1rvdar4XsBO+nyHjkg1wniLxnqPiBWgnPlxD+HJqUmypumtkbEgjs4BBbW0Or3Cv5gvcNKyE/w7x8pA9M8VVtQuu3qyanILBiQ2PlQj0Khhzn1qmkU1z5Nza2NxDpkiCNhBhWDdCCAcge5613E+lS2OmWWm3OoSsJNirLCo3RpkfLv6kBcjFefSpPrv8A18jxopt6nU6Lcx2ltHoaRm/MEIvPtd4wRETdtAOOpz61wXxC0S2l1P7dZ217a2pfE9vbD5VY9WVuh5qXxR4W1nw7pcs1jqC3Wkyq6mJZGaUDGQcZ+YZ/D2rmIvEN/JpD2k5Z5UgCrBMojQFSDuySMmu5yaVpI2cmzobWy0G88NRWerLtv9u1Ll0KbEBxkgcMfYZqDWfC9/pVs6aXfpc6Tp2yOSNj952GThcZwc1iXh+zTXcGo6Yx1WadbhFtR8kKlRxxnr1yM16N4H8Pabq8aalZak8F+6FLgCUlo3wQCQww34ikoe1VuwW51Y4zR9TfTZAunQTWsn/PKU5eM9wo7j2rthrN5qsPlSWMF5aafEt7JNtEb7gfmAB68dqxdX+Gl1YyPtSbUVzzJHIEmVvYk4P0xWQL/UPDmpfY9VcR3sagHcxJZT03EcVxyVai24ma54OyLur6HoOv6q2qadeJZwSHzPswi6HuD71pWV3ZpIi2UvlxqcEr8pNWJry08Q6XJYag8FrHLmW2lg4/fYwM4q74c8CaVd6GFnuvP1FkOZFBQo49q6Kdf210tzohO60Y7SfHtrpmsmznc+Q/Ad271299pui+MNPxPFHImMq+M4/GvB4vCur6hqtxaWlszTWzbX808c9CPyrbTxfqXgpho00DyyE4wvUe49adKtJe7II1G3aQzxX8OJtBNxdaY7SQsOY8ZxXlJuJAGhbIOcEHtXs6+O9SjRzeWjtAwyMjtXlPiSOEazJc2oIgnbeAexPUV3JpxvFnZKNocyIHjZo1PtTeVXmrULjyQDUE/Q4rqcUlzI5iISc0/cGA+tVwKerYNc/MwuXo32dTTJnJPy1GHFTQ7Wcbq3jJytEtO+hSZW3dDmtexnMaANSSJHnJAqs8gB44r08PSeGk5OR6NFfV5czZsvdrjORVKe+iKkFQTVHzSw61CVyTXZUxspR907qmMbj7orz7n44FOUE81D5ZBzU8Z2jmuSlKUn7xw05Nv3iaMGtiwto5I+QQ2O/SsiNwKt/b2ERjX0xmvSpuMdT0qUoxV2VL5FWdgvQVVzVmQ/Ic96qmuKtpK5xVviuLS4yKbmnA1kmmZJpgo5qeJN0oFMRc81o6ba+bNuIOBXXSpttI6aNO7Rcgtjtz7VSvGyzKwGK17mVbaJjnHYDFc1dTlmPPWuvESjThqdlecYR1Ks20EjFRpHvcDFKeWzVq0QGTntXzEV7WtoeCv3lTQ6zwTCF8VWeAFXaxOFz2rvdPu20vwpG6NtMlywzjnGT0964fwam/xAj8YSGQ9T6V1lyjnwlpwijeRzIzlVBbj1rvrxXNy9NDgx0rVrEw1eYuXlu/3WDtT5t59zg0S6oTcRRR3DkSKWR1YkEFT1B9xisSGJvshUbvNjzuPlEgjP8AMVNYedHKmFOGJUFou39KlwRzXSVzfc+brekj0uycD/dFedeOrtpfHGpljkrIF/ICvS7cLJr2mMAMbpXGB6DFeV+OAY/HOrKT1m3fmBRTdlf+tz0sK2o3K8VwDAyk8EV0Oha1LbRhHmJj/u9q4xJdvepoLkoMhua76ddXVz2KVfVJnZa3b29/bG8g2+apyR04rP8AD1hZajb6rHfquPk8tj1U4NZ8F/Iy7WbirEWjarqDMNLhdssC5Xp04FZZnZ4Zyv2NcTKLpuVjltT0t9MvWhLB48/Kw54qG1hWS7jTkgnkDritzWvCviOxeNryxnYSH5Silgf8K3fAPhhNQnu3mRvtlvwIz2+tfMppq6PDUeaVlojkrsS+eQqSYB6GnW9ncXUioEIB7kV6Nq+j3dnlvsG7tkCrfhnwZfX8yXd3F5EAOcY5NRc19jFbs5Kz8PWsce66Du3oAaLvQFiX7Qum3Ji7fuzXvtva6JabIRDEZB2OMmn3PiQ2m6L+yZXjXgbV4IqgdaEVaMTwvw7qWkabdg3dsscmePNXFehaZ8TrN9RjsYUyCcAoOBTvHGnT+JNNENjoMayEZErYBU15Jc6Nq3hq4jnvrZ1QHAdORXNNyTbiznnXqS6aHsPxDjfWPDxeO6MI+9w2M+1eG/ZnikVVk+tauq+JLnUrdYTPKqDtnrWC8kipkE5pOcp9LGTlckvYlidT1Pc11fhTxpPplobGHLySZVB7mud0uWCWdEvBlT1Jr0bQ/DegRSx36MN6HIGauCurG1OL+JHd+EtCuLLTJLy8uS9zcZdsnhc9q5LT9MstN8aXOs6jMjIOhJ4FO8WeOhbWyW1rLgsNoCnk154zanqKM1/KYrXrknrWzdl6A5JPU+h4NZ0DX4vs8UsUoI7YNcT4w+H/AIatbaW9eZIG6gA9TXnuh6pa6A5msgXY9807WtWn1SX7RfzyNn7sY6KPeplVMnVitEd34D8J+HhHJeTXENxfSiOWFlkO6JuuCOOx6HNdtq3gzw7rzxtfWpkeFeCjFAMd8DivMPBWoapFcR22qzRxQQhXghZCJNv0IyVrvBLa6XqUKW9xNPHPkM27cvPbnofrW1OMWtCEkuhxnju7Xw9rmkaZpdvM8Dw4kVIzvcFsgAkcnNYWvWOgazfXk7peWephVb+y9RXyElY4BIbqOOeMZr2Zbm2SCCMqZhEWCNMeVPOM9wK569h0XxhDc6VqluJb8RlLaRnBMPByQcgnHXHfp3onBtXuDV9jwv7NrNtMunzKFmjBWKLzdrkjsp7n8cV0Vn471nSNNa2jW5urZypkSWMxNEwxlS/IPb86ZrGjaxoN/ZaZepcBo5DNDMLZZflIwCHLcjHUdRVjUPFer2+jC0urFZUlnMxuZIcJIu0J1GcdB+NckeWL7Mz0TsdVpfiyHxJqYF7YR2938ksWxifmXkYJ6+4rqP7HTU01O4u7e0nEuZorNItmHx8xDnnPfFeI6Zd3tvbXTjSkvIUbMkcqO2weoYfMB9K6zSPGQi1CG2+2XGmgw/6qbE8Q/EfMi/XmupVU1Zmiae5Pe+DtR8OW5n0dXnkuU+0PaTnLKh7j1H61L4Z8UTwOl7LfRxJna8WN3zD+Hd/jXQaTfXl+tq0rWepx2bKsc9hI29Rn7pDYwMHvmsHxboY+23Oo6S1lLapuW8tol2qF9SOua5MRhdOeGjM5R+1E2rjxvPpusOXs4o0kIbOPnHHGfWsXUfiDbXM5vLnTLYyFcI5TJBFc1fS2IsIGeW8uHVsR3EP75FA52N36VQuY/tl1G0MbOjMDtCnj8K8upKpL3Zt2Oacqie+hoa14uWSWOaRFLSryqjAA+lcxqFxbajEdmFYciqetSh9RdQCBGNmMelZ2cHg162Fh7OlFHpUKko0lFlqNiFxU23eKqo3yg1aibkV69JqWjLjZvUY1sQc4pnkMD345rTjZSMGlmaFAARySB+Fd08FS5ee+h1vDQ5ea5isxzUltKBKC3QVuTyaeI8iAE/WsK4kjdiETatcNagqLT5kzCpS9m781x89/5jnaOO2Kr+Y7dAaF2joKdurCdWU3eTMJSctxyMw5anCWoi2aMDtQq0o6RKjUa0JjLQJOaiwaKv6xMr2smWQ4qQSACqYOKdurohjJI2jiJIneTdURNN3UFqJYjm1YSquWrAtShxUZpKx9s0zPnZpW+GHWtSyvksgwZQ1c4krp0NDTO3U16VPMYwjtqdsMZyR03NK91AzuTn8BWaWLHJpmSaBXDiMVOs9djlrV5VXqSCrNvJ5R+7mqqmp0lVRzVYZqMua9h0LJ3vY7TwNPC2tzK80UbG2cJ5jbQxIIxmu80658nSLW2nsdTikgXHm2yCVc+oweRXhcrBmyvFSQ6nfWp/c3U0eP7shH9aK9Z82py4mkqk3Jnt7ahGgO7UrtWPH77Tnz+gqFtTjwg/toxqp6iwbJ/TpXkaeLtejGBql1j08007/hMNf/AOgncj6PWHtjmWHXc9ntL61OqxXcWRZWVqymaVdm529j9M14/wCNrxbzxhqFxGco7jaR34FZ91rup3qbbm8mkXuC3WlsYVv4XhkfbIOVYmt6cva/uo6M7qMG17OO5QDsRUkDnb1ouLWW1YpJ+BHemxFV2p0JFZQ5oTtLQuF4S94vwS7mVc96+hPhLYI/hy7uJRnzZ8DPH3VA/wAa+erG2kuL+G3jGXkcKo/GvTPD3j6/8PWMelWlqsqoWkLY65J7114mcp0VTXV/kdVWTlDkW7PTfiF4jh8KeGJblVj+0v8AJBn+8a8X+E+tvF4+UXDg/bkdWJ7seax/Hvjm98ZahEZkENvbghI1P8Xc1zmlXc1nq1pcW77Jo5VKMexzj+teO1bQ893TsfXF9HpttEZLgoFHJLGuN1r4l6JpMDRwMsjYwNnNc9f+Htc1t0TUNUxDIuWEbYrn9Y+FsdoUFhqO8sfmDnNRz6F8k+xiah411C91Y31vII8HKqa7zSfjDE2jMl5ADcIuAQOCaw4/hVi13m6LSY7dBWJNptvoCyWV1GJX6hsVlNuCuhezb1NSH4wa3DcyZiiMbthQf4RmvTYbjS/FNhDbXCpcSyIGcIMgGvne3hE1w4kAAJ4BNe0+ErafQ9LGqWEUbRJHudC3JA601UadghTlNOz2LWufCW1urEtp6eVcdR6VyNr8GtfmvAtw8aQg8kV32kfF7S7+88l7adMHaTtJGa0NY+K+g6fGy2pe8nH8EI4/EmtOSO5m7Lc59/gvYLaj9+RIBktnFZd9b+H/AAxb/ZpNT8247QxckmsTXPiDrWvGcSXf2G2RSRFEOWPoTXHzuktqszFvm4B6uzegqZThH4URKtbY3JLu0lvvOFuDIFOwMQefUmseeW61JiMuWJxtA4FR2dm13dwQeVcSAP8A6uMEu59OK9F0TwBiKSTXrwW6eZxZow8x+4DEdPwrL3pswfNNnNeH/COp6rN9n061eZwMPcMNsSf8C7/hmvVfD3wq07S2judWm/tC5HPlkYjB+nf8a6XSbsQaMiw2cdvAiARRIuP07CsbXtS1WG2DpE0hLf8ALNgAF9a6I0oxdzRRjHY4ODT7m31SHfftq1rcWqyBJZQuxiM5Z8evyge9aN0Jo4oJUFyskzBVkt3D7WH8JU8E+9ebStGm8wzXOI0Czzhy4YjtxwfpXs2lRwXGnI1vcR3ruElkjjTayfL97ae59KnD1vaR2sRSqKehXsriU/uLm4xLuwW8nGM8rnrx71rvaWtzdi6kt1eUR7PMHJx64PSs+e2udOMzRTpEZDysiZwe3PoamS4WK3S4l81GYlWJONjew6kV1GxN4l0zS/EXh3EoR5oB+4eVc+VIP/rcY6V4/deGPFHhSydktRcWFzGWZ48SBAOvy9ute5K4FqqbV8rhs4Dbj3BHeiOLzYY2d28uInbGBwy9dp+tZzpRnuKUUz5ztor43D3ljcrLd+VtKynEuzHO0A8iksdUFvLEdRgu7k28pDpLtICnqpONw+hrovHGlahpmsh90cWnO7T20eArRn+IAAdRjp71jFrLXBFp5X7LdF/OkupYwjNkYAIGfl6c+/4157vCVpHOm07M2dFjsVi87Tr57a9edzFBA+2EofurJnPIOeeldtpmvyvazW2prBbXjyFJEVVJIHBG4Dkeo7V49NpN1pUxMMRuGEmFmhkZRkHgECtbzp7uwWMveW95naS7AAnpznp6bvzrsjLTQ3SsdfqOlRaLqFzJp8AOkr811a8kxOVGWB7qT0NcREjXGoFLSWUSKpKY4Y8Z5FbejeKJdHuTZawlzPJBEYRukAwueQc9QDUWv6R9iFt4j0i7iZHcErGSwTnkH61lVoRl7yHyJrU88kLNIzOSWLEknuajINb3iXRZ9MvhME3Wl1maKRORg8kfhmsLn0rZWtoXaxesbGa5tLqaMZFuoZx7E4zSRmt3wXOkF3OtwAbeeMxOD6Gsu9s2s7+WHacKx2+47V0xVkmbOHLFS7iI2KWeNWtzLu+cHAFQM+z7wx9aNwdhhuO1ehGtCUOR9TdVI8vKxm1mUA5prQDbmrZAUZqFmzxUyw8Ir3mZuCW5SK4OKSpnHNRla8uUbM5mhtLmjHNLipEGadmm4op6jHZFGabRTuwuOyKOKbSU+Ydx+B60YFMzRmjnC4/FJim5oyaOZBcfijHvTM0maOdBcl/Gjj1qLNJT9ouwcxNxSErUVLSdS/QOYduWjcKbinKhJ71F2xDhJgdKlg3zTLGrKhY43E4oS0dhVhdOkIyO1dtPDVn73LobQpTetjTvfDlxb6b9pQm4DcNIp4Wq0PhTVJ7dLmFFfIyBu5q/o+q3+lZjVVmgYYaJ+Qa2bHVdjSOg8qMnIj7LXs0sJQry95NNLY9Olh6VV63T7FDw1FNZ6r/pMBiuYY3dQ468Uuo+KLWPS5YLC3WGWRdrN39+a37XVoL5xFcxh5CSEfuM9q5XVvCN3FbvdxYIDHehOCOe3rXNjf8AYkve0lszGu/q2l9+pydKpIYEdQc0FSpIYEEdQeopMkAkeleGead9F4p1GTYhZ1Owbeadpv8Ab2s6k3lu5WPljnpW1deF11bQdNOlzxm/MKK6jjJIHf1re8B+Eda0S8uGuNi2gOHknOMkdazlRSlpsbPFSnFJsp2us3c1ymjW+9rjGHPPFc/4s8Pa5p2sW63ls9ws/EaxKWbFerSa94Y8L/aLi1iS4u5DlpI8YJ9M1w+v/Fe8uVIjnjSIEfuoFyxP+91rGVWnblvf0MqlcyB8PpL6wF6VW0jSULcC6OwovqK3Y9R0bwrpkunW93c6oJIyPlO2NfYmuKm1S91SVlt55TJJlm+1Eqo78is66NrNpome8nZVJRkhxsDep9qmNZbRj95z+0k78qsbWp6vEyoYnEVsAB5VnjG7vlutYFxPdSxS+TAFgA3MkQyR7k1YJub63gtrTTy0EaYCwwnMhPdmA5qePSL2awQXM/2dkYowdvmfHYKvXHvScm9ZEPmKhsJgluLoSJ5yhhGeBj6+tbVj4ZEcQutQWax8q5QR26gyTy56BE/XJqxpKWa3EsVrLEk86qu68Aa53/8ATJcbVHv1rq5lum1SxjBVIHlKm5llBuxhepI4AGPriiKi9XqUqavdm7pugJY25XS42sfPnUs0ig3DJ3LH+H6CnanYWRluBF9rnuWkMk0kI3FDjGM/w8Vn6NHaafMI01FLq5d9wnMm4qD07ZNWdX1uP+1re1e6RnebYVtGMLYxzuB+b+laTrRhG7N7cqLGk37xCG3FrsgETSKIJSZDj+9ngineIPHVlpluiGOK4ndflhjG5ufX0rktW8buLA6fp4Ed95rorFeseOg9eea47Sb1YZ7i8vYghAO4jPmOenGTxUyxsYxvFXOapWS+Ez5bi2ubYRQSG3jhQrHskCmRv7zdM/WvYdF8UiTSdIOn2U17EYgsrxRjdA4HILcbicE/17V5QslvFbzb52gcpG9sZogokb/c9Md61/Der6ynh+5tdNvFhjtxvEcPzbn3ZJOfUjoK5qNeNFNyWhjCoqd29j2jzLXU4luINiTyJuZXG04/2l7de9Zg0e2s0mBmCLK+8FzuZWx1FebT+PNRTxAt7dzW0qNGYsAKpVsDqPXqK7XQfF9rqlqkzPHFJHIuI5EBcqeMjB7GvTp1oT2Z1RqRlsaV7Pa+H7VL7Ur0QxeYq+YgyAx7/T2rTt5BcaeojubaSQt5kbROfnTsR2zVO+0e11yzntZttxZSZZ4N2H3AcFayLC3sPDVhHZwXXlxAZSO5OdueoDdunT61rZlmp4nsYdZ0p0ujFCRGdlw3JiY8ZI9PWvFNWGo+H9VXSb+6W8EUexTGB0PzA9ieD3r2S+hnvrMSWoVZnjJdJEyp2jPPqCK861m10/xJZx39rPjVoRhY4ZOCBwVOR1A5FYVqamttSJJMraXfQBUhhv8A7DeXMifZ4TF5qb88cY4U+ldgv9nahfzSahGk7KqyBxhELAYbY3ZT6GvJdPvL+K6TyruIGJz5YnZcq3B4zyD9K6rRddtdNe4WdJWeTL/ZWDFyx/iUD6568iualWdP3ZbEwnb3Waeo+GbXUHaS2IkjdyEhlX51J/hU1yDXVz4fae1kVpLCVWheNhyjeh9GFdxqHnQ6fDfWDG8gSJWZrdMGBgepXPzrnqnbt05yLieLWoHn1qSBrlgdlxADsOegJ7D0z06dq7Wk9mavfQ6+fRrbxR4HtJbaOOTdAokTGPmHRgR0YV4tq+i3ej3ptruIoc/KxHDCuy0a58Q6RFJothcotwzb47Z+snGco3Tpziudv9avdQuJI9QDTgH94r/Lg+o9DWPO1pYbmUDOLaELGcHvVX7ZNd3AV5GOeBg1ZvtFmW3S5tZBNC38OfnX2x3q94Ms0PieD7dEVjjDSMHGM8V0ut7SyR0Va/tErGRcwJGSrPhh1BHNVA+1sqa6bxcqzXjTxRqEZuCvpXLspB5qJb6HOT/anIwaTzQe9QYoxT9tPqx3ZNuz3pKizS5NLnuFx5xRxTM0ZpXEPopm6jdRcB9FN3UZoAU02gmkzSYC0UmaM0ALRSZpc0AFJTtrHoKdsb0p2AjxS4NP2NS7GNOyAZtpwT3p3lPQYpPSqsguOVFFWE2joRVMq46g0m5vetIVFHoUp2NmFgSCCOKvLIm0ZdRXNrJMqkLnP0pvl3UvRXJPtXp08zcF8Nzup43lWx001zBDCzh13Acc1mrqW5csSD7VXtNB1G8VnjiyqnBJauh0n4b69qEq/wChyLGTktnC0pZlWlLmirDljZN3WhjQ38v2gPEHyGCpgdTmuw8RWmoaZbRyTJNDZugC75N/znk849a6rSPhtpuinz9X1CFCvPkr1Jra1nxZoosorRdOFzHB903XCA+uOprx8dX9rHlqystzhxFX2itI8PjtbjVLn7O9lJNMBndbpvcj/dHWrcvg9rK8tkvb+KzjmUvmT5nTGOCg6H2PpXUeIPEV88d1GX8i0nYlILSEQBz6nH3vxrlhqUUKq4tgsoAUNId3P0rzFWltA5VK2iOssvEsK3KmztPtD2cJXz5xsSNh/FsXv+NVT44vprYw3WpKgaQsDsMgweuQK4qS8u2Ys0koUtuOTtU/hT4rmJJQ5gaUbgSp4Qj0P601h3LWT/Flxi+prEXGsCb7RLOo6xoExE49eOh+tSeH9Nt57n7LcR3EhEyhPIBTL9tz/wB0VHHq90bOa3tre2t4Z5Sy28K7mHGMeuK0o9W1yazh06ykVGhj3zQCLbtHYsf6VpKKS5Y6GnLE3ZdAv9Necatqj2ieYU8ySRBkntuOSR74qy2iWemWcR07SLYSOvzXc2J45R7KpPPvim6PBGtuJtSu7kypgZljUxFjyFVX5P1q5BqeoS6iIQGwOGms7QFv9xRnA+tYJ292H5FJJIt6bpWv6rNEYoHstNjjEK4baEcfxqo5IPvWPqXw38UrqUiWcsN1DIh3XBkCeWO5HevRRqN5Fpgt4A7yjqDjfg+tcza2niuTVvPligWKVdilGYjYD1PvXaqUbK4pK6K48OXeiwC2fS77U38tT8saCPJGcg4ycf0qtdadb6ZNBJq99fhIyWMENusayDByAvU16N/bL2dsGuJkn8pSNoI7DpmuC8T/ABK0q4t5bSZLd9/ySLGheQKeoDjpVSo3Vkx8yWhj6T4i0/w3bWjxIl1LtLRvPncQSSM/3cVzHiLxG+q3Et9JFLBMxVN8KBtoyc/P75qrrGuaDOUj0nRmjKxhA9xOSeO+0cVhxyXt7ttYEYh2ACIODzmuX6u46yZlO79DRt724uw6GWARGPY7SjLKg9D2NU0ntYlDb5CBJgjqCvrz3qFbG7Ec7RxkiJcSbeoGelPuIZNPhhV5o5fMw7QrhgPr7ip5I3smc/ImzSaSS6s7ee6kglgT5JDG2ZGz0AHoO1WdI+zWwmit5WW4cMI5nkMRjweOP4sjsfWqGmzFNHkMKRRLGd/myISxPAyG6ZGa1/J+eFrYwSxx7WEjEqZWHb6np6Hiuat7t49DCrpdFCfTJLgSLb2OdqFzJKTvceox1/XtT7aK5bdcWsgjLwbM+WQylSOh7dMZq19oJdJVI0+AZEUefukdc9yOvHTms5NaurWV9s5CEFCc4HJz92lB1JK0SYuT0R3Gm+NJ9OazFxby3duoWd7pMI+4HbjJ7fqa68eKdFv7K5umvraACU4LpuIB56d68VOu3dxZtZXE8Txks0ZYcAkcj/61X/CzatLqNsNJjtzJFGwdHnzG2QRko3Gfp616dCdS1pnbScrWZ7HodxetdXEM175omIe3MI2oY8cFRVPVtFZLmb7Kwt7q6YSKHAKPInqPcVzFl4t1e5vBp8GhxC7t5Bh7aQLJGgHzYHQg54wfWrsniqz1sIs+lS/bE2xyPJuVh/CxTHUjqQe1dmjNmjhPGWz+25vLtpoI5sOYniCqjjjAxwPfHrWNDe3Fube7SQ74HKhwMnIHA3emO1eieL9BkubJBDewl9OHmLHICrTxdQ/P3/Q4rzK7Jlad0h+zxOdywxsdmR1rjnT11MnFXOjt9Ya6i8t7oRHaQVbIDnIOePpVUXcvhq6eGaITiQchj8hB5/l61gQ3JSIoVDDs2cFfp6/jWnaXgaEJK6yxqMMsijI96yUZU/h2ItKL8ja1UxXtrDdWUVuojO5PJMhkjxyYySegzwfwpqa+kfmRzWMFyJYtjSTDqOxyP4hzWCyy2DC4tZlaN/4V7exq9Hr1iugzW32NjdSvuEu75R6git+Zyd0aJ3WhmteiKWVCm4bsqQ2do9qvR6us17arvcAEKT3x6Vz/AF5AwPalVmjYOvDA5Gaagr3L5dbm/qizW19JbKMp3B5qg1sZYd6rxW9qLDULGCaLZkqC7gc59Ky9nkx/Zw4HzZPvWj01KRVhs4zBvljbGcbhQ2nQNjZcKCegau90jSVFmEkxJGAN4I6E8DNP/wCEOgkmCmPLBgxI6KB1FaKF0B55Jot6i7hEXU9CtVHgljOGjYfUV7Jb2axDa6KLZMx8r1rPl8KNJLu84IjDOCuRT9mB5RtNIRXstj4L05mMd1bmYgclRii58CaNnItXRT0zS9mwPGMUYr1hvAGlsSFST8DVO4+H1rHk7ZFA9TS9mwszzOivQE8AfamK2kVxKc/wLx+dZt74QSynaGabZIvVMhiPyqZLl3YWORpM119v4Y0/IM887jqREoNX00zwpaKPtFhqMh/25AhHv0qHKC3kK67nBVp2Ph/UtQAaG2fZ/fb5R+td9p7eBrOXfFpdy82MgvJux+Fblr4o8ORyfLpt1kDJ+bOR7UlVpdZCU49zhbbwBeFQ02D34JxWjb+BpQSNinHZIyT+tdxH400CBBK1nIobnMn/ANetfTfFVhqLhbaxuTnofIIXH1rdTg/hL0PNG+H0s+4RrcI2eCY+PyrJuvAmswKXjjWVemOjfka92k1GyDMJg6lTgLsYn9KmhlsLpdyRu+eeYyv86d0Fj5rudI1GyYi5sZo8dSUOKqgDvjivpm402CUEtBIx6gr0ri/EPge61UMtrYWu9ukrqUZfxA5ouhcp48u0elP3J3ArtB8H/Ene4slHu5/wq/ZfBa/lx9r1aGLI/wCWalqakKx54Wi74ozAB/DXr1j8ENPSUPeavPMg+8iKFz+NdbZ+BPC9hCix6PC7LwHkXcT+JouwseB6ZpGo6vKItOsZZif4guF/E16Bonwomby5dbvCpP8Ay7wdPxNetW+nhI9qxpBAo4CKFFZV34i0yzuRZJNHIx3Fj5m3GPU0OaitWCRhTf8ACI+D4/I8uIzDkxx/Mx+tc5qvxP3IV09fLUHASJgHYehFcxqzxTa/Nd3Ooh/NOEitxyVHq39aitmafzZrK0ggA+RZZFGc98MO9eXXxTbdtgbdtya81TVb/ddWEASSFRJK04O/PsTwfpisjU7dkuojd6g1xI+Hlj6lc8kZ7Vq6fp9zftcf2leSx28ALSEgKWxyB70Xx8OWWnxw2TGW4aIM87MdwY9s+1c0XZ9/T/NiUEldmZqGpWUcCRWbtbwDloXYylm9c9h7VkW0t1c6hG2m2u6TYRtRN2ffHarYlglWKOys2EofexlXJkcegHarqW2r3GpBSjWbMvzqgCKoP0raLhT/AOCKy3OebPmkXLyNIpIIBByfr2okliSyiKmWS7BIILZUDtgDvV2XSVNw7KZXgRtrOq43NntV+00ySN7OWCxKl2ZT5o3Mw/2VHet/bJpDug8NvdQzfarG0LyIpV2DjBJ6h/8AAV0WjaRdzak6y3NxAkmGeQxiNDjogbrXS+E/AcrXP9oalaJZ26ZCRkYaQepHauw1NreG4H2ZYunyr5eQMDGacMPKo7vRMtaIr6P4etHtm+0XCXczPyzky7T6ZPSurSzsrUKmEJUZIVAB+NcN/wAJVa6Ydk1xtct0ICgH0rO8R+O9OsYSFcXN26blSJyQPrXYqUKastELmOwm8UW0Vy0QGNoyfMj2IB65PWuM174sWdl5tpayNqEoPDrhVU/X0rz25199fZRfzb1yflVyAB2Brm5YoYbtyxXaDlVQ9axVeLk4xIU03Y1ta8Sa9r+5Z5mMCncY4vur9cVgsqnkyb3P9yp1uGJ2qgRCcnIwD7e9XIFRpFCWjyZ7McBm9hSlU6sb0CySzEABtpGuzxuZgU688DnpVuK4vw8SwxeX5QzGxGxVPY5710FvomumBLkJaWEO3yG+Ubgh6nHr71BeWen6eBNdalJO8efLTHUgcEivOlWjN2Wv4mbZQu5mM32ZruFgTt2xfKpJ+8TUUzWlmjzC3CxhNqOzfM5yclRWNcagXuJJcKWdcdOn/wBeqbSu+NzE44Ge1bww21wUCfzJrhYreGORRgkICSG564rSkhuLIxIJzLLGBheSFB5AHpzmo4dxRLmzR/LhQAyMwDFiTnHqOlIrLIsJDySGbPmxRDlMH1796mo23YwqS18ixHqjpaxme38yFJBsbbwDnLAmqV/cxXczS/ZnjlLbuOBt+lalrPOWAt44lhtf3yJOM7/w6ZxWdc3yyO/m2qKGctyNrDPPGKzpJc2i/Ezgve0X4mY0m0HA+TPIbqD60zznTkEqwOQRwR+NXoPJZJjISpYZUN93r/Oo/JF4+Ix+9PXA+XpXcpdDrUlfYt6NrEun3AnjCmVGV2LSEOyjsp9etdXq3iOwkT7TpnmxQXJx5crYaNv+egbsc9sc1xkFsSpliQNjhTJjnHUVoaSYLiC6srwOFVDLEq4A3D1zQ6rSbQnLTQ3rPxXMW+x37Q3kSp89zGctEO7DPTjtj6VzWtQiG7lgEiyQht9u0JB4IqgzsszPGFTcDlO2PSml/NX73CngHjBrVyclqaLaxcFgWhWKcOkm4LGxGF59/XrSXmk3Fi8jKPOiXGJFp0N7btaukpdQoztXGGbP6fWrdtfEXAWIRKHwWR3yGI/xrilKpF3MW5xM2GWSNPM+YKwwGyCPxpsjwOF3pyB95OhNT6jG0d+5xsJ+bbt24+gqkyhlyQQR/FjrXRCzSZpHXUibG7gnHbNOIGBTCo607I2j2rU1Ldrdz22FUkRntV6zLT3QdxgL1AHNZcczBQu75fQiruyRIPNSTCucYDcmspxbWgrHV2/iqSCP7HCgLMw5Zccdea62PX7L7MJJGAebcfqP6V5IkmAECuTj5jUn2qba0Ma7d/G0U1UqLYWp6LL4pgntWgRUM6jbxwAPWtHSvF+nSJKqvtmTO3KggYHvXlts6xxASNkEEMMclvSpbG2aVSpBBk9ugFQ8ROF2yZT5dWerX/juygk8i2jVp2KjA4BY+hro9P1fTL223yTALGdjOWByfavBZyby/CiQKFxtVeAMdc10nha9t59Xhi1KcJZwOdkUXyKz54Zj3Nawr8z1HGdz0rVNZGnRB7XQNRvEPIkCYU/1rltR+Ik6TrEdJjtG7+ahZhXWW/xH0WSUxW77jFxhmydvc10J+zasiyz6XC0UiZHmgBsH+VbyTa0ZbueSP4sS/t5k1DUr1YHxmK3URg+1Rwz+DjZsksuovMuWIwNxHYH1+tehP8O/D8twJpNK285278gVYuvC1lbD/iXaDa7scSOOlc7oye7I5e7PLo4dCESyaff3EwcZa2dMKvtkdTVMXunNKY2j2xxnjcu7efc165ZeGr9YT5cenWRc5Pl2+/B6ZGaW88HRXEKxyzWZfAy32cDcR3IBrGWEUtWyfZpnlU0LalD/AKLpMkG77rQQkhv+BVmroOsyTtbw2momfOMOm1QPXPevd7fTL22t1hW6RY1HGxMDPrirFrYypGplu3nxnkrg1UMJGJXIjyvRvAetWUjyX1pbzTDlPNbei/UetdRb6f4qHljzrXyyCWj3EKvpjFdzHbpECWdmU9cnNKRbMciPaRxkjBrqUVFWRVjlYZdQg8kXVwsOOCyKHDn6mujtblZH2o6NjqMc5qUwwEFmjVjnIYYOKatrF99dvXJJJqhkc99HESGkjjOejVWu9d063t2e6vIUx/dfFOmtJJYGjdIzk8HZurz7xB8M9QupGms7pJOc+W5xnNRNzS91DOwj8QaNfPCkMjSBj98NwK3RqOl21vzMgCj+8Oa8z0nwWwsHa4lkhlhbbLEMYHvXQ2XhPSLMCOWcT7gHO6XIGazjKq90F2WJ/HulJdeTG4aQnAweMVk6v8UIoFKWNu0j5wDJgJn61b1nSfCVraSCd7RX2HDg8ofXivF9UbTLHWgkWpnULUchlyPw5rKo6y2aIfN0PUvEHxAurzRo7KzR455V+dlIz9FrzyOxlnM83mSWzqNziVsO/wCNZN/4nM8mLW3EESLhM8nPrWY89zK4ZnkY9c5Ncjo16utR2Iak9WdbBc6RZTJcB5bydV4z1z6VGur6ncW629nbRxWkkhfYACc+ua44TyITtbv1qe11Ke1KsDu29A3IH4Vp9TitXq/P/Iah3OiNs77prm/KOH2JFjduHXnFWrW0t47c3NvYyJ2ea6wo3/7I9Khj16yubW3to4JFm/jK8bj/AEFdLFptpJp7vc7oijAEGQ/vFPXrXFWqunpNWLSS0Od/02fS4ntpISzuTGISC6kHqfQVoPpV5JE91qDjzlIzFC53zcdc5xxV7/hINJs4lXTLaN3B2qwX5gM4/GsHWtZuLgzySJMARtBHGfX6VnH2tSVlHlXnuTK19Te0nTrC6Zri7N01oYwIDIoVl7kjsPrXUadqFloWkGezt7e32ZHmyLktznOTz+NeVJrty5RrmVnt0UARg4ZsdBVDU9Zub392Zn8sfdTPC+1dFPDYlTup2X6fcb3glZLU9osvGVnqSG4vb2NUjz+7LbSfeuL1/wCI80kzW2i/KpBBlYdvavOAHfAJz71ensUSW3jWVWdowzNu6fWvcddRSS3MpNdSGW4lvblmnkkmkJ5OetSmOWIsr7E3KDtU/Nj3q9ZafHfTR2ttG75JLuTjAHpip4LJXkk86RYIm4Z2OWGK4Z1U3Yi93Yz4jbuyKisoOdxY8CopJF+2kocjOBxnFX5p9PgtooYdzvGSWc9CfaqD3ybNqRrnuw6minHXmsVGCTubOl2kF6sSB5YjnLTOA3PsKu6rcafZ39qYp2cRfNIQAGLfhXLtqkwCiP5MDHFU2ZnYs5znqan2Dc+aT07C5dTp9Q8ZXUzt9mAiDDBPUkVzk08tw5eV2Zj6mo8ge9G4+lb06MKfwoaikLtwMmkoLFuTV3T9Mm1CbClY415eWQ4VRWpRWLTIxjO9QOdoOMVt6NCbiIPIJgApWIIoAYnOfr6mluoUutYSS5knELLteYKHGcfd44FajlEC2kcxt0iBmRVJZVzwfyry69a8UktWefWqXikt2ZkIeOB4YZJluEJkDDG0gdQCe+KqahcT32FuFgDJgh84JGP1qxLbXF0jm1DGKBSA2drN35rFuIZoiBJGwJAOOuauhFSd+o6STfmAGY8gtkE5UdAPWlSRkhIVihyDnpn8adBKLeORsuyuNrAHAJ7ZHcVFJMX+Xd8qjCr6V22vodXWwpMrAgsdo9+lSRRXE0YKgsFGdw5wB6+1VcnpT0nePlWK5GDg9aprsVbsXPs5jj8yUnL/AMI/rUXksiE7S3O8EDrUbyySOzk5yKlUlbTd5hVm42AdR9ahRknqSoyWpdv9OiltY7qz37dgMoZR972x2rKXKkdlzjd708XMoJQ5C5ztHAzUsE4ayuLdjtViHU7c/MPftVpPqaaiTTSzxo8pLBf485JqSO/kVGiUoA3UlRzVe3kCTIWT5Twc1HKvlyOmc4PWlyrYmy2J3AkUjagZB1B61WpQSKMZqkUhAcGrEFyyN83K+mcVXwaMUDNZbuNFd440MzHJJ5AGKqyM0G7cpWR+Qfb2qspwwOM1NJIZZMklzjnI/SpsMW2Ekk2UJLctgmrunTyAlDvbGduw9M1nwuFlDFTgAjA4q3p6xKzGRiFXBIHf0/Cs6qTi7mVS3LqaFrAIoXYxh5JcgtnGzt+NVblSLg263C8jcNvf/wCvV83cU0kWzCRElgrcfN/h3qskcMkxkk+7HwWPGe+a44Np3kc0W07suWT/ANhvbyyQK0q9U75PrXd6F44W2glmnVnuIhhnmORgng/zrzE5v7x9hKx9flPOKdmE27J58gOfmOfvn0z6V1RlKK8zqTsj2jw546m1fU3t0BOWzvJ2pj2ravPFtpDcrG05K5wcNjcfSvFfD2nazqjiPQrSTJ4afPyKPc9K9f8AC3w7ttIkj1DWZ/tmoKM88Rxn2Hf611QlNrYo6K0urzUgrQxGKA/xP6fStaKzWFQWO5vU1gaz4z0jQ4iJ7iNCOAucn8q871L4vXE87RWMDqueHfgGrbS3A9leN5TgSKB6CoTbhGy0uG7c8V42nxXubW6U3D+cg6rCvT8auX/xusvI22mnTtKR1kIAzS5kM9X8yNG2MVJPpSkxyrgMuB61893Xxc1q5yEiiiz0OegrPk+JXiCVAv2sIP8AZHWjmQH0Ld3djp8ReW4jTHX5qxz4y0RnKrd5YdRjivna58RXl1I0k08kjn+++R+VNfXLuSJULBVU5+UYNZSnP7KFr0PbH+JdmNSnhkV47ZB8jg/eNZmqfFS5Nk72EEJTJCs/UV401zK7799NaZgRyfp2qf3j6jszr11fUda1BzNq7QCY7pAGwp9qZPqsGnalKqyy3QCeXu8w4P8A9auRLEdzg03J55rN0bu7lp2KubaanJKrQLEkhlbOTyfpVHVIGW9C+UEbA4HAPvVNZXicOjYYdCO1LNcS3D75HLN6mrjSUZXRKVjUZtP061WNV+0XhGWb+FD6VTOpTblZSFIXbwMcVSA54qaExq26VWYDoB3+tUoJb6g0mWbPT7nUrlI4FLu5wSBkD61ojQ4LNJG1O9WJ0bHkx/M7D+lZyapcQxulu/kq/UJwfzqqzl2LMxYnqSc1DhUk9XZfiTZm9/bttYJs0qyEb4IM8x3Ofp6VmPqN5PMryTPKwGBvJNU+TTkkaPJUgEjH4VcaUI6pajsS2t1NDOsqMQytuHoCOlXtT1m81aXfcyKzkYCoMDvWWByM1fjvYLVklihHmqu0KwyAfX34omkne2oNkKxskPmOSTnCof50iW7yNu5O7p7mtq10qSS1lvrtlZyhZIScZ9/1FWbi1srXaDMfJSAFCeCzHp+Vc0sQr8q3MpVLOyMdbdUjBDI2T8x/u+1RvNhpHJHzcAY7Usky3CRw2yhQpxz1Zj3NUnBDFSc4OK2hFvWQ4xb1ZqafrkmmQ3IgjUyzDaHP8I9qzZbiSViWY8nJqLHpS4qlTipOSWrNEkhME0YpfzpMGtBhmkpdpNAUZGc/hQAmcUZqWG2lupfLt4pJHPRVGTSXFrPaSGO4heJ/7rjBoAbG/luG2hsdj0qWS7nlXaznb2UcAfhUGCaUIetAH//Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4ATT9V7dkeZLlhx2tj2v361eGykhVVV3d0zNoYoYksIgHEk8k8MhvyReuRYKLmBlgMN3VXV3VVZUyxNXCtftxP1rxZ57DyMjIjIh73Y//hdm2bdvM1HdvvmlarW5VTTc0XVX4P1VX+G9TqXqrm3qrKkpVXbw6C1zti69eTc5Pnx8Xf/ynP6VVZSrWf//f/1//d//63765+MJ0rNn8SbHT+er+d7//X9a7537fDXzPVFrTNE5HJ73uJIp51Vaxnf0uebh+XD0/dTu+FRi247qhMx5MLl590e9f+EbHUGxdN5fR6pAnT+vZIYn2yf7p6fnpfrZZ7pq6Ob86mUyHnuNkUdK0jaFZmml7oe92OoOTvu+HbtC1LLeoys3iZXb3olv2q/dvzk9PiyKfz9fD0TA/RIflcnTaG036rWIURR0ncRGXmqIHThh4bhGn283B9bxxf8BbLFa7Xbxbbp8Wm3mrq+9efXESTibhkE+nVNkhWlZt7fhh1rSbwyGva0XTsjQt8rTfHXSCvmHZpqLFcXp7fb+aR4ZmNHb1/fd/WR6e9tUsWj1NxuHF5VC39DQ67NdZWdme5fm25XuW3x32RxfhaLhbLv7yu39utHYyOHEsu9PhM+os8un5Kf9vqKrn+LrpGKZV5LlpGbphVXVrKHqe5W3bKEqra6pp601dbJLlp5ufrx9u//Tn75+fl3Zge7arNK3RqqPp+dvXX19Ov7i4fNtlJUwORKNqWlMraZrG8Z4T4XqO6zim7aqGYfB7hW9VNEvZH5Lr55dPd3dN2b57/8X5ZOIZpqE2SlObuiZfpmh5nm/20Wq5ubl9TKss7Hk661tkjm2fTc57vUE3DF3bVLWW12wVRVPasqo5oJqha5pWK23EVmTJ8/zp4WX2pz9/93B/f3tzl+xTPvJ0OPr6269ev3ozGo6D0C/K8pClmsZRVg/Rfnb/WTWzQ7KK0/UqXd88PCTVTlGTpixVtQ47ltPtDIZdXavLujw5OXFsK89K9r2qMs9kL7qa5dcFD9VoVusFimHVWpUbCo/H34Sm061bO7C8qR9WRf3Th4fVPkmKWNF0PkJTlVpT5vtDUdWK2rIWeV4neZ4ViWqUhqlphqlbVt3yV01TV2XFd1SsrK62utLWdVPkCheo1XTdaFSdTeH/+T3nX2EHbde1rLBu9IZlreq0rFP2XWt0NqAssyQ/pKWht77d+qyjopetWlVtXjRZWbM5lq/4gRawCB3V9hTbrh3Xcj3DchxVt0q5IFUSxWmcN4pq255n2JpiJmmzPdRlUuptXZRKlmlpruSx0lRarZqN2qgsja51bP1yev5u/ObrN39zOf7aVb2iOixW1x/vf/j58/cPLy+HIi3qolIUy8LwtJalWLrVNEqVlkVesfWWY3Giq6JJDzHrbbg+f6Qpqtq0eVWxnrZnDHv29KRzdT7u+lwEJasOSXWomjxOOLl5VitcwCwtkzRT1dZzbd/WHd9ja/KizLKcJW/quq3bptbSVPZBVVWjcTxrOAivRr2rjjt1jE6eNSnGYb2Yr2arxTI97DnSVVZUTZEkcVlWfGJOfcUhqtRet/flu6//5m//7dv37wajkWrWcYopu/v4848ffvpw//k22WdYRQww/1ZNW3NNVTa81ZTGMFrDam3HdGxNbptltG1bNQ3GKst4WBa8LdlFVa3qSuMkqJyr2nR121bZO8u3DNcq2ooVbNsS+8A5VBXD5uEUrakavVQNLI1l2YahsdYNxpqzzAFvWtVQ61apiqJVWw7NfP6snHTs0P+v/4//zXIx367n3/3pu8p2VsuHhOvRVlWu2K5XK7oXTK7evtUWbZFy+De8sa5bWVF0D6nl9aqkzqM9jzA6H2pKWWc1F+wQH7y0dOwwzaoR7sD3tNrk8vcHQzP3+OhFkdZNOR1MB5375Xy5XCzUtl6tFn++fi6SjCPORz/EWW/cG0xPR9Nxtzfs9MeYp4qt3a3yQ2JZ3vPzrKxKnpb7UyzK/XphNIUWNarJglt8ULlwZanXWmMGRV7s411R5U5rc8Cw49vNfJfuVuvHKFlrphYnvVS1MiPghBjYAZtF0vOkTMsq3sdc2ZKT1NZqU5dFqildh8uAMS7L0HXdMxf39rJ57rj2Ejs0f1CaPV972BYJljvOdNWtC3exTjd62x84A8uqdquozLer+0Ldn/SHr6/GjhvqprZebmeLhWJpeVn5nq9optGYvJOCva+5wLqOnag4SUaF25QnaJRaMVTN9/rjk4tMqxabLfs+XywPu6hMMm4FjnS5WE7Hl2VVYTeyqnFNLI7TNpqKN9ddDpmuY4411dDFpjecFN4NK8OvpedZHc/dpymXoeKtHawvJ0/l6zBXdY0ps/hiXghjmB3i/tDma+ss0RQ3zw912xEzr4nBx7Mc4QdHSOUuitXSOO1K0A1sHKPnhsOJG/a+XM0//PjT5w+f48OhPwzPL6bY7vPzMxwJtq+sOYqFapl7TogTJFVk+U1SrX+6+SlVlPmmjdYHeTRF3Wyzdttsllm/Zxq+2syXIAobu+q7das7Co+EXVNyuXJVso/2BUubWFo1dE1NN1dprnPiFPdybM8WL47lnlyOtdX6kNVRlItXzloulGppqs6mFDU/cKu6rbvggcIwsatyk7lvDUdHUwpdaxSrLhutarANSqPLWQOtaeyhbsh3qRqOshZ/gQMJAqBPp62Uyky1HC9fxXmt6ZVhcfH1uuG/1tGyVLxuo3AktLJVirrN8kzHQ7GXmJ8GM25y7XO9Lhp8XaGppQsacbAJNZ5GNfVD0vBROA+mgolSbE+3sPZ15ZqeXxnY59Rs99syPuRgAsyUiZFWrSIK6y62uMwLpdPtBsbAMtVCKbMmaQ31ZTGPij3XqCozA3NvtpaC7QF6qL7nFJUOpMJS84CtrF5TZnXDC4knrVkV060s8I5e8NdFbFeqWupKUe0xQft8X+st67Hb11WlFjVOlFco1SpW0wZIo3MkMdkcMUOca8apB81xrOuSo2hbXr/fO+lNT/uvAmeiNl5qcAgWibZleVTez2yNQp4Tgw/wq8Uvqynut61NoMD04t0X715d4TxCEFmCJdmuZy+zh7vH+dN8H8Ut/kKAjiAolZOl4Ank2APXOAasAXcZuy1XAPN/hOjyBeL6AJnAdZBZdfxz7qfKGrBoCguO8eYk4MYw/EAvNlZt5Fph4Pl+1pM/tNi/ti6rDD/NSwIteXpWtK2xIKrJPhisFxu53x+Ud795V3vB7//886urs7O3Xzyutof08Gn2aXr9p2DQ749Og8BpCyCAPulPNaNd7xw85ONykWZZm9cdrzsCMft93bBt4ELW4MJPX78yXSsGhBBv6E6dG2mU6KXWDXugGT6wa7uBqe02Ncd0cHr6ajRcLJfPz8+4TFBOvk2fy9lygS+epftNEBhhD8A9DLoj0w2tICwrrU3iwLZs23l5/Nzp2K2S+cGwbJR0H3uu0V36s26o4WRND0xUJ6VW63E3Dno+XjZVixSTrGzrstwV26SNd/mytcqmabfbJ6tQ8V6K5WlV6VtKGIYc8zhPsjzZxrubm9sgcA3HCP1wk2TDPjGQWxh5bZTsWV7GhXJQvcrtGtlDhq/eJsqnx4fnl5e2rIcBoFhXK1NXtcPEy+uiOyoaxYz3T23O5zb8QCfySIukBdANO5WhcQKdFk9VYHOBPXKAWsWK947jqZwfsZucDnELAjZsbIF+MjrDsOwvS8fxCVqWs8/pbncwMbu8r3k6HY8GLMMQPyqXrMZC+VzjGnRcVZt97JaF7TUeUAuzzJHjdMo90ka+E3nWbr24u/5pv5lPR/2zyZhASuNoYUEtrygaArtttKu4gulhs9PrqnABc7a6SSMldt1OwDnmVY9XobFNk4t1vBTcMhUvxl1t1LZDEGT0iDAOk5Nxd3QyOnm4uzO0NnSxGGyo6fKuHuhVb4qKXfExVBn+rOf2QCpZJzzpeKObh+5NXT/OHrBL3Hz+XtX2o4E7Ou3gzghMzCQvqiwrmpHXfXM+tLWeanmmrsybl4fl58ftGgt78By8UQmEtlPdrNqiNDYb17QvXp1bxTYA4DdNLCAxz/d7NqNVdF5DbS29UuuszOLYahUHN87n0jFPte6waZrECzVnzNxv+G6MKlZf013NcPTAC2y36/kd/ICj2hhRwyH67Y7HY4whewGwi9L0+fnxcFjG+Wa3n+d5WWKecAu1UmJRTBXXXqZKkfGzxLy4nqJ6YEBFCVql17Z+U9p1wqbm4JICQJkRf2AZVAlUMJEKsBzUrTdanbapWnEd2tIyjJFnlFbjG6Xvy2MoeDbeGPNl2aoXWGEP1G04oWX4HdM+ab2q7araWV78JV5eJ1kEYlKBumWbE/xxYGqAQq1h16AjDPGMHH1NAK9CeCeYqgIOZzo+vjaJtR1H8wPD5dS3mHCOarLeHzYxN17DsTWFUpWEEQqQUm+TjlsbHC+7UXQFG6tJzKFyV8QvWyUPgUvrBb3pydmkez4dvXLVId51p+zzeL9V1Io1ZVsLQY7AUPgG+VZOKGirbUzDmYynr968ubh43e2OfN9v1PqwP8zny/uHl/unl8V6X5YC3FlIQf4SKGP++YyYcLHvvBrH2HYAxaZhc88k9GSnsD9aLV/GauCowHR8MZE4R8viKy1uuhgZwB6PVpf4FnFN+DniCRZUaSswGeGyZrsGy10L7YHrAJgQB4jrY7OqnAhBHADby7viReJldP/Dh3S++/Qv36t23T8d7W4Pj4vnf/7+973x2V8PR4bVswxeVYCipft6GxZVuN43s9XnItmvV+vV6nkwGntuR63Yg8rWgPnmoDc1LM+S29rt96b9HsQOpl9iYB1w0Wg6H6nfieOEIJhTD+iwOLxAJlb5YHjOg6l6SZTmUbRd7QAdq9W+Ue7YUl7SsFyDndD0DkwGAaRedztcflOsIHahqTtdP+hz3kEVMBVuW+h6a5uWPjztqw6+oLJtIyAcZU+r5uHl8bDfKEYj9sW2m9wMU46Y2Q06di/Ai4kzzcvFfPHz9ccPnz4VZaToGp+Kc3AyObFszQIzt+ouOuRZnLfFbPGU5FvDbrOUqLaAlGL3wdabzQyeoi0dmIbl2o7yKlhHeIAomuPB9Pbq54/fK5rNxnBl3U6vAzvRYaG4faYEY1lWliWMFqxDf9jj5Mkht7EvID+FDefaWByrxpt0LrIp4Yq5nK5jHqvVOClEl+v17qefP7i2A7k1nU76vQELAPnDIc2LLElz0H1WWQHHlUdwLQIBcAdnWcWJZnXHCT3de366/vDTz5zL0agPYeA6eHNP1W0C8M16Hm+3YMMsTUr7EIaBUnOrOaLYmsP6QJSmeY7nsBYSsfC2CpsHUQQmMGCBmoYwVkJkpfaHXuJ2wLYWD6Ib+2hrqHqvG3a7PU0FDZkWoYrHPbIO++Ts7CxJgKU6x9Q3us3ecusgxFjl//Kyey6c+qDXaZ4XqZpESmirLKdlKI7qhVrvRD15bb2Zjq8ca2JbztPstvM0qGJ7tbk3QUZqj1Om1hAVONUk3h622QYoiTnV+QiwDxwPmIcUSwGGNhxHdz2XUzjoYr7talfqIHQ+pERZWATsZlnyU1XTqt059haeJUkBBcCmYa879KeDwev+6JVlDZTSaDIFT0/s3Am7vhu6joVZig7xPMTKvMy21/fqD0/zTzCmEqwJ6gaqghasOjWrpIEkNE2F7e50tWDUaJ0cX2+6Cqtk1qoSGwUWviyEJYaMqqqQGATsGIOm8lbuU6FYjYHfAT/WBeAd1GGpmlvDwcIINeBoUweFYWUwWPuqhlIbNoqrq17PnRZuGzt1NszZ0cX+OgIUY1EFFvNWKpaAbyO8IMoAmGI35O+4wmXbYNpytcCJYip1xedbwMkafFFSE/g2TVqkh7Te7Jr1BnArP/C4BcEyWB3Tqan7pvGgATTV5pPK+RLSpmE9FIUIle3oucPT4atJ/9X5+E3Hntj4KjBX1R4gcdUGglzMfVHhQbmeeGtxOiyxEFnecHj6xRdfvXv79fnZ635/gKfcJclmu3m4f7y9vVsuNlle6FDunHGx+Nh18VnHYJkTDxkPdhdsRZCHWxHwBOknWJ83Zf1ZHwlcW43IreWM417lrNuYxmPcILEDESVWUwJ52ETCN7yG8UsYqeNtapgrPqpE1g3OhY8PFyVsCq9KuMAz4XhNU7BUG2/jx4+3FVxafwP5oLlaUmMD9uC4OI87o/PB2VnfCwPT9F0w4fneHzlmv6j8ivsSdpbrz3myLqJoF+0g3DG1aZoVkIz97unVWz6p5/SGw6lvCYvJlSOckhU4BmIEOLapO71OLbQo7kurgbuNME6m6pwMT96/evP+7as//OEfn17ut5soS3NhWzFzs5o9xIiwAi9YF01sY7/XqxR9n6R+v8/KXb553Y07WK9O0IN35kilhx007Y/XP9Y6YdymqZMAww2BrRm7/Y5Nz4rSDvz8V/WrsVGVjucN/Q4oIYAnUXGzRhglQ+3u83a7fXj8abl8YlW7QXhxdo4BhGgPfSdLkmSPOYp3+5XtmxVsYZXrvU4Y1mdXV91JP45Xt9fPy/siT5rDLll/dxOGK542bxOjbua3Dx9+vvG7HQNU4HWJrIYnp3nZhF7YD1yLMKRu47Ld1/V2ty3btMf7e56iQGc4IJM0xXPGfC8EL59q2BnhEH71de1afnI4HBIYXhB3+zLf/fjxbrHcbpL4ZMzXO9zooqx30Z4jAh1dYEI926x1jIBJ1AAhASHdtuQkMMXv3/Ce/duH67vnm893d8+zZyIqn9SK4xERrtdLtc6JkFzXSerOqJ3ioYwdIbzV6+2BjWlV9sNezwscXYNpPlJCOCouJ16Wk6xzUAUeHiELH7wdAMfgq6o1H8t04NNMzeh0PNAc14N/YRt6HRc22XfdI+QygqBbl5Zr94bd08Hw/Kfbf5nvX/I6JTpJs4RLVnIhTU8PRwGH03/zxr/49Zs33WAUdqaO7Z2Nvxx2z33n7Pbph5Fvh52B6XcUsIZBILFfEQDvd6vZlkOB6wXfqJAlTu7iBACfZZPuhXQyXEgl/JEbEm3pXcnecGvhD9skq3exCurJFDvH+xGtFym3tel4/kl4+qr35cnwq07nyrHHrtMtkipwPEMF8zhhp3PMlXDaq3V/97LYPG+fp733t+E/x/VL0mzSnNucz9dxmbNnmuESeHBPLPwnt64lu2CytpIVwBgJU1RZu1URRyUW3LRZzAavAP2nNnYKSWrnTbfC+mv6kYoRFotIRTU7Wk/3obDyXM3TUoPNttoDqZfdg6lZUPk9b+IYvlKpgR2c9k5NpfYczV3rz4q+2qwh5GsoKlAxaQoxWyA+jCMWGhtJmIcRqLADBApisDQDguiQaotdY/ulaqYgDWzFNsqfV/ViCwugQmU0eaWWYujA7hq8DcGuDW+k2w6RjDgcYg9eXpyk/M60xZidhf7lqPeq6077/sjTO0UG4c1Jhigl6WNv98KC4jewOvyAmxIWrdW8sHN+9e7Lr/7q8vyL4fiUNEIqBDJh8Q3Y8PHuQVJWoCVsXEtYJqwMD8ZBFWDP97OCR9zD/7MOcNcNETRfKzYQ6wbS5ClxkRhTg2vjQtE5BBLgXiw3ESsIni+FWVG43YKmeWVwNabdBKbxNeJysPg4DpO/Zk34F58gtKsQTXhU+Tr4cbbW64XD8WA1j+8e5vu86PbLJmqidk/Shhhku1v99PO/vL28ehWM/dGYK2fbWPKB5nZ3KVnVrToedvykqNw67+d7iC5Sw4Ha75NbturKrBuSwIEbhrbX8clO4atwc4JueS5W1wTriU/lcfiEJCw8MqMkG9n36cnQc62qOvn663dvXl/ePdzN5osk3amEqm19iOLNeoeDLgqItgxXSBzjgJSCYBelmudefvHFv/53/+6Lt29d0+oGfb1120rbrA9JslttFrPocba+vX3+8HTzYfZ8d9jmlqeEwQkAxCA52DjhXw+9cQ86wCfd7Dg25qiFg9cuzy+TIuNU3t6Hq+hpg7ErAJIGR/ZQEnxmNWz+cr3crKPDrjMMu9MAh6rY1fSsN70a9Pp+ti+mJ230Ol8+p/NnfT2L0120jjJoYwfa1Gg3qwPpnSCEvAoA/8PJ0261tRSl+60ddMJBt0t+izt3KEgwwjpELf6f4J1baMIHVzkhPXkhcDSr4bv9qk/uhw/CESBlmaeSh8JOEQ1l++j5vi2Twu922Q0u/CEhH9OURdnvdy1dCG0bQwxshR4GlhBJciCNajTsdHveq4vpbPN6s5/DiUeHDSabdwSN7A6bMo0tSyNIw6XDqSVxyrl2dCPeRwAWYD8hL3nNFkjDc3AouSDcLcwjnAs5BKhvfi/nWOPDQIj1e30cKXAmT4mlkv3u4Du+65HC4Xklr8d5AkiBbaA2+XYO1NnJCdxCfzQcng2cvv79p9/t4pex42utLynBsnZ0sxNMry5+c9775v348vXJgLAZAwnkHF1caTAI3b7VnXL9ep2ea3iYE8MogM3r3TYimRBtSTg2hBEeNJoAsyov4mS/Ws+X0Xy32CpqFLj2yWA8GJwMglOCErM1SQPxCUo1Abmusuc6W0Bj1a5aGjh3JbS8STA961yOnVPPOglCjEtPgV5uVT4t6Am7JbQClqQiyPZCZzIaTIeD7rTnH4q7uJrvsxUSgNn65fZhlQET2DbgoFaYlgW+guzyyTLgJInksQhlzdPEcbuPAEFQAoQoTSsZSExvrNtq48CqVGBC2wGkchRwzgbhIJwFwakGy2kpsZrAxRBkNPAIm7syzQ/ero9Jdaeu6aMlCRxX7Z+CIExueGtr9f1stTqk+7xMydZiH/HjpBLFJQkoVvloHEF8J6EA3gA6it0kDblZFZZ+IFHquCkUxnZfzNdpFNU5wXCcSR4U4oc4AahCst4A3PKvQayjQwpwmEoS45hWbGYF4aSpoWPCWp/aes+3O+geJJmiGHmhkakmweY6pgVxoKggbDIbnDMB5i1uxZ+eXn7x9svLs9eD/pCFzat8uVpc337++ecPT4/kTWO+jshDXo9nFygvR5xH4NWwvlwofDO/8meSkYD5ER0ECQb5pypZgFIcn8l7GS4RdwgroRlkNYs8JgPfwE5h/8sm51uPr8KyYeIx77wo+21iImswncGTc0G4HFDz7KHlkGWCocTwq90Qgte0HEnAiasZ9LereC+p2xoRCHHZwGGBNuDl7ebpT//yDx29s37/VdjtQeMMfZ9wZBLY242KuQH1S7oq5EZbWWZVsDKgyDInSRDYfdva5sGedJ2lDiBqWAn8KEsJxcs5Zjs4d+Ln5SrjH3FOcn/ZMTiibt9n+YhUxpPRXyV/zYnB0AsV0zSHfbacbw77XVXDbNeSCDAdPj9GGrqmqFroua++/nbQ68Ho8DwEd9i1+lzekfOaN1VcZcto+ecf/vE//cf/9x/+8R9Wu/khLjRsiqbevcz79w+j/iuWzCdRSJYU3IR6AUzh+ob91en5yTr69fawwoET3QNVyBpG2wihgECNnJQCSWZunUruozEI9Pd+t/Ss2teTs/OOfuEXb4vdpnmeJbefCBsTdVlvFwfCtqxGcCAZMFgYhEWtsnq5n73cPCbbVX3Y/vU3X56eXOrEUgh4yjAtFcFS6T4q0l2+9xHviJHgiKH34b5LiMfp6fh6x+b+88lbCGV8pBeY5L6j6IDxtEyPZAbnUDMPZZMd9uluvd2vl+lum0ym8M6Bj4EjgsIOYzpaGyxZN75mDXr26UmQVpcJqXC4/woTIYm2rIoLyZcnliGrvd1nyLw2qyXvvY8O65eXhlyJzvtaut6FyyNLRxQgv/DggFQA6PFycInwH5IUBXVaZm844Ao+3j+u1jtCHBI/pj3k+AqxwlGC/ySulCCaH4T6MJFN6JpVaZaGMwg6J0Mo9ZVmgqaJE6YgHy0Lx70vps7riTudeEPiN75Z0NIx09dxu+f9KzQ+um2QYAhtHwSDcoO9Gbp51knEfKLYwJQCf2EAOceaWUL9zZ6vnz7d3H+YzT406VZJatsvwo42GV3Yao/Px7sUdbLNnhaHD4+bn2b7a6AWPCyxv+XZEh/XWQWY8mJFSZvalSSh4ZK1Q4zH5cBjAp4IggLOgdkGNvmSq75W79OTfb6I6+2+XK/GL/3+7fxllub7LCXqAriCLPFQrZkr4ATsD5+0SBTYME3tGrpZZPha8hIACIjAEgApxFG3gakU/gqr4HkwplprwwH7OlR819ZFJlUP8ooPJHw1yB13MkObVYdZ6xZEV6HVtS3XsrueZ46C/jQ8Pe093i64YberzTw57LK2znkykgzEZWykWuKDiLZZB5A69wsrAQ3ODWyyZrdMoKFMW83R4yUcrTpN+H5JQRx9ndmIIRVIUdYgOqsl5iJBLtS7WiHGqtsDMifBRroeEk52Hb2Dio8oE++OhoGYJ0v2ebZHGCaqCoFWpAjlV5aLHdJtc3xy9tUX33795a/eXL3pdkAM1Spa3T/dfvr48+2nT9F6ww3mrgguF2svAhyWWE4loS40ri3cD0y3UD3EJJhccvLwGtwVbBt7y1vp5BgMIuQeCHLcCXuhAZSHJUySdB6RutmlqUK4I5qDowHn8/IKHCIWCtoJ3o67Bx1EtMDZJJXvdY1gEPbGQ8MzEAvgyfi0LjAMFrMmqQ35UHWHTixGoyXKFQ6srMl0aWWMqfx0/Rds9kOyvLx6ezIY/ebVlxCyjt4Q1kYREh2ir9oODL8fOooN5CsO6D3iRFPnh+vQGe2zzSpeDgaTQX+E5IB9xtADZAZdH/ZYVonQkh/yEVpI2qKUFACmjBU7Ag/0kGYHxscYgFGgjNiIEluVFlmBMhOpRu2IzNEmcOJbeQHJCvq+kmnY4bYycKR8I7F6a7KXkCCar/lj8+RicjXwhmN//PW7X//hT//ww8efkirWlFy3UkXbOX7uhtB4fDw4JwRbmHMNWDDQuyCLXj/M61eYLXIRJHWXC/SEUQ4tieIFAAu+4lgqIoVhgXXC4uwxzR9ZTKWysnqvWWX/xAoGo+GkY3bX7kt1djXer3eH9TMmGCSbxIlOwFTrySZGDHTYzrez++Xmv/qrX//NePyqgcJ02Gh4kQhdIICCnBORfc/rnozGvtcBcHHmMYXkOfhzc2BjrDjD5ECEq8KSQLFzFVjzSjQ/JIv47MvNdrVeg4bQYu6j3T1psCI7nU5JDGJlRV6gQ92i25GAgIuJVyCji0Fx8ZtCeEq4UCs97D5JaxwzLh0byWttBktue5wcVssdV2G/j5erJSQVqBNMi9kT2y+xoBwG0AxbzzJK2rtu0Pjxk8thw4H0u0jFIkKJ3Z74hhiRfIeQxNhELjuqHcAU689T8N4taC9bb5aHQ9zpd+3eeRwvUbv03DGyv0Hw6mz4bc+7dEyQugEpJOCDW8SHgJdQDbDXtH/KByMv1Qu7sHjkIvI0NbXcxfBBYoRwHyhJbJIw3EScFbdiOnlz+ebbdw83t7d/Xi5+2q+folU67sAF4Ozg8ccgMw5/PxsEGzAxws4kXe/QdAJDVbfJ1N0yuzc9G8oi2RdmvtKJZy1ECAPThtgEl2O9MXH8Q55Exedrek+vX0dxN4h7ab0rtXhcnQ16J+vx83o9g/bIihaHvowXhnGwldxibUi6qUoGnBT8mVmhlrc4JZh1UAJWCOU1OfI23zeOpqJ2GHR7woR6PfQQJmkg9MlO1yHtxSkz2WLOPWqPXJY7A6chGTsUbYSes+W+Wo6Lhq0N1HA06U7Pxq8vzt8+Lm7unj+vVi/zxct2B2OasXpsHL+SLALXykGSNSYmJy1gYtHhykjwJvtK58HqGuSZZXDzEFoS0sAX4tRE7YTPYLEFI3NUOQ+IhgRG8ltEAgTafGaOnEUIynVxu44diB3k45b5AdVCtIwPu/1BWFz+yRAvQloQY6K4wUF7vbPTV6+v3l2eXvSCEOsd7XePz/cfPn+4vr6BlYWSEBzDsqJywnOJSZfwgyvDQQVOesg3JWGHLlH0yViWDPMph5/DymrKqeWAGK4J5zsc9/pj5AA+SYw812GoIPLB/rwy/A9QQQSmOBH8puSneQk+OTJfm3y8SywExoebNjxzMOx0Rn4w8snIEhIUDXrlbLZdA12Bw22eaSXH0iTy4/oA4lDOllmhKyTKideF1gadrmE/d7O3p5d+nb85u+DgdV1vYVj7TTpLZpqvdEaH0WjQx7V20Xu5pBOLcnMgzjd7SVmvHuNBkkGXQ1fDprJKWUJOCXskQi32HsNfYjBzwQJwvcBS/iROMeZ78t1I8DgXnSDohSR9CYlUGPrGZdEKTWEx0GSa5Efh0kETfNNut2OJidrhb3q9bqeLRJP9w4wDpcgcoJPFeWsT+9R6978f+meEfQCZ67u/oOg7G2m+s9/uPty/KLtD37F8VYUICoh+kP2wQ6K9ZcGgQ03LJVDV9VHY9omTlVGC1IS/wuEQ0xQ59whCFe1tHD/cv/zxef/zJtoc8odW25Pm8K0BYdPlhWgbuJhKE6aJP5/tHm7Xy5cDgQw7CxWOuY0Wq3/abeIqWu03b95/0zs54fzs40WRr8mDBKIYMXMkTXvQsjZBoYaVINQpMww3aQ4MMheLB5MIQdZe4IcNpHd4QLjg1qm1QLE6bm8QDrIzpCuHzXIVbSLZj6MSQqg7jimR+dEv8dLsGehGIk9JspOzZROEPxbAo1lgMQ41eJWok9f1dHdnBVW/GgxQWmLqNVz4IclsO3Ud9IGigpCYGRzPf+WdcASS9pO7TDoZCbrIq3LQZGfU4Q6RQkL/LZSEMNTyrnwqno+V5yIQ+4iYHoEsJqko0VtAbkOLW2af7HHTDDXtfDj4ahBeduy+RYiI3IXPwU9E0zzKMSZxXTtwvX16QE/B35KH4OiIubdMCUKPKTtEK3x29hvnwQfnwncQllr2pDv84urNevX8ePd5vZkTJSAit4lOy7Lb4flRf4sYG1O2zXdP23WNGk1SnHWs7hco9wvd8wq9iIzc1xXXt7pRSsHKeafTbxrWi7clV0J2Rj6vAZQzUA1IEQbWF7lbR0OnOpw6YTV9j/FBk7FalctoUdvr1t/V+iavtuSyTSdPtTq39D2KFSwLp7VgEdgFxBIi5eDGoSKs41rLSqeuOkTxQbfjTANj4qhDT+uZhgvuJ1O4R9hQRUR++2SbZHAgIETF9PhJDlDjA0Cr+oZL9F6WxUkyPR2/Ojv55mX+/LJ4Xq3maEjgN4TGYPEBpyBuuCfRwpdkhwzCBx1ahtcBgnNK2IpUhSjmCJQpTwnbjuX8LzsnwnuqY9o6RbqvIXYSf1CBkdlW0ni8Ora4F/pn/f5lv3MC/3NMO3HM4kOCpg9VZARSkZ8ZxodDh+qGgwhlbYz6k/MplQhDFydCLr7ZvTzf/vzzD9/9+MMTmTAsOmdRTiLn9uiUuCacHR1+xOkMvG4XQpw7LXr/NCvTA9enxhCB3wX+io5DTBmqVSJcRG4+RKeNAADoaZB+aQq1oCxhn7RFLm5RMsLAHSyjmAhOv1SbEF7omCShrA2CWFQkkzF+uzExYk6j6xlFAhXrtt/XW7arhGpoSwQqGA58Z40uejQ4OTudcJ41YvbterMvc2zNYXt/86NWZW6bdfkIzX4CM9rz3lpXmZ6nd9n3P/3x8PFwdn7yb371m7e/+rbIF58+faJAo0Uk75CIgrdLZmuwatMBPdhm6JDmJdGKLBHnJaId7i0pEBIbVBJ4HkwLwXJSRPslaus0R7Jp6mbWIyiWey4WB2RLwMNzcpXYWOAXr4NZopZDbVPRj+FciQDaYBPiAjqdkDQlqne8s2RaMgE/JLY103Gs4ej07HJ3uUtvdaOYnIbdPubm+WVb7Mse5SEcP6P1lrOQDCHpBrIA2HUPq+Z3Og7IKMStUIMFr9XVu/I8QmXWYhMwrloT7ZJa2Xcmk0Vzd5ivkuK5rtd5Rn3L1tD7KgQLIrrQ7g16rR6eLKKg53zU5s/3e3w1VCaSSCI15Gk/33yu3fYlnV998YaoZoFT3S+6PePdl2/OJu9JVJZ76NN8t91y5JEzJjl8Ajyfh1JDREQEBaRrbHLssAkkleTQgJ4BEWK/ajlA/bDbat12OIhHg81qB7DzPBT35LRIagmwktotQARCDblQKk4Xi004HYII2F3gmLgFidwB5Zxv3oKjy3keDs20KKknISIDF4mAuCbQKTGh0DUcA14H5ATRLCEi33a05tS1ECUAotbRGoEHx4RzgpkQppQY5qiVA1Afv4tbJ34DcRufhQOCMgn9GT5ovdktDjPFzDshaZSpZ53bzqmqhDihSiegwcYITOQo8dREH4JIxI2JMpX3bF3hZw/JHnQl3grTi+gF3wlOlaeRWIqvlvCbb+NlCGtkvc86nbPT6fs9zMV+S7kMHg2YSYzK39oWT3I6rONJun7ZEr/xFGRHyKvtVT1bJtqwi19KVFj22sqaTqXGygZE04zcseTufoG1XHd2BZshBJFDPQRWFPmGqh8IyzxytRo02ImidE6cZt3d6E5hhOhZNmkx2+1mG3QepFTSzbxalcae9HyaVHw+YKKkU1gHXYM9SlIlWheWfYBlDY1IM/sdyrL8k8C6MPWQuPBQpYfssCVWzbfErMQAmBjRAzfUHDil6nFwWA/EMxAMrkPCHIzadQMogVdn5ygPQGuLLI14KaLG5pjSk9rEBnaoorgR60GsiDgW3R+hL7WZaRzNluvHp5cX5WVVrCmDE3eh4cSAxLKJlBVAkeeJmtgN4IaDznXwydbDHynBqH95dvp+OnnV7Y5JrbOJaIn38TotttFhccgjFP0HysogjcHjGoyUMNWUtI6n4+nZZNBDDIFY9vCyePzxpx+//+67u9uHIk0JFIj82Q3Cfyw6tx9ETh6BLPFg5I/PwsGImlZ4JTTDCJKPusJcJ6zGZXHkBcRzXcyWKE9EF4BvleiqZgXbFHKWmjcwJfWeEKLYGA4rrg9kx52R68JxxdlzefgXu9GAjS6+uiJYgKQAwxGe1Yn4VUwjfCDS/MGJPXrfJaasMhKqm+eX+/WSYicYo+Hraf/15ajvKLefb//yk3q3WOeaFh/ih9u7rukOfTvLX249VMr6aNj/N3/31em3pCvjP3/+cV8218+UwSzT7D6NNh63QK+I/XUjqFK7VDuHwioBbrF6cMLaFxkn4hrQVZxEQAmMOtgUW46uA08aOFYVugU8lq1ERHoUeZX5Lt5ix0CKIFEkxaAzX6okAwGb+BITlW/V2KWyRVhQHDZSJZgjPIE21Cgak3fgxuLadySLkyJ0qVoZJWWMzhRKpRf2nQAlqEtt5fN+3cyvCWB9u9dwPytAm2u6AXS0qnQoDe737SBE2HoYdMd9X/dcRGdAQSIafmJDCKtBATwUiWWtPjQJMkiEdLbRGD62DPeHJtq0SO6XoBfyT1YX5pLUqF9UXcKjmNhnXojogjQWoDA/bNCQ7ix1m+dP21GPVPCez7nYNu4SzWswAvd7Dmdre9igSCbOERGE2eNIoc8RuQHhL7ifuidoKyC7xJvQweIDwCyEZRBe/InQAoBvjy91CvKlHGeuJslYXQfBcidZRNIopMYkZwdupZIHy09gK18owTvuhCPNaSbS4hrv4wNvgJPw/ID9FRMuaVMKcQnxyrhOLa4nqiWBICJ1YPG4RbgDjrdlqIEPH5Lvonq73saHFE9L4ADV4/p4RqT5vC00OX5MzC9XHfeAScf1BqT5Op2F41ZRvHx86Y697vhqMnwVmqdQ2AoZJYIBLA7fLPabb+bTiOcR6woW417x+XhVHgdlOitARRT0+xHT8TfHjyuBjqwjiQd5DUQr4jjkI2CI2IAAGVkA8k0IpOMYJoEEIxlfETtbvQvvve7aKlzg4nNUPtXKPCleKM2RhML+ieJzrjN8+DY3N9lq2C3TlVoAvzsWLAyeEYsj2JT1lqfH/kEHplG2txyUALALpVSPGx3fm3qOMexf2OQSbewMji9Jh5j/FVZvH7/sey/P3t1ziMxivV5s+OZcchHIABBkK+sIdVkakYFELnrIq26i9TN7ZAXjvmUMVJ3USMfVeoSzq+08U7NFSq3hyrBWSWebdjnzNYo+NEy+4CI8leEjJW17feL9kspRiuMB3VPha+RIgovBo5Qcwi8aeDcpISLLqEhZL0JxWeIKExKvt9u76cP1w+fb2w/Ps7vFaobATOQzRxr8CG+oQIePphhW83yUQCKBqihFVE9PJt+O+69Cb2xqLhAFaTDV61kWgRO20XKfEKTvI/RiGE3uAkfqWO9IwVwAzMHIaG0ci+zzx5+++/67vzw+PFAfSqYQl8llkhskOQx+p8MM4rc6fXt81u0PraDHkuLVmnJXN7ROUEmHQVEBROXcgn24AyrWH4oE04YuGOCjcen4wOBZvIluhkFoajZ1LCT0yExD7EIx4SmEyz+WkmA6+TL4E86Q6ZEEy1cYMm42nvOIVUwyzFSKyarGhl1RWOuZ4dv3o3189tN3n28+A7gXj482hdcnYe9sOtlGXB99Eacm4eD+cP3pJ13bIktDkIe+bALj/BDsqtV2s2GDGsNdbJd//v77+fKn12fdv/nqjXBx8a5pYDeDRt2ZPavnnOCiKZrGh5kOYpQKKcLL/AWjNBmOyTUBpdB5sqDEokEQnlk66CkbFnwKGAksSpnHuxi32MLddgj3xWSltgihMC4ijhVpFZqWAwEM5yTiqm63QdSjiNVnl/iHPG0OBKWiDzGzqm2i9fxxUR20njUlU6DnlDdz5uu8Iip8ZC8FyZYKx8gfDPqDiaV2dcVTYjtrO/mj3vGGXd/qhQFF7jgvlbofzCLlLBRBeID3tkqT+fbufvW0jlc1ajU9xDMqVmEEvt/1+AP7kOtlapt7PAV6nLbftm/sPNJ/2hZUAxAcst0uHLJNyTbqcipDl0W1wdP3OmqSNYvFPVapGOSefpJL0pmQKSKLY2vBSffsdAT+F6OORAkddlZ0KVAlI8IR5bCCXiVOwcLxD6ETsY2sI2hVTpJt2EfQTVIf98FS0eEgo23AZrNO4j3ndDjqE04g5sAE8gsUMtvELRXzKDSFCL9YPewR3sdHG4maxhKoTIV6qmsFvQWo9ykoy6QQjTMr90dsroBwAQFct1D3YCjMJQ7oiKCpbiV6UBrv4KLYU1QCTB5Z7LAYYy6SvASHQe4Dx6lD+ssdutqQBFXHHg+Ci449tbDDNBuwcJKSd5ZPdgyj5SWguXhBiWNEuCKckhCuPLKsEV8qEQNuRt4S0yDmQb6ct4cUAsQdHRGPcFwE/iMAQEgyS+gjOoiAACkaJ6wDrVDVcDEiAPVPOqfz/fUuu93avThZAUkLpJlGyYFVqCgALGbL7R44pUdWaB0oCRrzupiO43GWRwrCTrcYbov5Jja21KsrB0HNxKv60IT8DTvgEiwwEIVoh00JjLprpe0gztJNXUfp1QJ13MPLw+3j/c+319fPjwjMJFgWo6HHTbvc5E+P0eNg/Wq8nU3iKDVyrXs6pqxxQBLHBHqo+qiHhqo+lPFi9Xx39/Oz1kzGZ/lpQWsUk+pPUxo0cPKluQvP1rocFRgzsGDVH0HjUNslKYSQiJEsKDoR8ZLwLJbI2ZA4uEQ+ItpGPkoFa5y8Pp2/PXt7PT77fPfjD59/+Pz8MI8iSYVB+7qt1dFPJv7FqRX6ApihiE2j0yojx7oY9t6e9U4HPpwWwn9sK1SP6ApxA0lKdgk9Bz4J+hk1HR7dhILGbSIBsI3adTnPu8Vy/TJ//O7Hv5DqIWHAycWwgGyOpw/9JTykIhoeJGSDAA08VFMwoLWL2DD0J1Qyc0/IFJJhku4EpGahsHAAXACqH0M6dvhUAcEEURMt0J5Xt23qX0jIIDoiJKHGkLrRhh4gdEAAm4CzNJLbZKPEHrrc/MAzdrMlsmnsj5Q9SFSnkV0lIAn9MZrobXzz6eE+2K2noxN0+p2e//qLKQ1uHm4Xf/7wkdpQujv0vOnwJHzdTMyXRZruOVWH6Pn3f7ievjp9ffk33fEbDvL9ar+NNyhI2Fp65LQmIkI6YHCVEcxFCnEodecVFa886yZ9IeO94+/M1k72z1k+pxK7KJRNkpi17xU1aWpSvtgkajqI9xSUNxI8Vr6FUc/VDodGXgyjXpHddbp0MyEawhuSEEVXQgDbUgWl+IQ5dIBIDtUh4lQdDlXCFRZ8phkcMhwATC58ZrcvKQUwSW6+3WwHm82K+AyNE2JHNyRMqgkVUPsU2pYXS3UKfjb1PnFK+B6qYCzCg82sMFHWOPQvkCJ1ks1Z5e5j2pxgOyzIIWhryol3Mb7oiTwwgnLYLeh+3c6KCSWiPtbZc2BqStOMOAeOx24HVWlf7FuAxXJGdi7FRHc6/smJcTYIh0O6bZB+bXfbPNpUh70SZ8V6fr+exie9CXkqJOA0oKHkRU0Xu+cVspCz6alWqQf8wp4yq06hVShNadWEtQd0i509BgF4BCwbP4W4gs4UWyqOgd8SyWGF8cngR8opEDvPQXmG9aZ+9frNK7qENIqHIUblSLwM5Y5ToTpN0vd8vNZGayje45jDAjpgbSn+RBteFeJg+GqMKf5DmCh5BLHDRwwloTR/Aml4MhmitMGGEp6XbG3bcBbjA+E1sYPcP/k2AUwSzYgHgR3Bjjj25PTy3ft/ZYZd+nFYRs/UO6PhFepw0t9CpYsgQxaAjyr3F2PLC4ngWn7LdmKvwFi8FMYTphFTjhGVu8Qj8qXiPPlaeT+wmHyzxH78VlygSMf4W95AogOyuaBaUbJSYiqVWiSXMd3k6BCkq+HAOVlGlyvtObJmabklZqi2VBUYdDGysKseEdVeLZ+zOMxUL4pcrRNysgiSEM3wHigpvaDfzy+Qmar7kgtFswRqgdr41vIRfza2FoYOyVg4OokqUYjBwpjqUNUufxEDUFr1dbK5vruZnv/Q+fDPf/nw5yhZkUmVcAD6uLQocNxv6ufHZX9Qfnwuv922X77JL8++mPaufN11pYoaMd4biw/JbrbVanUDWVMWCfXQiNWSdE/VBGgKaEcuim2FMiHCIylIoIkR45vA8IhdiFXxbtg0vCrZCBgPImQsPyK3Iy9FJoC4nBpIf9KdnPfP6W3VG1w4H/6o3H+Kih1Kq/E4PBn7b16Pz/rU8CDT0Cj6N7TQNk97vSsooFE4cin75O0yKmS2K6QF4LPtfLGicwpaiIhyP3Re7DVbCJbmCnD0qyKJ1rMFyYc4+fDp46frG6qnxPGLp+SqAF/YcDk2fCiI3bDjdAM3CKQfD2QaMlwIxaRsYnh3zgdKjg4pdsJBnc4x1MvT48gI3IYCmcAnU2HiXqnOQLfCAqCrAi6qfa6s0J8ourKEwPxQFdAc+4zsTUMFIgF9gMQDAA3VANB3eYsuCID6ETx2G1NtGAyGvTEK/c1i/PxEIn5BTy10iv1eV3e88Sl8SH3/uHnZHNaxStLp9PJ0cFpcbtHvISq4v82fHx9y1Y9fvaEpw3Q0GEIPbNeD2a6fNgsKWknBDtzOb99NKG0jMmpyCtz5QESUAgYP8XZJYRG3QTUSOgc0h00yJ3PukSDp+Y1VkU0SJgdvWkhiGvYHoQnLj5iFJkhUeXDfK4f2DDgE1g1VDu6WVWUp0LwiepFCXm4pcl2fGgcfR+gjQuE8+T71qjyJhtdEeICBwNWQjcBwo5X0O16cip53OX8BzwpLS77A0OFU98lqX88K1BrFOkPGn8CwILGuqXUjMVw0xnb2oiiZfEYqCVUty120j6vNAR9PLoPkA+wILVnwSOSoAWtkjslF226zeqrX07bTU71ODv8vDrrYe3bP8ofY6anq8MYoJ3ebFAxPPsfsOgck/0UGahySd7Ct2SEvomr3BD+cbsLPy8ni/OrKGZ9VIRWdQMj1avP8/PSX1e5VZzBIEjaAPIkPhOAZLk/eeNhioComk6cXo0aKTOQ0WCxsNTYMFQOWmO06VtXAtDdh4O62K+D/ar3E6nV74WR6wqvx+ZC9SvELugESv1R/gdYwrVgPg/YPCLCQduMKi1yntBUSXd4XX4j5xIohzeYLxegKCYPVxCvwB2JJReegaD3JoPm9Xg9ghgYoSQ8lFNk2cpBIirV3gfO8vthtcQO8CgSM2PbJePhV8Wvb9GarB12KyGB9UXQBiNhfyRxygH4x2HwjbkrsubDGgDjS1WLzWQRIUxZHXIJk3mTBxFEKAGfduPaSomOdeG95AZEkHf9angVilgo/QiqR+PGheEgp4k/p5AOcBDtT40nRrCUFZ3Y/MEe7ZLpPFqg0kDpDSxKkSPMbEBN5KLqW1LOs7hZKN0UhCmYQ/3RcKqUNvaBtT6mgxfdxSlbJfVJGWvZg7mgRmDvaUKl7NjmqmgQQPAIl+oQDJJB5YinJps4RikF71XODabd/TrHrp9s///zxw34TIQFgL/EzQNF1lG+3s/l8M19HKCDjcqOU1WnnvOv04N+J7wKrM6CXYndKETx16p4p3ZRkU1kMcYdkYklHkboUTy3pc+weDFHjAh24ViQIqGcssSPUSqYxvoFiMwob/TpzCzOgpx3OTpCIBs4HZNtOYPpBQbDmWHDzu2wOuqXy6OIK/mLUdS08DhcLU2qREXEm3WDac/vo4hFPIi+A7CELDYO0mNOy6OXhab7keke0uuKRdVJd8GUSrlFuk2e75fJFNzbLBaj/5v5+vpjD0gAa2FNOM5+PQy1BowneALBRloTy6yj8RXmew17QtqjMEym0IJahEpHzp5Ict+0+xfEohQCW/AnaXhe3wPaIUlOl6ZN8OCobpBJUMr4cLzIlOdY19WnqUeYhgQAiPYIJjSp3PhkNefgm1UcnCSF5ckqZppegiFQTeqmMewEQbdj7CvN9c/vp5WUxO6T0P+RQmN3h6NKOqQPMq8f5xrXHpwP3ZNT/zZurp/noH78/LA+htlpFqR7RM6csRrZ93rk8cQeOZi4TJ68WlbKDjZj2+6eTabQ/zF72VJN2rK7ecQ4A8oaafMIRge30FIvLR11/Wb4skKb/2vzrsn0dH1AiE0yQ7Sf8N6g4GnWxdWQTpCco14Gwh6OEzMS3uBkp6y1po7IWkJ9kLD6CH9A9u0GVKUS50U6TPtRzI8CEvSIgoo7VdwEkGOj9bl0UB/zmMczn+ObdUGwCNsJxXHgLtEwgG1Z1LxIpDyZOKUkF0m6H4Jq+Y0d7Hrj0IUyBbK1OowbS1cCeoo3ZbmS0+wQEwgVQFWohsFRSq4SaGnuHsa2cj6v+xB6caauRNIv0eVfgObDYCGACaTHk9NwmwrzAS1mlG8QG7VPjdptOqSxyrA1dPFdVsXMP+3K3yxcv+/v7++nryruo/CFmtl7V8f3z3e1+9uarV0TVBrhTCeqVFrgdjwPYP0VSz6NxtTFkYqEwXFzTI6UjoPzYjpGN4IxiLTCN6Gt98vgdP4w94mSa46D6wE1jBbQUe0kcyksS9hxlvEKKSgIO8Eudp9g9qpEpGeDu8/GOrgdQLfHHEbqLjTiCKS44lpNH4kskTd1S6mjYgTgVZPzc40PsAS/IjvBKQFqKIIVDFfadFRaYy7fJhZTmRxoNi9h71hZpBx1TSPjRhgo+RawPN/ZIO4kZxbRDV2G/SSbyndAZEoCzLHw4SAB079ws4gbeVMwZ38Bb4CIp2eDTybcLTsQ24T95Pd5dzpvQtTBq9P/h85M8yfMI+jEr+OBxnqLTkyYrsgo2IlFFJWkfAhvoS1XnOjmPuDl+cOnkeMDR7LN5pQWNNSioL+AkSgJDgj3eko3sO11r+BZJAfCGh98Un5PsQVGRmT6H1mnmnQX2iat1rQZ8kFPRa9qhhHocT7wmz6B5Vt+m49b09NVkdDnuTuvMzNI/w4dQMw/3wKYgFaDoYyna2u/iZAF9ZOByTv+qDi/ZGRaMKl6jNof+qX+O6MKUTlnhqW1SgBHysNgj7DwOiMVhndhkiTGPJ5APIaupOJ4rKSYjRjqB/rNB7R1R77tTOFQdHyPvSRkISI/smPxou53g6uTcUdqh39vuF7QEJZNJm10HK8+1pQasRYLlUpZEpXevM/SdAJ9flrD8CCbm88Uzpvz+cbZZb58XEeWiwjTXUu/CScIOo/8BksJRxdTxb5dwVTTWmq83FDBwalAMy0HmtvDZ4PVMeH+XQmK/i5AeroMChrwUqgZulPMhK03gIxysbyC9g9ZCs4WiUk4kKyGXBWDCEnIrIOFUDT0VMEFxKDShNJODRKRODywd4VKaOFVhIShlVYEislqFRYqUdSxrYzr5ktDm8cMNZntyMtA6ZANbOus1EIkOdf7NZNQLe99Ozmb3UH4kXsBjYX9gdih8mz9s4bkCZ2M3+qDjvXp1eXI5fE6fbncvZ1m7T4pdJHW5Zd52vbFjjyj089f+Ng4bL3LsklZpnkPWe3x6amRbygzQxgX4c/CfHTpcU2rWaXUJu1KWq/nsp7v4EO1u+v3XcIMQpMARJDsor4fZWKnPmnDUUNBNCStpiDghecgyUB/XcXyrceG/4ISpMIUtQLYFa+eBJ0jakQeoIBBFt8FdxQGwQqwSmrlhV6HRBZu/i1H+rlH8ShMtmBP0rkUGEtPNLnWea3olpHi6qtASmhGkB1AAcSidJeBtVJrDxiR01NLu6FTBSduUqqH3ZWI0p4hOX/dx1HSp3Gz37D05GnpQVehdxPCrnAcyYPxslvnLzAhudK+HXBWAU9CNVFXXfoDUwko2GKwaoID8A6ZUc/KmiC0kDw/Z445IUH/6UC0fs9WLfO7WoHt2tX45UB98VhJInVReRsc8b+zTQejp+X4yDHkH7o1tkJd92m3HSN1dPglh+dGacZCBtfzAhokdJG0gHY5BLDUmyqWBNT4ARQcirmFwqk+1pxmWA32XttcLkZJTkUelS5dmloB7fB5XiDtEaoA8FpVo/Cu6G6lK5XoJiOPAEz6LtcUSSE5C/IVgfqDmL/YVOyqWVSwpt5G8E39BnAstQCpbbCw5dHLrekmUzfUTVM6f8rXcRnlt+QFx0Au6BbkT+hCjrMgTzgKUCbdVinHkOXEZgDwiOEmV4ZjhcaBNwKSUWwPpeURgNSobunjK9wqn84uvPD4Yr3H8ap4fIE1SgVvMYwgDJN8sAQQFtux5gc0pM6LrKELiRX6SQJBQEyzrQXbyDLS4hc/EfrEzTotOE210oxdAHcLSIsu2bbWjkSWcm2hbiYhbD1ghP7FS4ivpQAHxoA47RUKTOuo58ptZ/FFprn1r1PGnvj321IFrUmbfD126+U1DnwSWxOgsFP4QWpwVtgcQ50QIFNwA2JVPH39omhzakHCRdqMlfZHo8XqgZ978X9q/t/ijLH97Rnf0U64XkS6VC+cnl3V9KjDX5pNQ8tOxKfo7mmyBy7zZcY/4VfhHfmG32ExpVEzfCFCJNJLnJzouYj44eYwvMTqlIWiVkPPRyJXF46iy0YjEqWfsd06xnV1vguiD/QAeHouF6EQNdw98CU174NldW3Nx83mJCJma/RmN7ullwo+XBc1zyQOjLob6Zz3YYETqIlpnW1GAUE1Ppnq13lCqiUqUswznLOUgstWoVgW7SNrJd2jaFHYxT2B/9p0dl1wvL4KFIYIEHwnfQ55WNg25FttPUXfgEAlB5EFzcRBInmEFQWKC+SVEwqMf+1+Bq2AlcSvSrgMFndW20hyPZAlABHRRZdJjjz+ha+H/+D/83z/98ON//o//YUMtzALyKSYlQNcR5FlKgCBLWrFQ0/3q7C0B6Dzag5JZJniotn+g5CzDPpqzTeusBuNZ1gb9wdnbr1+TJ9nFhro5PF8vbOvMHuaDd8POyaveV77anZm9zeElOcwg3l0fJFmi/xufXanKuClc7lzY6Xkdc7OYf/j5L5OA+Gy8je+NN3WaLtFEP2xuqDOkjzdqu7rwqrxHitgqVRrlFDX4BssPliE9CxI1nBRmaxS6fVaL3YZrtwEggtQkukKFBZplU7hULDjnhZWVTA3XUuWLrdF4tIu2tPZEmP/p0+1y9UxrHeBAnR96CWoBuJ3q9ulxHxfID3DPXN9DTKWdTgEIOg5SDCrleAB+zgFJB1hPif7BNDChFYToZBB2w06aqI8vDxty1vinkgbrtN2H/5XkM636kLpBtyOjoz5xM6uWKPYdNH5yoGznAD+QJXCndKeHiGh9PA3xE/ocUVq0NzN6QdTRYz2/38bbPR8ZmADBQQ6O5V+z2DQ776Mw8S76Y671DtprV5uhTsk2MCEDk9B8FOsiXVmOETpZXCwgxAQWC3wEkGP5ACCqRiXWLt3ra5UqcQi2OCYpTzI53x7wQo1GiYRTD4KxQWViS2Nku5Jur4AXbB+paEpKcrqCA6LpxUOAz+ojQQUPYU0k+8wlwHBz5zADRygl5vaX/xMDio2XEBtiV37HpSTRg3KWUMDyhDqm906cSgNm+GJAErCJYi5sI+hR1JnyquwOq4oUGHRG5Q2vKS756Dww+iLDEMJJ3AY3mV+lAonThihTlFeR7IjAVNkXiRhQesFlHy0W+PVoxyQUwF3w7QIUkbX9F2nREdKKNaJPEOrCPe3W03w3f3lMDpSb0meOTiXYWQtZqCTq2GapR6XbExiWw7KryOZg7Xl1FM0pkQO5z3ytgohxBuko3HVs9Pg+mg+UcCBiKBFMDJeOLhdD5hHU4IJiF68W64+a+pGBCEEwtJWBpsA5jULn8jR9Px68Gg+QxvoBLceI1nBvUsShT7o95fJrjglVpYPAPUQvSJuFFGHTIJPRBW1h9qnTU37+8QfSqFCCV9N3KGXIacDXsjuGTrQoxB3+DcEWKFbQtNhLLDBm/2g5BZMdfQ+/Hv/B0gmbzs1lqenFSM07bdjpMEErKxIFYuAa2ByegoAVVpn6M2oLAFNH8hIeEHDIlnIdIV0Ker9wAlvb7tJL1CEH4LPI+OJdtCIn97JgEAkqnpfHl+Wa7i1Af16HntJYT82mQng8HIYBhxkVQAFZBEUbUfEm2jZpaif3BOKXb2DLWTJETsSkABMqjR307IgHqhRoiptWadyNzUcYRG8f/JpMA6Fpg7S7QOhKDMD3YYxxDMIXiKqZ50cNxTtyfEhGcluoQheOn/XiAqDnw3ngj1kHeQ2LL+JMcCq4czgAklzG3/2rfz2h97LjvEitxePmcJ9nqzgplrtYq8w2kmtftesw7DmdzqRLjwi/qbtNkVLut3Db9fqwfX4ZuT2Yr3/+5z+4A2sycn/71TdmVXz88N3s/vH5+ju4nWlw0X8XTEenSF4smqasrE+3FJRuUF56Lpuwu7jqdYNTitoh+sPJ+aQHtHefnz/y3Ccnl4/Plu9S76ytDmh2dsmWrAZgHJ19oaoz6Umi1yhHUFZmyryq8BNxRR1tHcTJiAYgSrdLGpDsIKl/6uWk8eTRAQAihQGpPDAoRgHNB+BUdonEE2VddPBqSCnZQbc7HJ7QQh9143b/RJJnt1lAQ+02sGL72XYDerCDAEer8DgtHWLwR/VGSQEXnAQiGk4yAkl056ADCr/o4qzSb8Glx25fIYsAQiNRQeylMr/F5NsoUkNcD1uFN8PQ8Eiy21j1XKXgDhJUZDTEcmVqWKWtII90kEfTyS7eYI9Tl2bRqGKRiFUtEGy3SKUxKPG+BNWAbqFc4lxxlmxw4neM7hSwPpGiWWXDvI+KXgHl/qRnW6EgCgwLFg+3heHiyoCD+ffolVBGS2Ap7L/p8hwwXLs9RdFSfbrdbh5vH77/+c+UegzGY6T/l2fGyficlmPQCCTKKT0lhJXPAiSBZ6VxY3JAykWJpbWXPB50nksGkiS6+GUB32INxBCIVRZsLbaeP2GzJL2GVRYfAN/C2tDlSuw8Lg9pKf1HC/QaYHaQNQwhwR7fLjXxZJm5GKyvhATMOuDd4KAoHhArDcvHAtLp5viOv7ge8RSYo188jrREgnnYb9Eoim7lmF2gMInb5FJzzqEigOG15Xs4GMd/j16AEO9IqIk9OPpPUUPwG4IhBpMc4s1mB+q8j9OIijLD69FRR1hhqmcR+5UZ1jcrMe8rwyFegANRu32Pmk4uBD1Hm1SH3oiz9SHiL5O8uz3Y454zCd2eUg11v0vgJM8CnWS7vc5ZCVujl/vysDos8mIWIyOv91k9rxDHHzytHM3WT+cnv/qy/e358MqXKQ4EMEcXiuOuampXTwaXcfwrS4T1W5qu4RFpfYLZhUFFSUEuAdwZJzulZQLTx7aIqGCFEuiH0D6Xnt9HM+06YH/pZotZO+bq4UkkgJLICLeLpz5KpSQEZC3l59GsanQhFOUiQA7xEk1ZmF/EaWVfJDHFEhPjpyJKPkjra14MTFPSxiECZiQ7Iq7SYPrGjgyeZBJJtGBhORDSNRIISTsnRr48PiFWesQBLOhORN0XXJ2gH6TIOgMYum8uX11Op4MevdgrqitIEaATIkBjJ4/nShCMRMp8z/GpsT9QeeiAieGYZEJHZAUjjbqHIwDo9NgUyduhbARCkDaD1cG845BQvZi0/JDYkWNry20AcYhX4dyxJ0jrGOQA1OENc74XPEOoJjX8YGquAZaNSkAJ3cikGZwkYhZCKZRPCn3k3n79m2lT393/9IffLdFozOlUtt0JAwvBxGsQJ40n2ul52EUUc6a0vaZYB+YgWgyqdczGkyqq8+THP12XTvFXX18Eof56MjLK1yXlmSlFgNkWwX+x7kFcDvym6lXu8PpFy7bl8xKAQEVp+rQuz84BuaEUUifzizFZ2/l6+32U1kb3q9nswbMik9IzujyhVFTIloiyqdJyJj0YyGcCaUwl/fqLu028wqZQV2RYU6LdNB1VLr2TcQBYf+wYGyHlo3LxSRr8YvGpkAS9g0PLDJTFzhFncW05M4LpWigLhppN1v2hnm9qJ1BteqBul7N9lEaUEfeZKKBrWRa3aYsTCeBiDhEZNh6PxuxiqEoK4dqI24iqvbQQPFJInZjQCJTTRlxaLg09lYOAtLKb06BXU6jAL82WfgJCi2Ac6BFWKWQ5UAADElEJYoPFJGeYYkZ+8DsR+WbLVAdB+yZiZAAV9ybZ8U40a5QjJDQLDcgJxrHqwHLCmX3dC3iYPCXX3dLsnoemhobHz7V4EZ6dHpzN1tqZVCTBLbISwoQIaqZcnvvDonGuWUNcA1ktdBc5CrSafkUldQb3s8fvf/7p4e5mm22DHnW/edi1PWfoOiSl3PyA77e4SHw1v0BYItxZRIvdbiV2sI4onUP9NeiPRR7BrZSiNPFEvJdYfrEEQHCxCBhw+RPxVDgDYY0AznxYcZvYETpLkwi00UoXwoKL75QmPQg8IZgpLCRYkC/C12ExKCsBS0v/GtThOBOJbngLABefnrTakbuX98SV8iI0lUIjKaoE5AZEoUSejt/rDwJMFH7i6Kd4AX6HS5P8A1yJbKcYh1+cmfgw+RcRaAvUBwIdfB/cn/RYcsop0LYTEyNN5vlzZigkLD3mTNkekodyT7BLNsxOWwwfQhLkIHSngFwDwzKrAnbnGXVwam1SO0r8E5C5JEJQNnINVFFRh3R4CN/CSVQIeFL9Zfsn1dpVZm44kQqCx2LPP1/f3QYff35ZLH/7/u++ff0V5ZnYA9aBxePQGsCPiymj4bpeH6uaFtF2v5H+K0rREx63hUlGW4/hTfIN+Z3dYUVykK4KuMlGOccqY/mFkMCSy6qKmWQHJdlL6AR5Lyj/qDyTwj1ZxuPaSaR3jLf4XQMe5nswsvI/cgZsthBMgJdTXfpFUwZPMUHyIpV6NB2kho5ZVauYurSCflwZrxP2JpxePBPRucivyni1eXp+ZlLZ/eebh6en1WxONpNWVbKtkg+RkrHw6vWbX3377RUCfprMV/Q3irrD2fNy7s6XmAaIOYkS8QVEHyQ5IciQDKFTQnzDmcbM2PQOo1+qKImpu5HgAKYPoooWhgB92rRSgkAujOkLvKvgQ9J8JfVychdI/IKOwcCcTbgO6FVa83B1wT+N+GJN2BvgA9hYogEpPZFaRlRNqF+oe6M1D8cdy2HWVuhdjCfMu+v3PEYrzT4g8F2AXnki8S64eNpsbFGjknpsqRZsipVl14FhXZ6dmdITmmgXVq5Y7Wd7JJLlDH1VSPE03aCCEY1DKV5fx48f7rLt7lbUPR6pJfpiJ4+3yySZkZolXX57Gw/G67IllIN/L5nYETqIQkXu8t2P1z/8+H1oGlfnV47bw19SykiqeF/sKiOldUlnQKPm6IO1Ir5JlBVPTpNijheekDyXZXS37SPaJyvsc88lasJYiA2h4S1YSPLvmFgixfWc7y37PeQ+WFrOnJw0XDMQg8idAVTIXeuUarMipJ/onlBk3e21wxH9eD1aPFLg7vRpUAH9Ru0C60Z7NKxzSVem55vN5pHGIRSjk0OH8uRxAvxNHmuMK6PmBuqnthopD3OpiebC0OVTso+S+sMoiGfHFtEm97DabBzdop0QElipfQGPo74gGoLTwCACBqAz8YoYHyz1EWYQZCKWllZuYtsEvnOL4DK4GHQmojlpreVgKDoJMMsPFoHjCBxKMOXpx3jVbk4yDNzZ6RkpGk6uqrtY0gRZGLNcVituC+PXEGBwoiyzsl36XOGQYcUy/FX3fKzYVCS089n1fjfbLh9OT64GY+okh5L2VbXxCQM3Q/rEbXar25f7x+XTYvtEt4DHtYf64DRlYNBXA5yv0aeJM2Q8IJsrxNXmmguxwjaKycDQSN5cAKO4B447Ubck7fkffmCbMb58KFwEAJ+YmXgYG5XUe7QwXBIShtI6QTwcYRJEQbpNDqw4VSz0i+YSQdog0pcm+PA2LDJrjNRHbjSYC24Jo4yjppx7x2mejE/oy08LE55EHvCXHxw7LpTI7GUX+FP+CiMlH0KALUeTOT1os7vF4IR4go5YUBBQYvh8UEVIk3Xm1g2bBZVuTE3Rh91BsNs9LtYPsHuI0oG8ede3Sfm6Q6AE5S8Wx4agCpU4UZ1LJools6XHHrCTOy1MpxpYUKw9UjKQEVTE06cjNT7q+txzsTOKR4ZBaZ4/Iv9Pfv8nXAKEZP7m/P0oHEJ5cHv4BAB1wuRhZ2hfufQ4ny8Wvjkmj8FDIsSCPnDoP1bmWC2uE+P7qFaU1k3kHsSXxaZ6sA3aQnBRmTAkswjBEfhvlk0iOXrgsHVHB83VFZ2DQLejOwYIEP2Ji5YV5MWFFfkvZ0HaX8jqQo4DwfF2yN2oknFQoOSL7exp9riNlyTam5rpexozpEZBdxL26epIlRkK3OX6eT5/vL9/YNro/T0FxYhRiHbxObJ3GFLTdej49o5+z19+fTk5w2DzMIc0YiRhb7CcjLaweTwu9Y8qQEIo3YQqKHKJNV0ZmArCOArYNGElDKuLUFxGrgHSOCkQRAB2FONyVmQSJ/N4pGJfuuppKfcYmkf8pGRE+GBsJ0Ekw90kXoJ/Y3wPDkeofpaGcIHjJVligWhYBFlW6YfBKWTZsByECSRJsDJ042iUoRsyvpImrLvEenj5JHijolqE4ZlKxrlbPNHnk9QKUBKAZQbcJa1Y0cxMxfNUdvO8eQLurxaW/ZHGuAzHUOQEE2Otv1s+PMphQdLLxSP3YKqz9Xb3NNfbiKJ2WgU2zV7RbkBV7GpV7dU2QWmDJHnUvVhuDy/PD7Sgyfb992/eTqZvKeuZZS/Pi59ftvegKcPG1S6TaKm1mR7mflfpduB26IG1nAQgIpSRLqFyd3DSyQVDox3gWdgAZE90NuHN0e3AV+K0iVjFQ0o7FxaWCyumEsUsBEV5yLso8V7/KpqcMYfx+eWuqunJ37+4eAXBhuTNahchrLqWNtZeMTORBSFjzZQDROLLnvaXroo0heDXp3U7Jx4hGckkoAHeRWrOsBeYHo6u8I9wLzaiW+hFiFF2lioOIG1ympGHWq42UEx8DfuJEadWGc0Ppxw3TA+bvGamlWDj43wKAVAEjI1L00gYdZGpwAdyceSmyDxYwA7dscrdNjM+LLkmrAzELAIeFGdzM75pnwbdD2/fvf3i3RfoKGi55fgDJgjRD2VFadx2Q/MpXCRd0HqwlgyDabINmQQUcrytb7/59fsyHiVwdtsl3dAPP64WszuiSJH5U4UT+ueXZ2ghKEp+fOHH7MCkjXq32C8NpaAk78vX769nXw8Gv5r2L79+8zrQSCQwngcHK+aTQ32EhkdjetRfHs0AU9xgSphaIzpB0JQDh44zBQYRaOD/8IvUqgD+mJnFqK3dHloIlArHydfS/f6Qbxf7FY6WQA3vRItOJjXUSqegoIQ2B1yeAg6RIJKcHlWPERw6BhVeDUdArptIfLvbdTl1JHlZbsnWiI5IlCz8K1dP9ELiso7Gn40iqDlaMKwWRIDGWCTTCgN/FPir7fY5STcZtc2qjJajC1MnfCMTbomX9P1id2u437XzHzbRRy7oJt057qDd1YGTdGkbwovSqSXZUYTFNNMN3diYVFARMmRMv4AUpV+bzGmRS2lk9nkWMJ0VDqiNN0zF2VMnwxcFJw39tjaLNj+8PD3+fSisdauffsvDeMQt4n3JUbUcaVo3SBMNrxdtwTzJdrtqYuLvPWL5rNlTEkNUx1xhPrt4YBoatcu6fMyYFAc93qWavUMKgE0hX48/ZlE4WmK0CPa5FUfbSwSAOpfKDfEBEoLIQcdt87f4gGOoJhhBwD/2TvC//AriI7fAxkkqiE7sqMzX8+1+iXsh04TEZdQbT7sMvO1w/FFH7A4LJjXdP9xh+h/v17PnHc6DIm5h84Q2kahxOBz+6utf/eab33z5/puT8YTGYzwB+rHJNJ5ILXqCOEKINvkA1CTRQJdc4gY6abGbR+WO3u+sO30r6J4XMP+vQyeskJ6BfA44Uew7pCfmXeRSekXzYuyTDDTgemGOgSXIe/hzsAh/eSynx1swJA3HyfWnB2jL6F0k/TS1bpEN4NWkuFXSdzgVQRpH3yG4STO29A7FCEjbLJ3SwvPLq7DTH51dfvfT7x8+f79d3zHvXHKRRf1yt777QMsqXkBagtLIn7DZp1kKoTsVQDgoAgWNXt8ccOZ5khmnro8doqg1avU58kkeng4Zpu1nCk1xW+a3e7bfatGR6vZJffdF5oDhlRwL1Gual9FuTd3b1elrRrK9f/2b3/76v/r1V39Nse7NzZ3xB3f/5+zxEer4wAbVNOmmbihUK7p7DrXRhAHxcglR2xvmEzWvNFvpR1xyimap7a6Bc+hwkSDD6tHmHkwG60uGnspwejCRaIEjkoNFAvZYNUyVPglMCuQ4V1QOo/ZB2Ea/w35IZ006Z49eZo8Uf2TZkgYScRNLm44KqiRnSFlodU7OMZKTLlIuueQ0NK0se+8w/SijUzJd/ODQkAeRwaFaA/6B2hYTWTKVNYSFEhsaMglAOHHTgxUBFpAjAkKSWNtH2W59IN6UgXm0sohJQ8kNA5fCcFPKJYPO8pLGYmL9SFuzuCJzArLSjYX8BAyUwqdGts+BQ3+t24UXFgH9r/gOyu7UGybQfP/jHzu9kGSGBi60PWaNo7cgIcEeIcEPIHFDssi8IExoIipmgNxggMcLNGQDlGn6kPzZcj97enh8gD4SWnPQ79w9haQEZHhKTEe1zO6ptRM3UEG0mNooh+WHn70/MjfwbHD545vX7159Oxm8G4/OW9Pp+wyVZfActlWaPhHVcNsIpcjmxcl6tZhTC4YAj0oZ0UohoKFZGA3v2DQ0WGijqLTiEPPsJFJo7bgplgsWpY6L3S5d3c/vqY6j5/Wbs7MPg/67d9+Evfe9yXlAcyfTw8MY5E7LdHGIbh9uqKLvD0Zis2BU6Y8PObie+VCLuGhUhiSkW4PzyWXBzh+NkpglyRBIdhAPzYGXk8atBMVi6CGXWeEsh8txcNUMxE7TLd6admGcAeZ3Wp2gw9Y3CW12wGJorYv8/mFF+qS2XDBgZRaLjrOjezXx2oH6OnhmJ4uPqnmaatDHZtQ7pxUdMzhpF8wVIJlPCUHPnlz239dFlCyWz4tlQF/RfguXeHXWHQY0vmGC51zR7vL8PMsmMBUInsTF4VohIbBF9AYmgO3TqcQlzYiDaXP1kUq1FY1+N2m1ysqtjCMqD4RTtrPbdvKkX+dDHhhUSxx68OmdSaCQw6aCiiTUw1lQ88WJ5eRir6RdvcXIoD7aByA+ajN5dywgrvWXu3p0qzyTtKOSPMvR28O8SbpYWq5IxlW6EqG8O+CaqbLvd5jGwBD5kAdGwRPtmdXw+Pj8cH1NvfNys4roYn70cZIURE4A+YOI/Kv37377669/9e1Xr15dSdN8Eq+KdAHoldWgN5aadmSs5GoBy9TH00VIRkjvT6ZPj4uH2fbxUGwp+aIHVccJug5QZ8C30rYVe8MhAEzwaY62B4ldglwAm4vcALMB0URVOsyPFKuotIDDH3IJpNs8f8dkOPoBUUYsam0jY4CTQhMOkiPHJi74RpTjoms+NouF88DdGFmy9aAdQLyyicYpDZDpGfbF1b/9N9/c3Xz+8OG725uPFP49PixJa5M9RzVJBaxYELQ4jJgkYySpz+qoDCM+YvY5HpceSyl7QaO/UrcZbYot7ara+an37t303at3njdBXwLlzhgfxvqSXLft4cWrs3Go9LvwD2xEG+2b+7vF7AngNR1RgmzQrfT0gkHfPQg7Y1p3zp77L8+jer/Zix2kBxdeUzri0EFzOAzOz/vdvlSA4fd2NCLNRba1nEu61rD75P4pvBmOh6RxZBnEzmPxseR9Cqnxs+i/2GlpC0GxXGukC8oVsJU0lvDJIIDfKUEBKsTDBMQx6NDH6YTJILvo+WWev0TazTxlDjKzVbCgPEHPhjTqjMNhNxwyYxreQN+ndI6icImiB2wQoIhTImkqfkhaEK2MiH24QoB2WW7RnBkc1ctXAQCHel28PegSjMMxg/1Enban13QZ7/dbCqAwzviGDtPNLQeCSyYbky3AAwixzevxVoS69MqGfxd4Q9JkqyUoUCGwICUJ6RiMhkfH9zN+G7D/4/UtxwY1EAJuKEqpyeL64cd4ZN3lhXUtYcQtjXkk9aZaJUIFoD7wKiSkJT982KGNo2drBlCABoXOKRnm3B2H06sTs+tPT7gAzALB5UVpM9gjvZU5uFoEi7W+u3m5/u7zv399dTXqvWF4XH9wOu5dXp1d9PkR0neqJ33/KSKulcV8++HTP3/89ONss2TQdH846lGH5jNmh/MzCMR/N0lEtRuKW/px0Ls7NPt2CoUXJ5toS5v+zwwA+vj9Zr/Ar/6FQUXd4N2Xt5eXy8nZxdnJdOR2DHrZZ9EOgjze3j3fozt59eYL5l3jXfMkRlMSYajEeBEfrIktMNk0RGbmA4oD0sMYeJGpii5DNBwYN4ye3HZAD6lF/KEQ3cIyM3MNUbvlhPsoAuVUUK9qByaWa0+2AJkZhHDhnlbBNPImz2tOQKLvmPCMQdRp1gNMZFa3NRhDDgl9XZNwuifFv7JnUIlJetUxtw4dj00PCQRmimaYFh5E7SiFn25RAW9oumM7A0YuDYdt3VPpwws7VLT3UTIBO4LPpdcLWBznho0RqpniG6g9oLxIRbE0wEDp67GsnqDc02ZDT7eYDEFCan/bidMhR7BkzGqUoDTtIQCBCqF+BIYFL4hHwZEcYjrQwYIAaRp6RlOYT/RE08aj/FMaajUAZaEEJbFHoIUHBagjijpGAdggAeLkV6HfJcsn9UD00EqYrG0HXhfBP41biIdo4Kg1FHfNV9R5Pf306e72hgaslKxKq2nxyqIvQFkgZgJx4OXrq7PTixMsSK/r+LC9/FDckhb/HEK8sjikXwgoIV3xYDUlOHsO4WA17s9G97PPq+iBW4f8M6ChFCwGOkQtgM6QUi4UuyJfwi/TuJVwF/og5TFoucm8cT5cjhAMMRshN3JCzJ5OQwhpeK/FNs8IkE0qQi5u9w7987ElITJxklScOBl/DFABBGLPAUAGmjN6bgKQpOSMJtI5T0P7cuvy9PJicvb1229vb2/unp7Xy/39E/2M1in6s2oL6UnR9nqJ3iY5e33y7t0XhDBwGqskIV1JK9yOpRNFxkR9eQV/hsElPNjMFz+kFEnsTiZvEd3KfNmKLrMwYxEjgZJpbjIZ0BP9Bo4EU6V3Kp+Qpppt67Sya5L1iw9PHx//jH/cr5PZ8kXz0vNv+lVD01BRq9ItDLUJ5xLCn3GjVFLT7qYsN/TTRftO6MTmkCapalIWEHHOZH96dn6Kl4C2xqICxXxq3PoTisByl5LuMHNyMlExWAt7T5YY99vUMgmIOIK5Bitlt8Pwri9OrqZnZ0yNmL/YHEHSq8w6+Px8vVkzaiMhlmOME5Nfi0DeVRoIy4wDJ8+gJthwUTscw1gkuAT32CYqxyShSkaY6wOIl8x1Q+mLd3J+dnJ6AjhC8QbBDVcFn0QtBOJ5+iWi4iLu3jG6jLYWsPBxxoAUhpFiopGWExQI7wPIF1MDUMayE6IgHWA0Q0LYvkV0iIZEIZNdxLS9xZ9QOUbHJT4QknypiyVTheVB1UGv05p3oRcsl69omNyUkPQDUpDjRIGEQpVKvIoJCKb1ZBBY8ci0C6AWS4YlUG6NkWAxiYrhnDtDt08bGop34MZCpgaNGn2CtULmApmDt6OhRUNb1Hxz2M3/9NPDnGlottWje09nQs8lRrZenry6nLwZd8ZEpLv94rvPv//dP/39p+uPWVx0e4PhBAc9HuHsZV6uf8yASwrBIF0vzTkwUJAzVN1muQla3tw9/ryZ31IEEfgWNR9ZfVj8/X+4/unWZSzecHA+GKP3AnFh0Gbr9QtJL05jHJ+dXXBpd9slyRYqRzfrFzJgMpGG9DMa4ZBJRzRco8J+yHxQaX8Bs42JkIY2KCpxnxIT4PulOAx6SAwYyJqqMpy85wU9wm4sICYeIhgaHA/KuaEqOLNOMvP1ynnqOuutGSVrkr7002bSp0N7I6akOQ4z7OjCzCRIepkxiZke6LPl7HHTfRyF50QTDt2mOj206FxSagg2uyXohzNPiBInLa0vaYZN3SjGNaR4g/ZB5kul3NA6kWyP3Y5opIQIAU00xMMvHwpmiyuMt+t26RFLk3TD7drUFPrL0F4F2mpGFwWkOYctZUooqsu1t5jPn3vdUa83Dt1BvzcKwh4KJUwoFKWUcu8Yao8bQF4VVqcI+UmvEPWRHIOPERaIRQNDAe+5RzDcR+pNuBLulRxoYZWRvIOzuAR4OmY+lpQBjQZ0KRiLiDMMMN80e1isn2/ubz9fE/LOmCnESoozPha/AbTEjNO9B6yB2J0x36MhsAJTiTcX/l24GYnh2EDBcGwvH0Bkp+yv/IMAEvcF70kDo1yhjdNmsd1Qp8uHkDIvdLHUnpJyOnYjlqIymeYuBdmiD8Jg0WucOyfSawwMc4xTUyBXZuq0dcBYhCi6SXnLDeRLZXDUDreRqOlR8MjEgpKuGEelFRMaEJ9iBRDKNwZVhLtSnZhmuc5mjy+MzoE5Q+vFApENhT28ePPVxbuvqKXGsFIRDVYCxVE98i//8p//13///6Hz9K9+/ev/w3/9352P3s6W0Trf07HWtvLQpQJ289P19QJYtaHV295mwLqpc/zubvY/fPfHA5dbzwzGx4qmnElR9R/vdxcT5inijDSEBAjwIechPwhTShRQHjMG+xAjylx6yRLfa47qT5w+lWkUiROb2wzwAfzYjC5/fkTBtQ4UPpYGPTJfUs6FIwHoAsvhZOi4AJbvjif8MyLcls4ryEoJjhSrH3RPxsPpmDJWF3ckNvMoMKBNKGYDwDnyB6ykj3QtULd7SkRuzqdn8GbIyMPhhEx6MJ6Ulgl+RQRN5oi4hCYSfrfvhj2sHDOBaSnRqmQ+YYxB0PCK5GsV5Bykbwn2KBs7anYNnbyQzGol84o2jNQvmUH4DhXLEgy6nHXEMTgA9AQQNf3+kHJK+hQRAcCC7OM9KMQLaO4w5FU4mNwTLjH3RipVJJDkUMECNWBzOq2vlsuNjLmg6TutgGUwHjTA7e3nl9kT3cVxYSQVv/ryy/fvvu3ZQ7A9XTKhd9MItRjJcLSfqCnwSjRMZQQZH/qIKEUxR4aID8g1kOvASSXjDqyTuL5BnI0WI0r+Enu9eRdb1aOAV2VsgdChHIym7tDhJ9Q7DF+V5R4lhfrwkDxtlrdP15vV7ePDR2OObXLGQef1yfmbk8vR4JLuEq6ZTKftfJOwO6v76w93qkuJkcjNpck+uhWeCGwKzKTVG/+B1MSJwRNgtwrCNV/rvZ3yhPg85hNSYfVwN8+TW804PD0+bee2T5cKcfPlch0RGdKtnCDq/sMNVzPPD8B6hHzH+QUyCAe3RhjkIiXunpxMzs8Pb9SzS0cQNeZJwDPyiWMygGtHuxLRDop0hD/CjomVQ/rHXRwwlgQVDOcTzs3xGBuHnhCW0Rs6w9q7ijrL3WDd1k9bKphTel5JE6dBt9/3+4E1ZAPoHhbp7UFZo8jaRazNcnX3fDJ6DvwhzRKhsEwFGTFwbDOn8SfSPfqZx1pUN9KZOG26HRTUJLSYNrjYGQbTSR37JXRfhcGrfnnh0xvcIGkJH4Pvl+QwWXOdt6SbEqwV6JoOupOzyer9Kc1i5k8z3M9mgWVHS88Ai906XlrrsBudTssJ4gChdqQVI8cVlS3dnLbbNTOIGPhDFTExlLRvCTuwQ7hMvCAhFMaeikkoaZ6AQ4dRBqmLM8ChygCokgi4wGjBj6YShFIgzOCaqyn6zeGA7gZ8O02Bd/PHl/vru7v7hxdyBJjbo66YZcY7sx8Sl/P/IuJHtpTT74oVg2Yn+cyBYtMpb0Zww9FiYzm8CH6EoJRrJwQ8hKro2MKyHQyK4QHJw6c9DRCYuZAduIbAo2JQKIPK8voIqxjxyzni0pIC5DQx2I1AsDXDRl8zTpoTQuE4GfOC6gHpmqggBOcRJHjHmMI84w+husSsxUz2sXWZoYZYSLWRRsBJcAWOmjeOVHfUhWbwx2GL+I+e4/TUkGmFabVZUO6BHpsvRCrEqjteB+B6cnnpW/42IpF+Mx6OFwvy26h1Mn1kj3pnDpIzlOluEng8XABmrusH3zWayZDE36Q/TrN6sYrun5afn++ZPgG2ROGNxplIcEaSfN6sVp1h38VhkZUNfOZQk7GFwjSzlsmkSockoEdpKsVqXB46N4CCJUIj8CGiwbfLoNzOYL/X07KlJ8yrVxc/fnBW64/kLJ9e8CmxfH6CBAygA4A9IPONY8ZAQ3dIWE45CNE3bZN7yChpj2u5FJnw4TlRNNrk10Gvc3444cqSR6In1Gq1hgN33T62gBiWQqeg07V8KJ++FPNR5c0wAOptTifjMWcNtRiNT4RKwUpRb7ItW2pNEA7vUfVU9NYTeTWFLGaBJYIZxWkVbpMzXY+IVUsRO8GxVwBCdDpQEzyUYeQYEWQDHHrA7HDUwd/S4NSPGMhoQQFBw0l7I7IHHZ/zBxKBcCCrhv+XnwgzkjR8oauwa8yET2cZA+YUh12Sd6NR/+am90gFeHZg3NObd7/6u7/7b15NmHIHfUzmPaNf9owS+RmtsYCNEelT0vWL5RMSCNwP0TxTXxDGEOGRLiCc5bbQYgg5KscKjCTRK3Vttkc2hWZ6Ocm2AoVrrjLITAcTVKOOO5rYvbEV0p/z9GIwOb+8pHbCuno3JEXExyHQ2T5t+byPi+920aezyaury69o5PLrv/n1+Tfnn26vP3++vr9+hEdYLZkQtsoTBsOJ3ge0ihfglog+VjMRrU2mo1evvzx/815iKrVebV/mm4eEnrw0LrzoBIr76vI9JYoVRvQhgvkcdkdAvgW6Qgac6j41tav5cpk9wQylOj44g4UDBuK1Q0Y3uJ2T09fJO1rwBRSaDroEBPhC0CvnGBrjCF1JMKLrE+ck+iYMHAwAegR6bcHNQKqwz5QokDNCU5lmB6S5dBLuOl0lOIvp51vcl0rKZaoX9JIxCcWJEruk2+oDhF0IDtdG1I3bLZO34FTwbj4qW/yKKJ1gleioLF4QBp4iYghmZ3swKzqg0YM/SkIUGXwhwSylJ2bSZteOPRwF7y5Of22gpdLOK3us4RepMOMMiREkx4PHh642wW0O8KeHDaC/1vbqdE1B5Xz2sFo/b3Yvh3idxQcYOYhOYDSmUtgW8pQi9RJmRSRAOBT+iJcDs2L1Mery5/KXmGWsrXBAmHtsPVQk38qXSOmi6GSIe4lisS/kfmllSojG7yn5PhuNz0eTAdO+FJvwnrjn6ebu5gNdbx4YSIc0g5cGzguOF4YUBlbegCfDTKBup4vwYrUIewNQhEQFFt3DSj47rKz4HJyhUKSYfswn1BgyZ8gHNlvSPjwYEjWyLxS/UFYcAZuJ/Bm+SskkFYhSuN3HdUpRNAQBoE9HGOhadUdlzqbNHq7Q5wqqggFkUrAJdKXpAMiOYNImEsOaJTWGNtvnVBIl0L4MXElIM/LGrAslR5KXgjQRJYUxGtCVbFceNsgGXl2OoLqhBvaRvVitIZW32f7pEe7nGSt7/vbtaDQ655/ukHNG8d7p+RWNcPhcCBBeljNK4LFiZBwsv4p3dQHDkzNykoUsUA9N+6PT3imTD5q3RpRl8/3yeTX//sNfbp5uCrOki0uv1wF2E5GxhMjwOMVxvaE3JSeBuVASxjUxJrkTpkxZEfqThqksM9dZaLIm0OkGSjM8OjCckZS0Ec77GrVnr7Vvyc11TladZzpT7OjbxiUjMdjrd4fjEYV3T6C6OUV+C8YRStEu/m9PszfyJ+DCFgrTdEgbWL7o3FUSoAQBgPEdScrNhlklyxVJT208pt44GEI4jAZJVdzcfVzNXqo0IyvBT2qPC5Gl0B+Xc9DuDjg2Qj1AE6eb40X3bZglLhgY8JgUIC9NdSINBuQ+0LBfutlx5AlGKEynNykkDreWbFiA12EAc4eWP9xwvCAFZsku285Wc+rI+BqKPODA8Wbas9QJgYZoq8a3cxig4elojWZhLT+Wi8UTHCiglXYt4/AMZ2KQA+kMh+PH+Wp5FOCNqpxmleN+78wMLKR+VUh96OXFqwjNHOMbCbuG3fHTQwdQQ6np+Pz1YHyBXp2ipuVitl0sCiZZ0nGP/njM2rPJhCewMlevvyB2QsMA44MYChYrR0u2nn+8/WH7sn2cGYihNU9/8yZ+fXXgEhK3XL45uzq5pNkEWejlZPO8fkjqiOK5fWvuSBadnQ99YgHr9Zu//vabx8+fbu+Rct89bBb7BpUOpTIQ7Rhf2okwusH1p9OL96+++fbrX339zd+cn7/DY9OD/cP1n3//x//pevVD4iQkEjTQqtX0zgdda/TqldYmzpuzb1y7Dy/DvcenA8kwbLOn+832fp/PSNsuGJ2Byov8ewqnR93nMe4Wi8XFALuAyTAnmAuxceA2LA1Xkh/Qn8y3pK0ITU3IEoQoBMMOd/WYxGt2yp5e14RcmDvfoCpTrJ8MsmM6VE53XprZlkWkpvvDzs6dEkHasotSwRl2zF5pn/RNNXXoqzjs9U46HTh3Wi8QceIHTZ6M+G8X7aQpwJ5BjJ+eZj/Pt9eH+UsSMXUpsX0qXDBvDHehrvFl7e1Aaemw6nlZ6GRkMvfJgVAVLELMqchQAUy0nLQjrU10AKw1OyhfSLUFw0VnRA6IkS2krQAC5E5PR+fwP91wQKKPP8GmwU/SqBH5JlEEMRntpnqdATEVroY3kvbZvIeY6KOrwFCIwIHkr4TV4APJmVaMNaAcPcLawO+TihqgugwGWP/T7gTiG5dCv5dnKlav72+vH1ezNVE5yAjqTdyQbA8pErH/EECEQ9TWQfze3H9mW8htEmdyB2E1yUpI0Qa11rA2bCnmX5LH4pl4GjZJEKpMbAcRCeSjTENmEDPsJM1Wsy0YerdlOaGn2rpPrAy/AbcBWuMzajTIJrqSJJGwhuSv6H6QMsISPXxSx9BsBCVyssAy0vqKjIyHQMAwpBxEmEXYdhqu6tQMIjOpaabP6AP5gCSUmW6G+0AHQy5XGFI6qeVZ4PeBSFjF2QttJg9PT0/IiTGx9CveLV4Y+I4ikKoHoDez5oi50CHf3H3KUursnZNhH+OGAhsfSn8cClz43NL9woMupLUIumMMqLGv9x8fPr7Mfr5+TkhB9UJ9culNJwO2cknL1c0MBpJPjfXlU86f98s5XZ/ZFfJnc+pq6ewPxKBqg4oJXA6NI0NLGibrmFEypwzldf1keR//Oek4aEIbtFbvKVt/jTiKVmdAZ05Y0O1BAluv3iUP93cPj0/z2SxOEnHZrAuPTlsgg4IteCOpFaBMk5YLq8Xq8+cdGhqks/gdMEEcz/n4nFBE3HRDw69AoSyXiyzacvTD0CeV+TJ7kW4fhyLrAi/pnSK7goyHVkh8z+XVBGW+oCbJ0ZYH2lwh6QEAS5KIah6K0skKyj8cK1rnWXMYQkm0QZoQEDvP7AdV+y5JHqpa9kxCSjbL2WKzWPOeHFOodQIE6E/sK2XsAC7YRc4pvQ7gYg544wzZEckACtVSQMSaBEu1Pz29AlTg2BxbG/T83SouNtHnHz4A+O7vb7we1RhMvEDwRisaGLUD01LRfR8iKhUiSgSEeu9Pv/ziW0CMCMK365hZ2Cmez+l1pN0CLD/dI0aj4as37yGZ8ItIzQgq4IcyZtDl8Z9++qefrn94Xj1uN1nEFOQ54+ZuFL+AYng7u6j+dTPpn7GTwVA/7XVTpk/SuoBm8DShWm98bTwJrk7Pv3o7ib883dyfP89f3z49XP/03R820U5zNcSkQyZLXFydjl+fT754e/b+5GTaCQfwcw61UZo+HWeXr27X1tOhlo9FUptRR5v95nL6fhxcXp3TRPgi9CZQrqKzFX6LrNWbLP6GXAxjOA8okdboJrj1zQE+LkKmpYHl4XqlPQ8cG5IkaCT5ZkFiABmsBt5ApNkoNex6h7phvwX7wvhBo+CziAygCgia53NKUDZYSLoIU+ivkGgzdjIORNQmdEzRYgiMPYkZq4DhNWIKg9++OvOcSWsMtG7YjgKbSUVMmu4wOIQONvLOxEE4MgJ2ZjoddlGZoOd+dxNefH74893qp0X2SNcgjA/EB4eHe0ciET4aT+FUTBrqwanTnhmBH3UhqIBwATZFbEBSMPNRhs//U3vBJxNCU6b00FFGqrH58yRIoGEh1SejCbNMQjKzTLDj6xnwSVuHkt6CYcfr4uDpZtMfDGHT+BO5xfzgUoj9x+zjwEifCAUv7DbukcVqKMevDlmypntbtCRe9AxnNDoF+Q3Za8uHbttQ7jufX18/fb6dI9KkdB9KECzFavOqYvol0OA14XLEpBeVRP9kBJjOFB2W/f6YnpYMAOHA88nwtX5ABluTmRaCsGV7CbuJbvh/iWHEOfH/LQ57OjonnZBmEWtKYhzFUVXfE52Xl1LF2IyUjo/kk/5meBSk78wE4RDR94Z54FK+TQyMYrGod+i+Of8tOWSZelfxxjhfsvL0eKGcHm03/giKLIbjq1JfbLNI5oBofDLj5+9u3n/zBRSCFDlLh17fUR3QNd3h1y8LFG0B7EXHQtaTUa+aPM7WH3cS4Bh0wZDelg3Nm/MnQ83CQxiQa7tk/hdUN1p/i3Pu0p9Mo44iKpqX1aFW7DGxIho2krMZg0+e+3bz9XmH8RWMmdQpVM6fgYE9PeufVsyu6HC+6YVXu5/D9QftpaB1MeLIIzJaLjbsLlNtpbMzrlEvuVaYUErDlHZGTIIeFC3QowO/J05Iob1lAY2pozwNlA7JBYb1QDj4Ln/LSL+S4QrB2xFml5uAMQ2gG/sdk8npWFUmH8OdgOfx/dsVfVHpBYhH5R8ZUJzQoi4CXkiEh9oD8Y7pI1mgv/No0DkeVroxwkz7yI32yETR8AsIR2mUB36GEyI1QN5DjrPuHXM16IaQa8n5kb4dcSpHh0Qq6IsWHNCwx9bHCB14IKYL5y8ZLx+EUFUOg3MOTLEhgk2zfRmhkFUzxSFdxDhhEprEU2WDtoEJphIt0qjusMc9c5dwJHyiQ5ZyZvkS1SBivkEhR6KUbHfn1Duf2nS5rvOnT9/fRFFE4En4yZlANckQObh+oguOFS2Ylps19oycymS0uDyFjr8YTvrK9IJPRSE2H5LrCjRC5QvPywjAfmeCGJUIB+yC4cAJyBwxTfur3/7mzx//+Z/++J8pJ/54/yFL9p0uWSGFAZ63P93o+eJf/e3fnp6fSd/IbAvLSSoIry4ZpMr14VQqXYZm+6OQ6U7uF+nVrzfr53/15d9iVpmhQQx8enZ6enE16U0R6RIHYNy4qAPPQb2DSsuEp8K0Uj5hRkaXsjYQVDv7/HG+ePrq3d+Gg36mvGEeEpYMUyHsLne7MivHRHV0OIygy796S7shQX+MjaLBBiKQKNqhepnPPtT5nFK4Tm9AG3TEYNLoB2b5qA3CnInmmhlQGiwgY0io22Z2B9o42Gf6ndddv93b9ufH2cvynhJ0hMwOdr55Wjzebpbr1T0pHQ3ZPjuyy9tkaDcopMxgl4aGRY/3V+geTauL4BJLC3GBAQXUkpyjehFQgpiEgSwQlWTlLk5eD4YXnf7r7vLt/fL7Q3zf6hEJSXgaaVMD1NIpmBxrTZfhDjyxqI6oQSVUp5AaApxKEPliqpGwM9RzYe7lYJPtg6hH5yHeQLgIXEFLVW3HJ+fY5ydgGrr5KOCTQjywCctjaW5ATZSq8tiEztTS4kmBRWJjjw6A64KZFa5IAK8gbjaP+4kYTpiMaM0wd7wdiWbCh144oocP9jhC1rJZ3dzegf2fnxbsMlhPBKTC9siWcu+O4QV3Tn6HF0A4vKNJ0x2iiV3gf4RxHo/PT05OAEx9HFdvjP8iM4clQSAFxsMVwlfIBURqDWPPbIcwpIiMdkRTJnBQAA9mo0yMuIv5g0XCoG+1fRZgn5WTcdVDN2hSKyEFPVD8NqNAFMYASARJbxDSIPTQYuQx0ntViUiPS5pbmg5vjCoxygwUiTJJo9sTNq5oAX1cQRpJ8CEJl8TaffjpE3TZ27evuXwcfEr9aLpC4ALA/PbbLxFgcvCB3qVZ/fjhp883n+hY1rYJqia4Tz4bI4nRA8XxFgX/xcXp69dnp8MJSJmRyXUB5wvXzienmSUy6+XpYBJ1VkvnAX6DfnBlvetT7j/6hh7+4JqYFFS8IbU/7bNLNIfiAlNdMtQZwujsev6QviP0wOOcIbWjsgjLU+2pkYCeI13OZSHRwUhL9GJplSvZpoad2bk6uRymLKMgIIlLQMWs0oCWwU1YMeMxXaIgD2gmxT1C2cNwZfTsFHf1kSIgSyFxKNUE0kURkCRjRndkOQHIB8akgitQzlNJlGyQnc8WK2mHSwc/L6QLIxEC041G/a4UBAG2kYOwd8jUBeGhRmBJiPVkqWXs7Raon7OS+DeRdacJtowiOHo51B1axUEGEJ81OUeF/lPsvMgtqO6CMmZQGt0H1jSULnWmmXoU9GaUWbaFHuiDnuYVNu3SEQxII50OtXpkS/RRakRb1pp6DQ2dNxwFZ4u3Juq1Y0X68Wjb+YZhEoc0PRkNTulr0CPSQJzboELJZs/b9PC0WNAPF0tFAJSj8mKKLdk60S5RJ8zHZFItkkQCKLX98otvRhNGCfUYns67EEpj3MFB1LBRGF2VKokN/siVEmnkoQYwnA+I+C6YBGRqS8a2Ij1VVnzmr7+Z9nouJF0ZV6ET+k3PLlzWTt0bFNRVJFz6dLnsMF+va1FaI8WwpPH1Dj3HlO5ocv7q/Vdf/RYfzKADamYp+6TCVnT61MPgf4goj9EfITx3imZMTIBi3nSkbjW/avqkM8is+jSietl/Pt1NVv1zJCtIHDEVoH8+KQgawhCloa4DA0NhAY5Fm90Gx0837A3Waf78+PJMlekNVmwwptHFKTQU5o8zyRWH05cSfzrrFYiM9y/LZ7ST3WAMYLeGkDtUtFInyLWz8f3Xd58+1ykfhBaRCCwfHu/pVblaEwRYcYTOD+hipqZTekwXGhZFR1VDZojQ/p3YF2GSVNPCUzNj9WihwaR4Ia4RRCHS0IZh1JZzor9hDIW/nAwXZ8v59/HhGYNFGzOf6WlWF3U3/sIy+jL0lL7GXFbq+yAFhLZkRf9LpTYqZ8wOVUrQXJgnRCzAJiSCpDFoARDRNTDH1dF/MOni4CVZCvgHCfAaYLpjrxqprjdo0AB2Pl4lS/IMHEfk28fgSyAFXyo1+xINQP6IYgdXemxVe0jRs63xUJxhbHMngO3GQGOXYGPo9Pb46eM98T/zWyQO5dskpyjqT5YI7MWaCGCWd2D5edsW2EW1WTabayYyX4sC99l28On+x5PxOHChg8Jef3yMWmwfP+t3SVkDsdg22npRedsnc2DBJPcpSoH7ZTUIy5kxSaEAjoq51pTgvzzN8EaYz3rEgHRRqUqyiuYRdAs+DkWwcHQYw4qqPiho5hZGUMVMz+XyNcBAsDpNi0uMJYw+ZoeVk4YBVGuRbm5teqLQmZgmGapx/fP9y01U/l19+Zop2NLKFaKK8JUGPZcX05PhwDCG3OcoS7ructhJdJTCZouUBeBAPiaQPq5wdBaiPIuJQPDnUbNDkbh4kawgDi2OXrbbp6cFeHkRBHMULBSlMKejPNCXsT/uIt8h6AebUlSK6s9lljTiOWkSTtcI+C+uqDGiP2tD/pzJNQxjpEbG3CcW4VADQYu1JzsMFcuAFSTDDPMqSHXwKRB0FJwJsA58CbMuGNRr8Y5owhkBY/VbRi03VyTYe4OBaJzYeVLJNOAQN0A8i5WUsS4bNXHoWg1jz8AHnf67DPgdtCOAasMaw2InHCOZm0rgfMD+T2ASuiyaTFcDppDJOZKZ8L/4/wqdDGoEeEAqSAn6kGwReRO40IRoiw4VFYjk4FO+pxyUHB7of+wLTCI3h7iB28UFoGWgfCM3FROjt17lQDXYHnlZEVPhaDJCRMIM7iozEQuiP+lcL4mSo2YOG9LPGT4jM4MIWUhPSAmC1BWimjW2O1p1SmV2ppe7MlbjjeJmZsfmZEsBWN8iqdd0huV9dbhbA/6lrl2h0KkCvWFRJOzPCPCYDbu7f/yET5OT2sS6fqlWwR5QRkgv3dthPtltrI/UoADxEOnQEZIBGVKCTEYQAEsR6Y7UuvvuizNde08w9s23X02Gk0JmNGggL6SQRFK05rOq522yxGJGmdHT4S/paX0iV4W/Y9Y7Pjui9KdAhuDxHTTfcgIOQen5pksVL56F0JAoTS439WTceZL/SLUU047gtuiJWGdOpy+N+Omyh0JS2b7sfh6tph2sshmQmhM8JaaZZRMxGcaJl8E/ypYJtQIBGmABAsbi6vqhLB5nNy8vP2MkGc+CRmjSZ5oGQng/RDvJGaU8M909zB7uZrfwMaP+gekpHjcR04pxIo5qPLDdlk98ePHRf9C+VEnny2TJiY1BCoQ/oA66plD7fjrs0FnxzLf6pBPxrFhOqfihIZTYaHC5ZGsFSQOkuTaQHhg6TDtzWJu2L1qFcRg4ZLGfTGcxv0ZRLCI0RmU5Pfo9o/lmqCxTN6lwwBvIHEfoIaGTBIuDmY85WwktZN8ZCwH0S+kgHM1mi9kMavlpvV5hq3u9rmh4bL/SzNIgOqzpZcHn4qH4gc8AwYrAEhkmYZkw+zIJij/juYHq/Ifnh/j5JR7g7Uhno4HB2W/Jhey3MIrURh07bIaAMb6MJ1lt5h/v737+cPtw/wRNB8kjkTI+ETwAOJJPQIEhXvzYzE1sqFA3IAXpLgtXjvsUzoFRshtMOSfx/oXtg/+xKFUZQpyMe1OIxeHZKKPtHb0sqUulqJMTT3FJWJVDTLfoRMVdkZiCwkvg/VbbBQJ3cni0W2HANQl8kg+lTd9fWH5MeinSNFUiDIEelOwwBx7BPU1dCesVn64KOYIZRjNTFEZiCSiF2wK08/l1AjVuJ+kFSgARUAmthSwOS759uvkEuwcLF2IgceTGaGu1aCcOps7eEJFpKoegF/t7+hngy5htSyMbLnJkbOlrB0FO5AgZ8uHDX6SZTdvAm0Zw0QyvIqDOKfyDhOHeFpv1Yovq2SXJLcUI6+2etj58GdxETJoEyKjSNK0M6HhaCL1J9QN99gm70KlCecHFiSuFqA0QvyMmD7TWls6g/E2erhf4ZNC3wwGPWBM6VTvGydUF1xpluo+0p0tvXWRfVONI1yc2W7AffWyoaMPZc30riFROjiRkOKkpg1QoAKgU8k7wIX2wDiP25JYSuVvIdXCzsgH9MRZUhsMpNAjkR5cG5aJeZ2HA1lRiIHUi+4urguuD1KE1QrpFRkkdKBlsjCJtKmnngEIVgoPwGT0Gi8f5pjiR7k1kEaRA3GTMCDlvzCVgB2MutWEYWKqgiE1FWY4jKWP6ACHCyzi6ktUDVdJwSlYOnIvboGqGyRfkh1wxJdIju62sCoKPCoAWH9uEXY0QgI9M9wm75dpQ4K4vtuTc1+wsKI7H3EqKHttPaZkoHzpdnQON5AmWgpwZTNPhAMOWU5+I2hhShqZu0k9ed0jBohumaxLFkRxN6hgIjqkhLaiBTuN9rh4yVF6wp9S1Q90ygmGPFbg8pUyf5k7GxeitYwzoJyI5QZ8cIJCSxnnbUPWnzrkEJI3eMyeh1af/yuP87nk9//7PPy9B3EukJgV1k1AoRDuISgkTyI0gKORmjkcXZ9PzyUlvNCTaA+DQOdkc9Sm6eNOZd5rZhlkOQyqGlLEd9mSW8n7OBITFy8PUng/9S4HkkClCHGCQsEVcOQwVJawHMB2HQLgbaUZLbz7HUPsq6tbaJXx8ebpezhfk7c5Ozi5IBA1PyEkKp6QbSZ0v483LaglGHo02uF/GWo4HF5SGwJ4lB3TkRsce0bEeohWjxdBj31YSaBw4YiypRx+R8fvXX7x/9QWZjnF/1Kd8gYJVZGkyWRaSBr0M8ZcwPyQWxYGRxOB1xN6KPeUw8F98BH301KbT9M/g5UQ9V8S0KevSO5YW69TREaUDc6SNJ84fsw/BIEoeQTXcZLKWWG9pq5fRhG0vvaPAlpunlxnCEjpL7DaMWso5g2TOJBRgkG5yGKeTtBh2Cwng5HSI0FMUUfKPAAjwDmFyVZPtQ3ILkSQNcXhS2QFeCouHgaa/c5zFkTTqXu6o2MvX0sIay0eKk0IweqRH20/Xtz9+uPvw+YHxyOBw7D6xFyhbumaxHoSD4l94QXaTf2SV+GiyoXw8vpCjzxcdfRTRDLHKcr1h74jsqbeabTqT7XgfXwmsJCQCnmGMJAPC4UI4RFcWpiBS68BrypvA/ZLwo5FGl9pkr0tiebVZ8vrIAfb6XkxHnZISZnvYNzYKRgohAx6SyKCmT7AwICS8ubxQjrDV/D+SYhps8DU0FJDLBiAlZUUZHR1BDD3VGFCI/x5Ovbfv3xHzWE5F7p0KDMJiildG/UCOL1YbB0W3IcMYdIfMP0mtEgUNZpSeGTQEA6ZDMtBtF5h5ICuYxBTznOH3zs9H9XiTx/TocdOiizUx9a7XaQgjHx6wXudnUwiDPcE2uhWCGxjIGg46Wr9ExSrfByrj2Ry7tfwsQILnEsWLHAeDx6LQZyyL2W/Cz0HowFDYtNKgoHDt0baa5BZiU3p5k3rcIt5EeE/HM5Xkz3RK5a00aoOop1G88BWE2wxJkCsg6BgijWeQjN3G0AAOmzRZQNdLvyR6TZNscOj6TMma3FIcRyEPQxyAVIiJgypN7iQli95GYLBU6nA8eBeOiYdCh4NCFIqny0i0SlEJgMJw6JgBUcwUiabs0BZ1T18NHDLfSF8LjgrsoSR8RJ1RcnxFEkZah3MqMbDsP7SwL0Qu/3IUGbxFxThJaCg8upcRNLDdXJ+ce4MXlGHspDKEH8Ufg2xENIwomISNxkRZdC68ENXe0BjwlaJKxy9ETEomsFqseFsSvzRr4UeLQBUPTk9Agma0cqLUILvJQHaiSpcIDI0Nz9R6PaszGXeGp9JtUaeTDw0woDxwHrRj4724EYR5OjEr0JAStoQqNjgKbjYYrWHeNtqTNSe8D9HaH/Tsqan2USbB4WOjRGzuGIU5zPwp5ee8GIgHun37tLp7+tNPNw/ff/zh41+uczwJEgYYGnQ4PFpZU3Aj0gxylhYNJQKEJdSJnU8nVxej01FvcvpqHI7d0Ax0/wylyg7E09DenETVyDvjGhfhOt4UoTZhY8XGsZx0pIIoEAMi24wnJjJD+wcdwygJdEfM/QN/oAhzVHvSGwO2yBT6FkUqW5ograL1w/oB4hMzQXIRA4x3Zlnh4Oi3cXd/E6032+XyfErP9CH1K8BVCgrPeq975oDThVPAMg+9Q6BTyEPXkwiMcD4Iv7wiqn/d652RoWT2KYsqNVKcc8w7h48DSGd0Dj0/oDnE0LEjAqUlEMLSwdhDE9NjirEldS8pTmQ07n4piFIgt7Rfpq6eaSzSKJYTKZQPfwOHIkYRcIWt5F2QQQnVQ5Ht8oXOag+Pjzc3t8/Pj5DvlE7LCafWMoloP8z8pbCDv2J+6AlqOpwzcTd+ANBNjHh8VWh9QlZUsImXc3NIRCDBxAdhG2FpKZ4SXgiKZpelc4b4Ll/mq6dN9JwVew4ajYeBrQBf6iSRK3/8+HDz6UW0YaTkpeWchICS9+Vosqc4Hqy0/PdYo8cn42MdHcJxyfhjTiDpJPo2kjBKAT8aE1yQGHL7uFAOnQPMQmFkSExilispt1XCTV6DgnswJ51bpOU4L8QrA4UwR8e09i81gFjhAEvObgD6RRhGUZi0WyBmICtSMwSypZckISZt3PQeLYqxRfT5xwho2H3mgWBS4XYJZ2llAHGOghfnhIQIBo7SDlJk3HTGPlHCl803PMLoVf+k3xUwn1DaorsIEZwKlTOKMwY+QFtzJkb9MbbSp/rZcSNq/ykyUEqONn0mKbSA2E7oWgUPhXummx0iJNrZWPbBY/5AG9AIuNOHsaKkh5Du4uIS6DDfzgFUaUuz1GxX7bWVumA8+SKPDY0W/oNx2/MPecu3I3cL+DMljetYTyI13gKF2rDXMQZqlzYsCOdjbhyTJSbD0Tmx92AEY44A7IAjiKVzQoYdhWRB/uwbUA1CMtEqBUAEjYvGkWWFymZ4iOhxkWCiAmprRsG3VJ+jex+ewNxRnYE74awIEENHJVIdUB8NIanJYOi712MWO4PbYTYIjJndefT4+E8hNDnFYP3So7MLeYADXlOyQvTfJH4hTKDOQ5JbDLWhQyHxBPkKEvg8HjEmkh2CMeYR6FI3BwqXhBTHgMODkyAeIFASyAaLY9XUfAjo4rn4MsIOCB6azfGaqIlEQwIxQaTAhmMCsf5cWy4YKl/mZ3HbPZhELi5N5ZjaRHGFzKkSgaa6J64krGT26XEEElURWg+OxKFmCHfE7TqikwJoiVvsdkjTWfRbwnuhEhKvlLdMusAC+kHX7IS8K6oG/Bt+iQdkDABnh/AF8vD+/mBLZl5anCO1RZFC+cTlxSXJmiP90O8GAwxVg2CdHh0MJ3IgyyhKJQCjqwZSo8U//cPv/tP/9g+i6kIHxdQBvo7bIA7+OMUEEEi4zzKraI/yrb64qX9mEYkNB2Ccrkt3v4sehb0XxhmxXv/XV399hwQhUZkTReMupina3iWFVb41nQzf0CpCvLRcYqAz8OzoBhg1rCFF9jOfkFLZ05mL1FyRuagKpCvS1UU+2sbn+J6yUnvTuzheM0kkOcyhtg57WEKyx9LFjusKVQ75R2v6/WY5HVO3fnVx+pasIN6ULvzkX8ElAupVxm3FkJNqbTf5rdIW2HvGr9NQxEfqbgVUDUqES9EZKIcTgJ9pDQIWGoCDsQXt8wmINo+MCtYcHyCm8Je/4pbzGekRaAWNuoNx1aHLOZQAHpelBUmA1PmPfH4OAycR74Eh5mV5GWA7wiEpPZHxJcL2hd0BXxHSWgooKt/FYQR3KygeympJVoxecmTR85w+Cx1N6YqsCOCG4IqHZavEUpOu5EBjD2Hu+AMmuvP+9E3inrNm8SZeM8J3Nn+cLx6JAGgpBCJLiLYAU8guV9HNp8Xzw5pAnxfi6XkGsIx4QgycwGaBWFwz4ZT4ZLI2WF5+4a1JWFL2VVPBPhz3htD+MHv05GVEiloI/IPmAdZzOZidSwoNYdBAWGcMPBdWnCQXDN/Kboiag9Hi6LGxD+wi/b8hRblBvmvWyFJsrq00CqYsilNAVRfLBU1didWB4UGHTZ0lYyxI1BBZmMaBa6EmBpVfGqa5AJMC5aRUH1tFjSmclTgnoSIo9cDd49qkDv36X36EmdverdVDM7245MMzX5xYBbEmykLMGVo/youkBd9RiJY2+9KMN0uK4XdJCUxO2GgkUCo2H3vPzae3J/M5f2nqltf0ZzgqNLwBTWih4C+psM+mxKSBzNZdxUakkJEsUV93OoTT1m5NNwl3DGEzrp1OinGLmLS+XuaJC/VZH9x8b5cpnKbq7/3ZMv+kJkyER+zEEXl6eXmYzexuH6xFSBBt5ygdyUjMdmu344zGXfLIoUHztu5kRLdNStuYxeJBKhA2Rpv9CnE/9Q/Jge0hvqChCb1HKIHx4Y8liQvChifVW8dHQIV/hYhgU9k73OpRr3zM9ir03uJeCiAEpIgXPoZsfCPkMvnOIb07NK+ZW8vocbmZU5hGIC3MGncBOQVlHPA0fD+oHAIdUhdZZLnNNhEAWwNV1ChsYWxYJdWGAzhyKHgT4kiZvaFLMCgNMQnzQUTYYLoIUidJdAxShUetTVQu0C5gdPJHQmjRLdRFl4ZTpEGHzffxnZJQ4lfikaxFTEyjAARY+BKOLMcYP4eNHwyPeScmf9FknTelNVDLmFIalCDi5tiU69Xzzz/8nizEfvNmSMInDPg4uEdmzBHAEHtx6WRsVRwhf0X01KKPeXygaRyVICQCWTj6eQRUFSpUvEB1EA9JMIPlwTVJSTsCJtpdycXEe0RPi+g//P0//z//H//T7e0DkRIsH925j7BNgnbiWjAYBxW/THEaawLd9stN5G5tyxSUeqs2f/r5s0M9SWdw8v7V//l//Obt6792yn6814P8deBd9dSpC+vfDxH/Ud4FasN0iKpJqBNsplgM1Ex4YKYyDGjwDKEU7YCkdYV+n6k8iFA4cch/6Sl3lXwdj09G8+Xd0+2ninmKsAROQSd/SA6ZPUBegcQdwDXePz/fo3vYbw/g9unkkpnATM6A6AcjcwxAefBuRMaHHn04pQgdnE8jAKZ0MKUIZIQYhyMDCygoFkvJdkp4h8EU8ZmgXsHAMISSyeA3AnLBAVKCRStyEbAf/WtL6jaNt8SRYhiJU45qcilpg5HkM/PpMZVcRtk5chXHsOvYXNdtfOAj42qnk9P0zTsJhQtJXpL0EmejadKqk/5FMHQOkKs3mcK6hfDPPSSghNUyYFXssoTrmDA8jYSwYjfxbTgbSQ8AneQVYX62m4g6TYKrO+wBqIIiRCmcJynPpMZtDMhbveAmWFr4HB1rKg5EbD83Veh/zDT+gFUhGsB3i3OTgysoni2mZqI7cJlh9eodOjJSli5enXuLb2IpsBQyXKOlFIKqT8hGRvEM8MHHLv+EKiJUpdwINl8uGXWpWYYuB1ErjAF7QUQlNY64YhY3tyTYLk3SwlSzSdfIJlESGk0WEBAgT7Q/1OnaIiQjfJS5UMwgd+qIDmwa06L1UnGQTCQJOWGGrdS5BH/Q5XJZiVBNVBiMDz/ALhEX0P6Ujjf9m0/DySiE9ydhxlNRUEWrNU4WTck4C3he6cJA35AKfhbSivwtfohIjFExWkdKXdh5DiUfBlZD5o8kUraA67VaxySHT8aNzlwBPW9DeKS28fioNm2EGWBsKoPW6U3G2wOglvp/W0b/mjTXUhH97OkrTTHOwaB7Et1N6aESr1fNai2ykiLhIoMv6a1DAqD8C6KJLiU2pfT7JrPQwumQxGYgmHUDg8I4ZRMBNXUzg35IiYwXBGB6NAZUFR17qInaDEocvm086TfGBCUFpCIhLSwoGR4KO4f9CSw/fl46CKMoH5DQJ39AfpcOFyl/Jd72iIpkABhrh93koPFncrcQQzKfhlyzH8+Ku4cXRPsUcWOHxVhBb0qjD6a14T6EncJjH41egRnWfaZBHYRekdxtQeaSzwFjSYNHeGH+iNtMBhtgQUEJcQmRo42CnJiTCkmuj3DVdABHTSign5ad4HdKQiHTcWSIZUyODe19aPNFudgxhKAVm+RHxbEb1KWliZEmUMFEpQK7UDki16MoRZRgGAnOBScTRwaqgWBxSDXndzffk4q9Hf5AjRjtHiB2xfyjlOh04fh4GQabc8I5+37tU1h2cvUm2W81shKlHHHEOLwi9YNbWqyWG8xXQehNtTDKwkCaYGHVSGZjoGgn+ru///1//Pf/9HC/5EXxhKwFu/ZLNlJEEIo1GEEtjLjYtMQhDUnvJKIioWFZI64+SFe1aIceV9XLOn7ebn/716O/+fKr0avzLKdYZRCalFOFDLAlWvAtcno2xLTQsmLDqAfGy2A9+Ml/uAEyqRuzU+u0iGUl1tW2KsBqEFC6VygFA+doe6M5E9tHOon7JPRxJwpS2ogxQSKU2dF8DRcDSUZNnuRZeSuQL2fJpasuHDL9oeQAMrmMG0x+En0ONnOU0mlQZcALhxpMzaThAiaAxhJYTChJifrEBkHxUXYuSnw4dJaAownQRnqB+ZNiaVyQUOp8OtLDdKLhfNNGhQzuCx06cPC8cZY7ekKBMilZgA4iGkhGkSrID1UCZGwcOIhH5zQQ4QbhAPZeir2lub9UjgD2sYJyN8DmoNwKfhbpMbo8FDQIi4BY3BRMqmQEOXO4W+GvMNBQ9Szxcaw0n4hMMn+elSntr7dY/yWdQj7d3t7NXl7Q+uDpqIeFMEdjTOgtqyJyPHlfLDuPzgXhU/MVEvccK7GFDcPsw3sKJcr6ChvGGgHeXVc/Ow+/eI+YM3zzekRqV+IjuirZoUh1yXASTlvELtg3tk8kJAAmEUmxBccsAi9+lKhKagTHCRHEYjKOUvJ7x3CL3eZprAxVDyUWDkY8TnU6rmDLqbcvm4N03CEEIxDljHG5icyFA9UZVe4xKDHjokvLA4xJY3UOTqzlm5a5HlVMkljGgLGlx4mVxu3LHAGGRyLPtg+OdkhW9582uFym1UIdceA4EzKwU3qlkv/HOTPMhKVR+6EFyoyT7mrXxUrhBHkAHDMELk8sVo+Qfp+Y7Ro3odWkq/2qhDoXuh9jhK1AP/mMgCpZFU5UOfQiTlvm2ij0OQH20iiKVmNVlGi7nbOK3O26TJe6knBJHf4+l9mQS3pQkCdCpQP2wI/zpgxJofs40ISvg4XHkuJ+BPrQfgHJOw3UuAOcTlGq6b0Op5LtlqsroR2nSzopiUIGIESk5M+808loFCB40EnT0L7bwvf30O9mwx4hCMpAbCoN9qBTUF8ygGkHejvWLR67dQks4tVIeApGgy7E3gkDzyYkxWz+8vnh/tOnOwJVxLwgdVgUGc2A9QdYSeE2oJ4+HHwHr0mRp2qS80amD+DhgWioj/XoSETJDNSC5IzMe2JrMEdgJPYOy2HYB44kkFujKJhr6PsyutriCWqUsCqoXhwOqvxc39JtFi8CmOJuCADFB3CfM0J3bA2cDWQRhxWNFdhFJWd2hAGQ99GCXpo4AW4jwMMtnQpCkp4jBONYcYRP823c/PxBGoogQCSTw1WgvsP1SKxTC8cnNZBkQlV4XAK0MKNeeEVtGypcMjJP93erOUO510W1wtoxenmMyGdI9U23VQIAH+EABpsmeH/4z//8H/5f//PHv3xATkD4DTqWWA3IIkU4ogo0hcgAgZCvcPUeYie8ptRbs1wcHe47ppwf5Lph0UgHMcVt/bDRyt540qW2DclGRmcIthOuEjEameuWnk40HSmoYZD4XmNOgJw6zhYHjlfFhwqBU8bz9dPLwyeloYid/rJELA55cAZ1kvaXxlrpQbqjAo+kllAfWGpiq+jK+Dp6gMK8HIvMhyQGEZ0zs5eeaDBpHDNMP7lFjj37QWoM3gwxN/3vCOQwNrB5MM3SUEgS9Pw/NgIcLLlZjpTkmqAuCTIIiPg7URZoBQsEsQ+ZiC0UNyGNiUAJIFZsBquNpma5eabIo1VSuDWOv7RQ4cQQW3JkAJZgQ0GBKKm4HFLcThQhdrQl3YVYCNkblgqijC+sacSdMFsVVcj/3wFQ7s/jQrTiAGQlsaYObBb/lc63RzAk51vMsYQpvKOwTOAkpNII1kkjbXaL59n9/ZP0AaGp22aFXByIS3crbgqjaTjZ9HmEvscScC+FiOEFcT9cOx4TU4/B4EDAqLAg/EaAAScJV4HVowFfh9J6GzkyShKeAYkIy4uvVwmhnVMHSQbtAhAMQ4BL3Sq2kmUX+pcrDFjFyyASkAgAxjzFWe1+sQ+YTT4pbUgwtTga7Ba0F9+JvoXOZ1BdVL+SLAV8AcD3oojN2P5+V0S5HCcoVh21ICgEryCWwoFea1F3UIwLENecrCbtK2cSrURT5pgaURKShrx+fuElJjDn4z53HtKYcxHtms2SGlLmmorSnAwWAJ+zRcESUTyOijQxC8/CEY/bhkcBsnR+EqCoMxsBNSQfgr8PbFR2xnK5wphSbmpI90iGNMF1UUKdS+X84jptIqJrxaNLC/rD3YqmJjtye5nj9QVZktOsrd1BXy/qaJGTPBXyC+xCsEerVM49DJH4ZsEt8i50QUVSlZOIk6kJrDhLj2UiQmQ9RP1AgQ3bCObXdGqLRLDBI8FpIGODejbpQiUlhBwIDOuyUh5vrvF4LAWcfq83IqZbhpRHzwbdHrvChuIr4Muhg4h2KDkhIY4VxrGQ/AVxA4kwgqwUS4aCn/0niwpapw0zcIm6aiaOkuBDGQQggknkrBzTUQTs3KKGE8axAe0Q21DuzUNIhzKutmSYCYI06yCcTE1TwQSUIxkEgjKZpY5ECP9kK34A68aDKB4Jy4HWMvQCxRPteDhBKbuLDohwgd9TRUzKh3GbgnNwIxxBsBFvQ2QMwOAE0kAJnikmJMawAcTkcNBZg32hGAHbRypOhlMyc9KQZssiXuVissIgLtmtA3Z4K8pzoVYlldcN0aXQHwD7w/0SipFaettCRnvSRafZIeNu0B+KTxRFCykpImdOm4rhGHXy5dnlm1dfDLtnPd/jSM+fXv7xP/3up798TzZAym7oIlAwUhPKh9uOQxODBtikG0CclJg4TguKBeIDTBSWiDMp1kQS/vJB2YQjA2olW+TEOD/vZXn9+PJEs2tam4z8/qAzQcCJmop0OqtNNhqT3Ou4qJXx+abuaVZALl66UxyWL6vbh6fb2/vP2+0MxTd2h0ZUojoBc7DjMjIJY8ByayFvBSgR1ML5pP+WAOWq1Cha6EuDBLqX0/uaCFiGKYvYGTwhiX7iRmrLEUoRW7k1mTCSTohM6K7sokD3uJwYE6zpkVLExuHz2BS4W1Ga8ZVEhBg7ucR0YGByFhWbjsQwRyRBzgDWhY8lHTchIpjPFNErvFzhV4UlFWoexECiiOhEjIJYVlaTi8RjkOzHLHFI5eVxNiTeUGOLMSdmEkmzhQxRysRAIiQPuasgBMTzIP+jtIijIU8nQRV2mP/I/0jdNLJH3os3IrZir2m4wdTJfbxcMHzq4fP94+397f38eSmRKf1HsI1AJp6CjyvaOeHCxXMAXXld/hULgWXm5WlHT7gihCwfm8yZ+Bfh4iSGArKMmP/YscMB2QebdN7T/VJTE1iBcQ90iDQfkQN+rk9YIAw6kbbk6nhXqnbEVfIPRgN/R+DF20rBB83IalZSlzADXI4KE3fNyrIWLBMiQKIWNI3w0nRvZjIYbldIITZDRfHJH0lDUi4rr8K1zDk6gHkSkC6JEpRxZPwYHpDRO5RzVWdteUAZQvZPYm++m0Ffakvm7OkZwZe4bLaPdxUrwHnAh2HijQNsSeaHoZUlLmVKEFnARkq9uMk19BVBLZlg5n5AIjsakTu98HGWnB84YVKeCTWp0QpZCukRcqgGWQnEdIen+fN8t6QkxcFm7hUaUS7QP29L/QCfQ3JjQ2CHgWANYWvrQ2alFKBDjYv9QF5P43qRM3HUhG0kAECjS3DCLgKCWTyAxtH7Hg8ba43f8WSnCfv4ifBGKrLYXnkgZl1wmfjKGsrPIJMEUYfzJlYhn0z704h0v9My59Z2UuPlxbm7ZqHkg5D6gUhj3zULqpR6Bs41gswjSyngAR9OcABUcEOJ73hHJBxClYPQYXZwiFxlOYB8Lokuuc2cu6MqQ0AJ7C7gEvpapieUapGh2xNYAV/BXYGC4S9F2JLDd2HkuOE4C/qB8V/ZQiidKiVrAhUNXG51SB9axkrOkHOJj4FJY6Foe0EuyOGiU1HO0wIPj2dWjGcOEybXjLdi0qxIcamH4z24KLLIXCpdpSszCSe2XRaXZXdaisboowUclD/AtBOgypBSTmfLJGe5WGCHuua+yrltD+Bu8UhEUnwoOhBy3RRCYBaCsyrdNpE9cBOo1QUK4qlttabI+m9/89/+X/67/9tvf32Gf/nj7/7w+z/8E8UYrLnERLwFIJfzDwoXZC/Ai0eDRIURxsrzqJIpF6hKXEDmRBScQtBJp7wj6sPfZcUPf7n+x99/2qXDf/z+f/708iMRHx3tQGWB2+/2hk4wgkClCMwoKIqls/wwcGBDuQUBIz+5+PTK2Kxn6/2SIUHXt0/MP6AomBoJvKAwZZgBzg7AOqNlG1cPdesh7BJv8yQSBpLzo98VgilmADAthKGkIiSkvimmSVeWkVAGjIE0MMFtza3sj7oMhqLsPYP5J1JmfBDeRJwIR1BYSTHiCsMhyLeTARDCnM3mRKE4I8Ui2drjHE2gFLQE1+foASRcEBvJ8stKIq5nHNxDXG3IxXBOKDUNQ/yDybdL03FpoglvwmLz9XwrWIpvpUkOBbAj7HorpdNybIBufBGmSo4GGJwNk+/EAYi95/iyCGyHuEnuBUcSGCdPIYabuATgLgwXcTeVVGQSaGAe053xkaLenz5+enpCaLqk/wgnDdvLRh+tGq92PB+sifzDaeagSN5eGCS+SNEwZANytp2QzUGo0WwZ7ogDgckybY+OgRejEX0f6O9Nf2LoAuavIM8RhQ2DkhMndrWE8htdd7GvR8TXMvcRkyX5V8AU789r4erYR4wtWD3wcP9INsVDEeCgH8LhEzHwVBxNjij5Oh6U+82Op8jB8agsEeVgpPEJgAjHM8dEMi88HrdNWB/BtNxB7gn+HEko3eHwBkxtY8VQwxwYRc7HxgaxBnRa4OKX0kB+saIpoAd4ZweYJPSLK5CUBcuu0ayOKP34h6AJIeTYXFZPGnUiq2euDRWYQQhAA4bgvQglwON4WFwQ4Q6Pu6Pr0BpWMwLKQdHAUS9o8VqnIbMKpEYqo0afVhw1c2wylfHqJBE4giIpkDpyCSPxuVhSiVwQuTeMuKInq/TaZrmkWE+8N7dYHku6YRAF4yPErvLdks7CLyBtIi4Wb09juQMT2gHnKJAIfESExfWi2poUSVHaIASIPVYDrwB6BbYfA0BhmTAicP28kQH3Q5IBRJ8hlm9ixKZy7BmxJCJL3oJTClzBELOmbkS4zEXlrdkfDhvnWVAHS3SkXwX8czZ4TtGnkLZHaSRXgRWQVRSbz6s34gKx/XKgGloxsNfcCJFd8VLyBRD6WJZj1Monl7CecjnapzFisTERQmFM+CrYIe6BLJlQt2QFBJmRmww7UoHFqrAsBBMEqhwdYAmQk0PH6nBtTTnvrDOEjhTO0sYchhdqjZQaF1LgklGbPoatJvy3hUfgNS1gQ2JRIW5syj1QkZcAKbEYIDKWipXg/+UGslv03jqeeHaWJBJZreO9F2gjkRlDxxqOO/Pjm+a1G6pTp+l++vSH//U//m+Pj/ecag4IFoNPwWoIwCOdc3REXAsJ6fHpR8gs913W83g6jnaG38l38Mdic8TO4BjWm/jvf3cH9Xr7cL3JHxqmbkiVhPZE59TW6vbHBMOgDPofoRkmSBuRw5hMB0LChBjRKFoyM2MtCsj06QWBWUk4B6vGIThyJ2wqsBpWP4NeMw0aYzTOBtNAQgjrQIIdC4MZpBzLyzmXfB4MMBENsCrf8dQA9oBkcEAbbU4rjsdrOvgvDgUBN8o9doS6FnqqY9wbPSerT40ezNNBag6FixdGlCXg7EkoIkw/bpoME7vGZZNDxn7yEyYaZ8oeAVrIVYCEsnpPyoADxwTSQT9xzD7PydGgMp+3ZOMYmNQyR6MqqGyj5ygtfrgEQoNwjUk1w0RhlDlROBEOk3wuyBk5WOwD60/gIwhLBmFg1dhHMaK4CbH/NMOTAnjpRIeUjtaYMm+LGZQ76TVNH8abu9vlfEOzfe7g8agKuwWcgVIRG4He+QizjuvJ744eTgwEjVK9q4uLd1fvet0+x+Zx9kwpGcXYJJkoGTmZXLx588UJHeRH9G+hVzxRJt0BSC9j64m3EAB5OWcZzbGy4SgS8WCAWT0u+NEECeyQ481+gGMkyMiF9EEkd5BcNDHw0YSBr4gqhYCDJADni9SHcIAtYpUk/sZeQflztbCCInqiPQBdhpHjQuBxNo5gkWqQX5wM9aIUChBfYANoVecmNrX6rrQWEKZOM95NJ6ACjCFMBYdSaC32n+05GnE6kUmHFCIhIinlwP3kCLBdsMm/TDUhU0s0WaID0Zm3QpElzpqGPNgWnlZceo1bCjERrZe1DHuNKQ9L9+wnxNZmt8tQuEUrkCQriKVHx0QLEfqZyoYTTgsHLmGo+EwJ3ExgvPhtIalB+gTQYjwl/pERgyyvHCYuFaYc/0wvDpmJJ5ZfIAeAWXoCiI6SdFaJpcbH4XmJ+Tnt9BakVoeYhzeUDky2KxVxoi8WmhwsQOqIxcc80BkIbg0ee9L3JmdDcjfIXZ6eNve0Z2GUIZRwSg0UPgn7zokVeRmHrz5ALyCxl8hQ6CayQi5dOojvpLeRpBL5yHgh0ChGViTqNhkwaDgpuMZgHvNkhNugdWQzWGbwE75dbjn7A/qC4BR1Dd4H/wuGOJ5oTDcGRwQcvD/jJCBYeRau25E4Ox5NjiOsjGoVQDHGvvNCfN4jlKNfPxbkl/QXOA8owjfz5RS7NrDMSNVYHJ6at8cuUA5MxInFECaV+AIfjFXiUQQAqqndbslDQXNBVZKP4xSxffILGIf3xLvzCzefZWBVcGhUPMqN4PrzBPyKfRIsLP4LeZz31dXf/p/+3f/wxfm/Wj3t/5f/7z98990P2CgcDtaDf4lesSC8ilgwDiMnROrtSMawuhw0cTW8n8BsMTdcS04ImFfO0PExgK5yENjoaNN0zPOL4Vv4ePK+FpxZJoIMFLyUElOhBVhF0bZ6blAcUxeMj871WNM78qLezuzt0UOhdAe4iEwRP4xbloPGSkhQxNNgEHgguSwwecQIjLfjI/A07Jbk06UtsNfZI4VpWlyqMObiHTGuzDgXi56DWAnCubu/xLycpoPM7SjwEPyk7JQ8JLsAEENIxKQfgCOOhZcXsyWXFEPLRvI0LLMcW/GX4A8OMesFYqQ65kDXE1quIp2hZR9npFo2yyb/nO6awXo76l0C8G2zwwMIuVmk29WCAVGMnPNC9/QMHxCydZgX4h52kZPEtYQ9JYWGJZQjiumQgywnma/gp5wPOUrHkyFHgwfDOPKp6XZDPRf5XvqM75g4iaPd7hZLEi20Y71/oNg02RMIUwnP4UPTDiYDGInXwTxINMGh4+XEkvG2ApdwM6w26qO3V2+/fvsNnYJZKATkYHKeioz6eHD+5fvf/Oqbb6hPoCIUSY8YdU4JOFpOj5hFaLv/H1P/3SRreqaJfZmVWelN+VPHtm8AgwEwGIfZWQ43lrvkkstdmg2SMqGQPoi+gT6GQv9KwWCEqJD2jxWppbizxBiYQaOBNsef8lXpfaV+13tAhqq7q6syszLf93nu57bXfd1+lN4M+Dq8hu5YIiEBUH6KavKJRDhH1bzcRnO9M0l9XmIgTEogsmD5RS5CotWlUw3gUjPtVwuEYHHEKQqbjlLAUKiEtjAxU0lXExkruyED42LyHcrjyWKMMed+3SMVAdCiXleB5PbpO+o10sJpoVeWuPr5h88aZkYbwJgDZydyOBwC4EUfr04WiSiOhaMddZYgLMdDRUMmtYWlSc2DTtNnr0tY0rlF7VKayT+h9aL+lhi8qmgpK4+fPMAagl9UXwt7rWlqm8bYGdpb4Sy87PHDdhBdMN1cuOg9qjrIALGpVY2uAzRgnEgFWWEB+ePk4x6xEt+X0FKTVoXIctSSw+FBEzWPyZtQScOKaI6vwaGxAIgNS1bT5+SGKSbWwAZmBBU1j9mKzlMMhhLJGxISHxB32IDNcIFqTes/fvD0k4+eyfifn9394tdf/t0XsAdXt4MxwcvnpTgYLe8o+Ty6m5/lStSRpNOQHugXI6AiEe0WroTG4RPxkyBKHVykCAw7S+HDXFFcQbNfNltLdw0Tw5HTqXw32JrORZWLM5CRpviZg+ueXbYQQUXDW/OYsop5jBHPsfodno1kWh1Jgu20GDtME5FlXnOiN9BRis6KUATym86sMMCvXFQikfpew0bL5oGuRyYhoTGYib3clBKZe8fZmohGcyYnKv0raGo1NHuIFxYuqix8qPpyMnIkC8chC+5HkWLUPYURc8YyEHJ+8XJ0f9A+/Wf//v/qT37w7+yW6998/Yt/+z/9jROSsnnAIFbIRhXeMinmNBQmKlYvn8AgFCk3eVmaL8o/n+rj3bjnYz/iY1grCtONV25eXONA+/jw+/fqVvd3rXp53ds24pHQ4hUlbDiUrSmjJ6iBPvBgqh5UGxBnqdTGYnKCTDqjB4+v72/O0a6nrZsgA4uk7yf5AlnWhT9UQvGHKpY3d6BPfA6pAKZ5o2bs9huAGRbcad6tYx4mHEkm5KhaMszyc5rKtSBZGY2pLqMNL2UN4N/I1YOTh/u9fQ4hz9wj2BeAttypei/mK6vVDgCRZiLbcf/RZEMm17T68c8dx4W5D+DRhgeeGR2UtkrdQut7sOnF8DXy09u96+nR7OR4eQDY1djT7loFLFwZrzwAYJ3OJH8Ojw+cGgUAnUeR0Hgd/pO1tGcBUNmf4FI8QsAiqMVG2At2MlJLxbIOwFKK6pYQEZeJhHdX12MsXO+ub5FXv70yyZgVuBqgKeN/q3wXej3QJv/mUNCpdpt8FKbE90KzifsShEpzKj7L8JyeHpvVgeuLAqWduCYGx3/45OmnH3z89OTxARq/o8Nw+xhfnogk2cxIS7KInDHuOwr+otRccH65D5B6Z8FNRTLcdsQ9x1DFn9DKxN0ObpOUIxl9hCsglPAEKe1lxIkGj2BAnUUAdAir+L8G/C028DDppb/HFloUFYTwgnI1QriYenlnPgTp0B6zBKAiPzz36EBB2z3OICUEoXwOFWC6RjKwIeZB0qSth8mhsx+8O6peEyk4qziNewQfwEvIJF9pJZeQTOKqqbq4a1izgJHozJSLOIKuS3ipbxDQV3twALclZDUgHO2DtiqkechbaZ92FY6ogxnnenDLFzto7uNnTLCwxoU7eIuLFHel27VpCrjBbCls0yWkIUdWIgFg1vI7fwIew21pC7bYsqHAJEA5hoUiJkK8Kc3SOTPxAJyaIFMtHIycBJLoqpJerohHhDINE/PKzpifxjMMloQnUBw1+ighqXzdANFRJkXenQ+EhHScIvjpSU91U4HcJcb3orwVRhP28/3scJIkWctIeDxRWpr/w9F3uKcSDRhZ2aMiwOG4E3iuQaW8TNZf5lQI7FrCD9vExAugCcwDKGYb4l5Erxe9vj5EwSsMIuJo6SzuEkue0NFK5cpynuKnR/fTUlS0rJeDp+U4ByL7780ofVbcX3g9MxFUFutkPluyuuvRsnarVEOlgCCJU72QyZADW5XcxG6gUKhGtbhxJKx4WSTBK0n60fIKqtLEkJUorigr6z+rHyVtQwlskQqLMpeeI5I0FOJIS7Ks9Gp7//k/+Rf/7B//pwdaiqeL12+/fnP1rcGN91VxUuHQFR5AcCNiSjLv3NjPDURHQgJbaZOLtFOh6hmJeJoR9vxdwtdUNXPbgInLxW5p2dz2T0o//vbmm/FylK7GVgUsznHXYZ1lzbiO+xa2zTB26UhRqkmRRzl4t36vxJVcb7uOSejkwWZ0vRxeLbGCEjov7nUbWpx5i93QACFpL99c3b54g8x7fHUdinYCCQoxEHzcXDPbYjJWuIXfKhAgtDN1UiQ01egnlM5kJhxegBRXiNzfmbOEbi0MfTSNmYxc+lR5mZ1dyUn8g0mzcMaFcax53ZGyYNkRvjC1VhwS1REpnYzlGsTVvsRi5ahK+fI8dYXY1cFwOZlLIvVAt0tlfG4KcpQeX1XcML0ZmEogQLk5PqKyF91EiXJrXOJsuFAmRpjPkU9zK+kjy15Eqzr61lIEpFmNabInyZHzPXGn0Sq0/wXVP3rz9vzF5dWry0vjZfiWgNyODgPjbMmiKG5xuZLW4He/l7HCs3Q4iq9k2our9bGJTcVVogvg1NnZ5auLmzfL1UQnwueffvK973zyKSPw6AQdNfY+ijaqXL6M2suB8ps+2/QZKFPKFbgbBWQoMGIFN6bWbe2tvC8eJVmXZY0nSu0vZ5kse3NzW68Ne4ad7SXRXRi+kHVIDKdrz45hdUQ+4I6cnmL8nqRMJoXe70Wdbbd3lmeFiM4nyYNiBgsOU+6C9ii45QWgwKG0HgTKLsSgyIZi/NlXv23tNLVJg02WdkBIG05Ep16F09/X5m2gjzRnTKjaVptLRuedXV9AXceFEvkXLDLBpPOXlbKG2UjXL9Djk1oheytpnUbh5Wpweau1PajQnd3DRs+cXI6qBTBJHYKli4izhte+RponmyH2GXSdOpVyMH1wIQKWmojyT603lVXEcdlAosJOeLcoVjG/CCW7whNNpSOPp8zjeHPx8hLbLsKxcwmaA8tcJ5ERDrTiBdZdPZ0L6A6oD96KeJlOTGDu9ugZuDfpv+X13eyrr85DXhunJjaHLuSs+XAhkVRPADsMQuyNP9cHSRIpxZ2JvGKYVXbmOWLMA+qYufbgELeVkBgNyUqS80FzAPKxr/KXCaD5ncRaYIRQTZPoVF1XR2TiC+pN8tFzqtKk0rsWacTcddxt/8vpyjHLPVpOeSnKPjqP8ktwAzic+/Wk5c0fsxOFbckpzXITKUgxuUMjlrxMltY9s82WOhFHcUa9Fa8Wr7Br5SrmUXbLJco/GKTFN4orkxOTNy90fXFJXlkceDLjc/2TlfKvjc7WmSeqIkobbX/yp3/0L/75f/nsyQMvevP27Kc/+x+vRmfGT0QcvEN2KXvKCrs7vzAEvuIVIcMIRXBSlsyxRSMm7tOmWy7nwW26CHXw/BQjIDrHRXVmaNXD43/87P7ObMivJ28M/Ta0jr8FQwQDgD+z2910+qtBR/2qLrDOVB78XSbOd9/3s+B0MjFvt9+5n3R27pqwTNr4kWo1pJNx6PLs0fNLlNN7V1dv261X/c5VbRdR1hLZaoLUzRq1iX1xQU0jkXr73Q5KDL1RLaa/OkdQtBritr29uLg12Od8aNAUkDQCa/YDUoQ7oucieEod3uqJ+Wfi9pIgiQ2jNdPil4qax/TKpQZhI4Nu4zERLZ5E7MxSPU5vW3kLUL3CzE2ywPGNW6mPbtrdu2b9EssJV4U4pacR+9tSm9HCKK6L6wsNwOpaVraxSNujDSf2vF26xcspOwrFHSbNYMupvFW6ZJthrefp6iq3YT7W+O7x5c3lu7NX7y5ewfufX780mG4wuOE/pUWSyyS+jS4uAkg7Gg+g8C/UO5MNlV0gjyQ66Z0IOp3hd+3C8/HV4PrrV98Q6d8+/wZrBcP52Scf/9mf/vC7n3z6wQcGCewpI2qZjED5HMPg2LvCOYy222nkErGTWa7iy7HDU+vDaX+aIIX+jPRyhCVaKUVF+DkPbzEbXp69cQGXKZX3pH9ttfZnBGv8erwnyf8DYG8nEEcZeXGvgWCMnd2ZojOSPnAiQVLLcNxX4g36hutI8fHdJJMAMAur7Cgu2XZHw1sWhcRy9a++AXOsayeQ9JPbgL/gZGvzeHyKx46YU2LoBgWjOQ2ozViia8O5zy+khyRqUUbAFLIx4AgCPCdJxsf+YVhHGITbu9tqHpabWu/eXQyHOO5urxUZTx881I8jmQbvxbCfdB8gdxZolJZlpVTG8M3bt1fX144i8aD5Ymph+sByyZvKAOtqaQsnNsec1PBhKFdqw25mS3Oqc5xpGP/3c8JblRNbTWNFwRVRm/eXj7C43sJpiL4S6lA4kQmnAXicD+kpyyNr4ZWpqWQhAPsJ03y0uVrq8FRDIAA64JxlqiP5H8kTRh4ppOshbjzF6FC2J3WUiCB1CtzPTnrQBnLVQ2eQeCcDrOUXXK9jQXq8szQI7SZiKZSZx2G3XacP8+auS42aGuWPeFuGrWj7LlShI16siietWlA0VHW8XerE38qCWU0pe7cNc+S1losjmoWy4/k1ernInGZlsizEPmwsrsfpTZ2aRWABxBzF35IQXBYLeSI+HLXCh/EmMYKMat6TTvbGLItP87uf8jGUX3YsT/vFXRfLaMcCQ7J7YjVFte9+9/f+xX/yX3zw6eearKijb9785pe/+TlEPoBZPIB0XTuHCRv9kxXR81CkkDhB8HOqLB5cresIKjDGSFEWEaHPszc+MYtvb2MJWHmCHHZ+5M2v7/cPfq/+779e/+Znz1+/q16/agxMSARtsaRe0tHl2FubWWKMc3iQirY7OU/cV83GvF2/R2TVhuXEFXWibFDu9XdGN7E+3R7Hqo7Vv9MS++5p8bvf1503MsGJG2RxkxdPER4HCmUBZ+mO9OT0zVArh+aqETcsfDtMxeTy6vrNBYbNN3is1Ugtaa+/oALEmPi7tA4UsAI91feCscL+paGXBxbfQHHbJsJAWifTRHg91i+3knwY68hZhJOolKDFeDJsBcMamc/zOiAHV1cSEBBOQ81QkJ0sGZ9Wdv6GK1O9FGEI99eDyeDxk2eUYBaZ87FjrK6Km6iEQoJkJcqAeLLOyTRLZgCU6D3KoPTATmxPSV7eyNPXZ6++/urXb89e3A3foXRGgc8O0WygoYpHLjgEkams5EzztNwFfU0+LSeRD9atUAzEzYLSAFQMuhLsZ7/99lvc9QLmc/M955tPP/30x3/8x9//ve89ND7cyPpOQKJJKxbpN3Jb1BWSF5UZcLatjKid7i0OVBV4M0BBHZLrYVLsLDanGktAKpHScdoqbsd3V/69u36Hzpa2M9qP0mX5ZHRlDpEnIy7ULZNVCQ//cLPFDTdcLyf6XWDjhjNTPHjJMy5h6f5OpkfHD3sDi76xjyia9YXBz7MP8gtGL5V0kNXuV1q12EXsoOB65RUAuBkpxL9oF9wZlavY8q+H7TCVxXuNf2ft4g5IOCqKsjssi5lo0sGSPquCMQ3Uq6BsU+KI00BZ63WYGVqr35gvn3ZBA1KcK1au3z9A+qQ1FOlxb+/qxau38HEqV8aJXL69mQ+0GIajRscGnWWVHRfAIWIYVZh2k8TvTivnIPh6mhKJQhRZvJr499H+jnFUi1DL2hdKL1A/P9NilDnlyzXwYjqDevard8wihNIpSFJKoTgcDlHxXl7Go43F8GeuKErKUSgiDiZI0GJLKA8ryWdFAJOcQw4YsSuWiAtA+flNNtYCoTKLIozucblpp2EqvCtp5ifTtYUBK17iOsAkJAFdCj1cBYqJ9vQL++R2vYfr8pnRK8TQ+rjJQqEKTn+X5/BEHmPO/N/CxHUpjGTUcL7ylv/zj7RO4vRo/CJbSBEVHMI0QaA7lHmhI4mHw2mtnAkXkBURf8u3kBjSYhMYMNeXZQkqlsHLzXo675+LcN+xHCnn+8Gl5VFP52efzu2PKlZd/ejZ9/43/+L/8O/+xT8CO5MeOb+++unP/urq9tz5zq0Yz8194VtJnNpOAUpGSqXlUykk9k2C2qkinbV6mw2ndYSjQRLOiUmxjMQo++rDIzq5efsxvR5cvfn26lnn4Y+O/tH/9+/++q3pLpPFGulSQXfqgIydkEtZr021qRM6mtJG79TRwczkTZvN+33M0UfNo+Myf6jaT6ePQH421jsi/Ne3TOYyhckQUv6PGJ1uJPbp56prI2bj7exqOwPjczfiwJDR8nSWe/L0NUif0XQkj3xzZ3b6pVxNsnIQsNYufAYY1VHYhpWLptXag9LWyGgTSEgmGy2jQhdJTnA81SYxBWvXisQGlsPxs/w20Y4TtZRvjbOjSaLw2HxlIAsP+D26u0IPOxxQ7lJOJOb2Zmo+DSsLshjO523ZLDZjdw+Q5ncggrg+qdhEOtxtMKbFvlt/oWUer/SaeycnJ08eP8RmKvFHiNCvQ83Lb714/u0XX3whAkB6IfNeg8uQEkUqkdDXG0WaXbnTxwLEhiWpG0XPJcg321u4H3mZBS3k3LLKOZ9dIGi9ySHcVp4+ffa97/7gs88MtHhAcTVboYCMC1e8eUTah+XwkeoIffGpnmcfrB9vuqxQU6BUDdmVnMJpRkiskM4iog5VYFT1ZVhRb4QvCJRvvQfFk0qJpG+jtj/p7/dbS7a7taO2em8ueiiuh4BYnDBC6qMLrjatUaPFTM0SMXvjEEI1zXz0smmMjXUZz02FUyFVbLXdeQEXwYQelxC2O/UMbcPR0NyZ+w1zK6aHWEZroHZCRabyVDNpFFkHRKTfVTXkpHfXk6kMpVK+DbNitlBdu90O3KUr81gaInOxTPdKdea3cn2Ql4ewFKMbxs95c23eaaf94NGz/gFf4Ob2pt0cqiSfHnZmi6dsDCawWxllG8ibZlcXSr4LwJhWjTVES0DfKv5m5C6FohActWvhXWAUY9Fqwc9ZAkFF43HSo2XeK51ih32LBNBktF6RQcjJZ0H4kvHTIzqFPiQNNJKjQAn64tb6vQgwo9VSL0mpgNKREvcILxtPjUhjEUSNSp7SVXAbCV+UYfgLiRy5EryRXJLrEuM5NEGnFS2VMkWEOBfCxaBvo5nZzzANBrPMzTHkAXbDmYSqI2nCx1jA4thLFRV17FyC+2KerA/3xO+xGFHxNivy610LGxGRzkHPOlgQl5IjlMVwdUXqhwOVmnZxMiP31jhQjZwHzpz1Eg7nbxIPgJN5WK9JIWxW0iHJnVD6udXionLA3EFUbJY1v/ryqhj2Ap+SFcjF5FUioN2HJx/+x//Bf/6P/uF/fHCwb0On89Lbs7e/+O0vUHgkqJHBrJtRkfMNYBOYqz33WelVzMGX7mIbTUYKfzFNSC1qQcon+lYnOexxgBo5IoU+cFkUR5zOynC+fPX2jSaA1vHv/ej0HxoLtqho3IKpCvOnNKiSk1ebgFOupMeS1+SEAx3rxNYUvX8EW4E1FpBmcbCvCy1Me3IVMzDJoXGhd9vN2/7BS+SXaBpw1aCqD88WdZ+QM9fg3e1Qlmm1NL55p/Ktpraz8/PDg2PesazIcHJ7eXV2efP2bnAlgiCKWTkmOD5fPCM3xvgmkbJ7D33Op1LAUyqgrPLOsoZmlGq/7h+pyNZ21zUlwsScMcHeAFRNr1XGt2ieliA3sg3YV5IvXYlyRgDpWNwHtDNNgfZBcUJ6kzd72D7GjKKjT4FEKDDC+XmjuQ7SKURAIhrSUfSCpZ4qdW0LIt0ao5rtDz/47h/++E+OT07IpfqZDQIhPL84f/HNiy+++PVvfvvNeHrn3IQ0gQzSuwYvC4KTDdbJbbESb2aHo4WCXfZjUjQepNQc22TGlQALYdX4zSDJqOiS3b3X8/Tw4dMf/uBHv/+9Hz148HTv8MEeHhDnPO5oXAXvS9TyLj44vxcHp/jdB6W5Pf4P20QYuPMh1EHvweF3vwFraMcP1fP8FuP33Z194vbzi4F+UuYolt1ZNnx+0bBIKyVal4clbI04fT2zYwA/9JBi8G6FCZdApuCMwvXEuNxRvy+pzlbkgjQJD3eny/Z0zrxJSLM9Pjq7K6iDScMTJS9E0+FgQh3I0RA7r4qm04BJbC6xk7g3HIQSoR3Dc0i2LIL/IzTxB5IOinOcVvQyIs/x1Hbc0FwpJssQKGi75939JpZ/dOTS13rqF3a4YphM//BQ71u3+9HnHz2cPkh79GLGFBoifnZ+WRvU6xksoL133Tx2ZpNQK7NtIbPhETjoiGRzsKRYFL95JTJ8Vk/eBnSGs83qKcUwx+m3Tl0lPr4HyBMspZFiHioep1sdgcIHiT2gjHKmi6Cz2Od4KLR+zkNSIF5r06P7xApYh8pGNGuK9zxXmN5REJYN4iJZWOapaYGpaFn20OWUMAg5DKJSPU/SoPHtiTwxjepT1isW2gonyvCG3jZ2yLFaUWxJDXknBOCpxxfnRa0AQFTtUnk2Fw5zAIkTiKY+Vblxaqkw0bEgEkRFjFKcDDEQOxdJdjeSm9nbeC+2NeA2dyKSyKJQQmIPtiT5MxfltMbmJRsmOqPaBdVJXnl0C2fgVVaIDubu6y1h1FIhjiUnOXRzYQQcG1dWGCE3nIOaW80SstrZAu9gCZJPq6GD/sf/4J/+03/ynzw8OfYnNm0ymf/VL/7q+esXkJB8rVjlmE9vyV/Jn7l4qr94W99i0QiJhcYnWJ2LsLNSVj5fSR/kMHsTd53ryi27iyQTWFCwkzfzbwer8YPVw+9/+O/+cvDFz2/GQs7idr3I5xUwQILuBwfCZ6GK4I1WK+01IO/9qHtfb2oUV5WdHR6gTaGEcX6VuW0G1oyuVtvzLfIDfV3SK9wE+ZvRUH+TJrEAS1xbcV8+haQsbm7PjaJ79eZlC09O8J109FTTmQkE7J2FiOwHEeXPlzfwO7e36BebNZhVYusT7OaGMrq4OncUqN34RU7HsI45cXMoeZIFgLMUMNkrrqGW9fObN++u3rzTXHtza/iGDhlIJgeR4GTREhBSr9SXJESgiLhxH9S6R8dHYv1+L3G+xbHUYEjnvF580K9fGidrRICFJn8JMHxXYuJ1VWpPPvhUT1YnLQ6BuUikoCG6urnk+//6iy9+++VXNxc3Of98Qe/LDxRyUS7WyVZGdnyPA8MzyCnKxb3f0aj7+BYeieeeRiHyAYsRp21TIKN6PQNxf/DDH336yXeePHlycmwKsdQ/q+a1cfWtn8uNZMRBivLP9ng78lJYGBfgZ+uq/JqAk4+d/qpoBA4HMZRvdzTITeHpN3p7KB1qi/204LhqL8Omk6qfiboN6o7zKhWSywXvoNv6zl5NwzkffumFMAdiXAC9GOMyTpqJ2WMZqxTlRmYk/doig/UWz2O3co/wALGlEoRxVvNqU+tgebnT3JqSRJb1cjP2nWbtweMjre1+1uNy8fZ2UhDVU1vme6C+yEatuAougr2TjJZJlAkECSkOeEqkVATwIJ1R1kCCVFrjFQbmlBjEQdoHdq44FdNMazs/PTp59vjxycNji4of5eqyqcY0pbIRCx8dMDyqJgXX5i709RQZdPm+b9pru3U/m11dv7u6vfQuRhnSQkZh2AnltZ6mTCuAAoyWTXBGBWSXpApQfYn6RyOssFPME8E0+wy7Uag6a0b7IM8ptBixpo+SC0r9NftdpBTp6J1Kp46SS/93i6IPvVuIAAhZmtmNrRYy6v/VE5hiVHabYFp0SFaIkZbNLWRnZ+QgDkAsMJY4vWvt2PJoUBZCRfCM5LvEP8j48KVQz2J/cA1Cpv8MeGx4hfgQbxjhzrUA5BqkiW2vg59OZ4gpenyE9Wi8vLkemVq5WN7V63ajaAJKcR2wqwlRQhhJbMsAZhE/dxD9ZKjoQwIuCxcv2KXrO4sxdUYsIaPnPBXmws8WRUDIf6juIG9Ac7eDhZMN4gEEXOktFCf4VqZaaKveGY3Bsajk/L3Vfq/gfHBSzfoNqrt9eE/r42TmgFaB8H743T/5Z//hP//404+UKaR0DUR59e75t6+/xVR99OBEQjXEZpGsuMtCFToxel3GLuBCxRWW0nUm7nErhU9sTwtcQQF6ScqI0SI6URvkhG5hx+y35Et5Ol+fzy7OdKwsxt/97oMfffDvvp28AdrSVp8qGziBIcuOAa+Y/5kYSH+HBaOVtkGnVXah0if1naWGHloEyAi3tZ4UTdQL7CgzoKDbawK8NrBMS6flku+ZjhUJlV6LOETAlXhLLEiUc8iXi3g+g53bnHD3lqyoJl+9k4X2pvoKlTSbzd+8fvf1Ny/2e6fKITSIu8wUz8zJDZsWMI9bZmLtBHCzPh1zqSRuJ71hhqQarlwWuwzPL8Hrv3mLQPnmbjrh29N+yaWsEwfYf1o3foV3aNTbPaNx+2b4HPd6itwPTx48NO+FMqcM9QTIhJD2K8MB3r1+9eLrr7768vmLbwcGz4XnTnkhqbmj45Mf/v4P/uCHv//Bk8eyV3Gc7hfXN2evXn77qy9++esvv7h8d2Gppdp0/vE1QmJYZHHJRrQrjW9RqHi7Gbvum2Np82Nnovrjvfo1xj4RQWahG0te3e91jo8OHp2efPDsw48++uzp0w8PwXgP+hAesZJFmE7fETRvFj1RqJQ4VNH/OSg5ErE70RhRk0zCvS7r1nrV53xI8fPrRVhwIgGMbTbyQYB9uGc5PQnS+Xey/9InILMmL0pnrmQbx/elESIPZ4gppGQNR+xONqPu0t+lFUiUuyP/NW03l7qCgytOl0gStZLFgUejfYa88wbBpskdmcEbT5U0VR8/7fDNOLIcTA5LSSXHtJRm1Z6J21T+N7V1RYvfvOPoM1ycSrc6JSejuUHuLaNXeSGMFCrzAW4j9BiIeuJEWC93lCjfoZVJXc5MtW8CxaqB7NbG87FevbdvXjx/9eXDkyeffvzphx99+OjkVJ7o8OBomhYEs5kwFO/qyOp25Sdj49U6ri7e2cSHj57024eKXTeXB2dvXlwZrXSNNH0qCU1PdnZqBykcGRbTOdo/KpbSbeM90UhbUb6cQM3dDI2BPnt7eyF2lVQLMMTFSikx9o4uA54sjeyX7D0pEWpp1HR+k5DVE1VuPMAIfHJ6fHgQSEbvUGKZIMm7cfz0Z0L4ZUYM+vOWOW0GkuHZp8TL2l6SBCR0oT9k8Ga3NzcSj8yAAkB/r20ccYeJ0GVEXsRPCfSmQFR0IVhpgO2pH2hQvLu+1vny5lL32XKji+JhmhT3xRC8mdMTtqkp56ApQb/d9c346uJiMb9Rk1xvWI3h3eVUHz7tefjg1PRjhgpup1zWYqY8iixgNrrV9YPKlO5xqJhMPUqjiTxhdNIiZej4EVVJQR4RkgJ9ZCbbnp70D08eNg8eN8w38KaiRLXW1IwZo/Viur4Zzi7PLtFA+oiij41lVTVMUpGsMqVmvR2Yq8rSSYEDRTQ6B43+J8++8/HT79sRjKSSP4P5naHH/+A/+Hs/+MnHVLp14wPR+Jg1QqUMOK1/H8+Y0FXfq0mh0IsUapyY1HRAaJMo9C8rxvareAmhS9DNY8cC7IboOuCUifbEKTDNanE1el1Z1sc3d9uvx/vPPvvDp//kl68GZ6vX8g1xe7l7lCABiwEJEDq+HzXAyadfALdW69kEaUSV3l/3HKvKLvgQQVqvtB4ylVS7gwl47i/YDx376YBxgNlboWKRAUiQF6cySp4LwO8TtnD4o+xkuOJ1xpOnqAqVRyFZrsXrVy81NYoVCk/iCZECEbqU/blQ5jw3p0veOSXYpH4C1daUor9VdkVFTz4HUGA0ubtQWz7/hqc1GsvDB+LFrgUBCfPDdoiAFAdk1Wgb/Svt/sH+SR9r394jM6VPjh6HJaDXKbzd+l53fXJw+uzRR7cffvbxxz989OGXJ1/+4ldf/NX11ZnairYiCfcf/sEf//gP//Djjz7SkWshFxvdBNdvz7/96qtffPHrX2r5BkiyGLRsKgbFOaJMbaXF4AsIwWLBsxleETWdF2bLo7UTHQgWuQN2KZF6o9tvHx8dnpzsP318enpy9PDUNMcHiL8Ojo6R0hHNZDZps7wrj0CYG+NHrXm3IpDIjz6EA/m73xNn+XTX5pw3+Bbl8p5XOpnSJe8jAmrGhWZMUE09BhWmqg/wFWLpRD08MXst/6KNB+ppPLstZSjywAkozH15vV+drSqmyJuxtlyPy7VJparUOypnTLHeEdHvXE7A7dIzoEQ6enhcMZcZIUCCeHtY7Eoo6HRIvsfxpaQaxhzBXXVzobfilsVQPL7f71QaB/o+m4t1dTIpGjEWq9Jsqai2v18T5IGMIgWSznq3O7gazLYbxymZlBwOYXWMb063ZJjmJjGdz9Zihpfb6PDXV8z53bkBnbc3P/z+9z796FO5i2D2dLXMzHXTiZA8gh431ImzIYd3rPc9oNVqe9fo7/tSBzhNYqvXLd9y6UdSXCbWIGzifDx+/PCgty/rSjmkbBKEWFhRxPzT0ejk0ZsPLq8vTSjVRc5+3GldWMIc9NoAFqU9Q9URStpyPc6EW+k1UsTZAkSFTTPQ4hC5uVkxB8cPewenxoWpzpV2mnJvnPHAo/DWyOAzC5kTQZeK5de8et4BweCnpGDh+G4/pCMl8ogRKg2SJKFTxMPOeYJaQX2OdY5ZXEh/4eQTh8C8Rw7nwD7vafU56DF6yWoKMhQ89CXsVKjZ+N0GBQaowKDfziWetXVe3BHr44cnTdFKG/d2L1IeJHQQuxRngYsNNonBI50CvGUGIGMuAbRO0lARiNDS79PxhP+ZueaN+sOTw72jR5XOKeeR8y4nx80mBZSjcwN+ofB1R7IurobD6ds38MQ7h8eHBuNqi+PQaYpocz0kSTo8QRGEliKMz7V2pV+a4zUqjQal6+HtZnf++NnpD//eZ/pSokRTbU9sLedECQu5CrmT7lnOzBsy4Ec4o18WPh83ArfaKUxm0NyDEv/J8xdnl1e3b1++wNd25d4lZ7mctl6LGkusud+8DM6RKueLs/F2d/2dZ9/dzP5sfPnfTcrXEs5hTwCkkYS0mQh0C8xvoR/ygGbdqHPve787a+9O0eaitTUY02qONquRSUQKSDmT9i43E7Asf9g72nQqnwQZwABoJ3dMlpo0DX3dCk2/CRUymVAGhffJVr/3QeN/kRXKyjBGRF9fvepzKOztQF3i+ur2m69+ayzjaHJjQQrFSFWVdjSisPL6+Taz5i3O6pABUUAuc4C1cnArOo8w+Cz53nxE0r7QsHxH8bGsmpgSiVdvJa/odjA2SQELZMOQ7HPZHqFd2JVtGc4k/JiZ/32wt/9o7+Dwt1/97fXVxVHv6LNPPn/27JPT49MC52YmmrHOl+fXb7/81S+++vUXb16/4FHwjaiUWFtKN1lzh9RKk7ZE8Vzy7EOhf/3MKBJgkp2fLGVchiScjCM5PTF97NGTxw+ePTx9eIor3OTnrrKKp7p9S9ZhvaPlvXlaIp1FP4kcE7nmH+o1K/E7I2PNE695fcqQebGnXAZPplyWqdMQGigUnRCQQAVT5GobvSWGITllo5UNrEeZndnFkh6Ur+1ZL5pI2MdNR8c0Ov6nD8fKI9wajzfN0ei4fzxb3mzWd4BcOzsaXfv31TM56PvyJXSCNQkaigY2LrRI8HO2dPsBYDnv0fdX5yM4ImPPy0YbBqWuD126KRIYeMB6jepzr9vYN8ylUZ0sQdRNhwGdiJNBp05mix1UuYprOoBChRlbQlkVjknexFYowJFMn44KrGFOgekMiIexKMkKi5oX6+ura4vG0HbarkD0sPP64s3zdxe3IwO0FSRQ0fUIlN5vgQFnx3RT48t7+5OSM1NGI1otPew3lqWjk+38RjCzPj09MHKlu79TOzKcbExs6QLuvfF2NlfWhjE66LNe1dHd3qMkQ29eS0yi7RqafIDmYdvrgujtdPuUkPKIeIwgiJPeZ9Zrm3EJnwWMOGjeu+HgenW+e2dWpOSYWs5Rb/90u3Mq/9NkgTF4ysgo+xXuiX2I2HIU/CunXggRxS5F+Lu4NdLjK6UW8iZJSHIlQuIC8rIC1KdhnDxlUQm53Q7qzJOYEkZO9Q3YlP1zJryef8ij5saZ6NwX7EmLBCN0mBZDOZEP1dDxtNhvfvFCPwb10mx2IrQFG0Tg+tyoIqqlT9UA6R3HHy28AgrjzpoCj+nHNLEhlyN5Va0f9PZa/UNd0q6eU+igFO5lCm5J9JbL+5sVthyDTWjiD2+HCCUPjpPNI1369R1LIY7CBm46jlqOmM9B+TcHmClNB6Wb88nNaFztL591TjBWeneAu1jZnENXnlyW45dvvrMGOZtc/mTGvTfNJYsVry0voSxcX2U8XmjEubx8A2F49u6NYeV6rS/59+s5+7a6657/bXlS0jtpspLcy/j+BQKPDx4c/NkP9itfv/nXk+3NfZ3SDDDGytEuLuT9J1sAVS3uSQIBimNRGl3NKAkstI6DKT+LcWXpkAbqxikq4OFhurW9rLjdoz/49q41nVMKsxns2DBh1KhwJABR/QCt0vHm6Yob4nRFs3G8ovysuU9Np9588PrtlwCfl1dvKWLR18tX3+LiVZGi2vzrwFon/o022/FE2mGUO7FkzJF/mMtEvd7MsibS8BOxtKVKidwA2b+dOgmQXnLts8F0dID7dT5UNcfOXxvKcnAXJyG8L3LhMrROlJpqu7U5Tus74S3xHHipR/0jc1vDgtJqTKaDq5uhyayv375++eb5V1/99vrdO8w/dg+yNFKa67JEBfaPnxTP38b6z0uKG7L5MVO0NtFKnc+JYoH2+92Tk6MPP/zws08+efb0yYPjQ06sJDOKZ3En6yKFyXthfm2CN0t5iTzlbWNdclTdkrUuDqn1yBOFqBVylSsoXvz+YtLz+D4sYycFKA5uQrmAvTCAahtqsxrqScC6ig28MeDXzJFC7LZpSFarZ6K8H04MZIW5NAPOciGigN7ZtFv9xdzMUdP3mASIcwuyv1x3NuaiIxUn9pUZxOBSv0po3XkEuG/nsuKuhzrhNhHNHqBmOC3rChNFkrRIogk7t6E7D6vWZFa6HMpQD9P+p56I6iajJ7oTyv98tnw9SBaQ4mA4ZP2FwJA7/JcUw3LSHPxUCNkBlf+J0cQZcZ7TlXXIv1Ljpne9eSMonl6dvyKN5nm+FoAAzegthQ8GW5U4KjAX0lMiiTfP32piJkXtPeOVajtqGzv8oOlql6VmEK/69V0429X9RRgxk0LU5wKMhGK3Z+bybrUj8+m04t8mjVh/+Oi850vdM6sZawZehP9JIKJUPlmOVQR6bYG6uC0xYBrae+Xl5HY1f4d1ZHEjBZs6QDjo6tobPjg8+dCwmXbj0HTuVveQgqvVekaeqF1LeEQCyGfC9chK8tVF5pJ08aQiOx5MXO8QUijBkvKH4ZfFBY6NvSsi3ySE5RNTHBaQSSgAQcfP4YjsyNRwlIhXsvyy+xFl70LuwoUnxDCS5fr6/HZ0djU4N0yKvemj2O8dt9vHBl3xRuvY5MWKIBGwp3D4+P+lV9J1hrbakRBYOOTw9EOYk177ALu/Sl+rZtSXJAaxUzxMF7u3AS1v13pcWNrHtdkDWGd/9fDpqXJfwBW8FCuds5tzJFVXqGdLQWo8iKWjJFk9vtxevRndaDtKC0r6qCkjF5ZzmNWybIFixW6+/49MFmts39IglrcridGy6NF6fhLQccGaD0/7H39yAj7ujRxu4NEF0lPdZ5udv/3vX/8f//X/SX5d9JbaH028qi7fbDuD7tHRp4cnzReDv7sqf9vur3ZaskZioWSl+T75MA0fEfykzPESurLxXRrCG2MG2nnmZOVfq4mHI+yHQXoEBmYVcpFOjusnCgWUWWjnXMEXyLdBkSn3aDM3RUhsDibIQAZxwDFLlC8PYi0cyHQT6hJ4++ZsMJg2228cOF69irHcmHwJiYqhlsgnkvY7vhpfKWqfSRG4uFr3kWqOYxnpLPbDcqOBNIGqjT5B8QuUnzupDcCaWSWTYW/FrgCCbLfMZmt8a+JmwoRapYMLwBjbXSO+PcBFmHdqpU8ePf3+Jx+Apzp2aYvczC50el29efvu1etXr7998fqdEta7S9UrLmoRBFuUyGQCF6IWY081Z50LGbJ2MQDZZto6tVlrnLiq1dxF9/bdzz/7/u99B8rzFAn+Hob7TPpW34wwuY0i15YF9OfQEB6LGUj9PTvhCYq2wGUFImPRCG12K39tPXMlfiskqdjEJGH4kbFZlOwuE1qccfEwERFPacty2qrSg7I/zEHowgQtxEJM7IDIpijR6jiPVuCWcQUFZ0bzau3brS3quxP4s6028oDHN9ujxWp/uqqr1IHFTSbvKAWOCPXk4olHslchxRKt8O7K1eP9Q4Nyr+/ulpPo64KWhYxnXRlNmcmcmyXOHhRt9LoqjdIkixYCI9JV4CgyJINJ4cU4yom+IU5jH7MwiZE4rdFMOI+NQ46Go/UTUEuNxTazpgCus/OLBUTUixfBjnLYNMIne4BEQvVEBtzw5Qy3KI+FkSjj5qmG7LZ39w672FmBTPkgCG3my7GD1Lk1WTzVtKSRVYNTocSEJBYld3fXKt9Uu6y+OLQBmR1w+PFRt1TZq7fml1dmLy70OAzGzojKmRwElOy9ufcNfPQ6sFLw0JQwu2+auHaPyV8nn+DCN42Iq+HNxehqb/hWJNlq7qv2NVrHB4eHe3vS4nvSS0ZhteFhazSg40o0fclZIzSE5CrlOIki5F5jAULuTzvbCxtG/Jxe2jzVEGO6YsRD2pP8TMp2E9IR0dAtvk06G1Ak2I96//Ths4PwVrJQaXewtd4qUyHuF2c3Z+dnL27vpN8GpnEzpMdHz/YltfZO9vf5RG3oJF8cQZn0i4uz5y++BttoiqGq5sRJrsy2y9LBwQOouV7vKE0ukjIZEzS8nV5cjc4ny2tmQAL4sPdor3vca+3jRKgj5iItFIBsWA6Hr+LMOFi/U3f0iJPsfovn7kvLyfb6zfztV3dX725ux9dNuaCrSe+kL9yLVs8/zpG/jxMeLUD3+k4GoyWsX06ihYqZiAGIYHKm1PLZBWGWz+H1ORxe66XtkE85Dfpot91uKGOXpRnN6mriMZcEdGXI++mm9Xh/7+//4T/vPJsu+zd367MVSdagE36rBT0mTadfZkIBQ0+bVxL8pKAe1DNBiQ9VkuDmuRDFX5fvfn0s2FhMml/chePLFadzKuXZlNFyiyuAkY5Y1GTSWvLRVJf3gCHQXOI0WQxGZTKCbfKeTmWan4MvNPwPQ5b34grCbSQxHY84xWVbEelIorawc8EzeYrTEP1pmaL/wy5O5PyNalFLiNytQjRpYus22j6IXzidbPF/OFmlDZKzys3gXptSo30p911oaj44PRjfsVWT6ZZ+N9FKH5xZB4J8hYKWs223b27PlpvJqzdf/uLnv1QkvLjkeiJ9XiUTX4xuiJKNsMSpj+gU4pNtTeEzm/xe11lSv2aPmaPyzsnhwWeffvwHf/D9zz/59KOPPzTSw7xXzFuBTnhlcYn+1gpFlDgigm+9VCRHBBD0gbXI6wqB8zGxBe/9/hiG/AikE0gqQx5rHwnyTC4rp4hswS+/14xCarWqEMiHhtNnZfnF5vQBF4A3mzaJ0Ar4O5IsWLdtpNtmCMjcjnh/ZwMA6yyh494jaIoxidkyVqQpGJ2JN+/HO1VjQYfxKNJMyifnoCQZkFQV3b24r3bx/6jvGn6Ey75wOILG1YvM0PL0BONx95idnU4ZHXQ/16n0FN+A24r3QhHblJLYuNw2h1lGVN4nmX+X5x3i2QGJBnFsim8ozZE0beZmBmCQz9t5XY6pW70ZLO7vwisP8qB3XaAgs6ReoydGvlxxTh5iStFlYVEKqZvdX6/YuykSCc6ToTlKU3pE/d0M9c8YrHTTOTIgHsQJ7g+PJxLQsTyxXJoBiN22mdMnO/U+k2845u7uotneHuwoLdTvhqvBOOhFdcxKZyPSlTpTzq8ZUOkd2GVhOFZibQ3rmhY2AZdY1haBZ45B3Qbr9owzoWsGZ2T/cLh/cvDQEME2aW9ztU/0/bfkW2pNuuHq6o4mtd68gerAFGJ4wA61VuA0bhJwsUCgLyNWVg0t3YG9tuRUsH40n6IlRIjJR+vFXAJGTX5Tng7Hl7Ia2ib73UeBhdba5ZIQRKoxmW8w7Lvpzdnly3ev3oSevrTCRAYUi7J7Pn0HjyLVZspMb95zxowSxd13fXf5+t2rr3777dvXb7hKDx8eQkaLQA2oOjl5fHj4sNc9FLlqUOBHrzaz28nl69vfXAyf63RUj9/vPj3ae/Kw9+TB3oO9+n6n1pYEMNFC+oZB5fEkuVXoZZ/IkSBgjjo5tSbSyrPr1dWb4bWOmbNhptJO1xonTz8XyRHt9zGPH5IGEuU7clGUtAPZi0WhzD0iX5GMll8dTA6Ik+ggJMmeaCDnOhmX4u/zx97H4Q20OJkNThDRSr01tqa6KM1p4Pm8OX4z0ob0H/3J3/t7/9mT5e67wWQ4mIIHyW+F+AmIE1WxSg1XYqZ4ZeL7TEXa1+jmZhADoSVTAo5ediijc6k/WUNRYlE9cT3FzbBgVJBkEgWxKs/gMlyAkCIMRwwY9327NYnjvW7kmAmgls3qcuxkhQFJqtXdeEezebL/jOscXghhAy2Fr8l4GTcodKeCgqjxul0kpyqJCpOtKCUpB3DDdleDUo4qKiS4DDi3vR5EK4nDSCELpmhXEuKzLY6HuRBGjxcrAdqdSI4rAAU3HUyjYCpmAdn63eODvc8//f7h7/+o2z7m/1IIMpK0y2AyOr+6+Ir2f3crsxyflw6jBb1TVPX7r9g/G5mvbDr/hk9ZPOSOY6xz4yJj1LsPHjz6wx/8+E/++Pe/99knB3t7XLLEniQ2Ct2SRAYIm/SHtzdYKuo6ObgizuBoFJ5TIRPSexEoytknR3KSYsqXX/nLiFBYzVhQkkjCsh4ZXRBXrejkZxt8pAcV2xkqOp3FsGdRyQxVogpuNDyoG6L7AtkPk+9yijcSS4DFATHbXQEddildm8Yqix7YPV+qfBkFqFHjflBa3m1W48RAKWhFFugMM598NuwnQfMJOWkjgwzZ7oQ2qqMScWZGSi9En2v6lMD0F3IgoSSropuTsRGj8woSggsFCpSrxJTFBF0Vc4lAZyQUgiLjKkMmDv8Xte71oCk0pcyGo5pMRpj4mZtkAX0gokG+U4gQJOwSjjJczoCFEEaTTuueEoJutMKbs2w19cjJ3WI9UWlJEnW3FbXr3BINoa5uR+OElRLaHQug+AfzqueivN/ZoYwX6nOqEauB+Qd6KTJEW3hvQG4L8izjXkVKiUPmKwcMzlBSwCnkDtPVOhtC3wjzHCTJzmhQOF8hY8itcZqLECcenEzt5mYwX942dltV7Q+7Gay5t39Ce8r0SzlRuNpiZD1linDSDcdxY+2LqqEmz0wmXKEGQ8elJLO73xe1oiw8NjMVhRNR4lcC5+mwoan6UyDS6mxxp3Q2GF/prD45/HgfOmh93No2IRol03AOS8gqa94vys3dvvvAzNT5+DB19W0Dc4ldtJRoiYMInE21mF5cnJ9fnYOZc/CV1VV9CcPJ4emHZnLtnXTbh92Wsdfp74cRk6nwDjRAq1daD2FUry/eDcy/PDk4nxxcTcePT3oP+o09xTCuD6/SZBWVL+JjclVibUeLgFF8FC2H7r66GK7v3owuXl1dnw3k0A0C4QsML6e4pzSsOHR5aaG72QviJzRKxF6EuAJhF+UwFqrbm1qwRF202HuftPhzsh8hc5bj1/EZYyocvPzC08C0JfQmezEgtqbkKFIQDrvCU+8Xz0uT/2bx9Af/xV/8kx8aJkRdqTVrjvePI8/7D0SJIgx1oBlc4xH45gjb0xCd2c0Yz9vo+nowIQRzNS1eEY0DG2qbIK+Whc1mx4p0uyujytVuTBSd8kgq4YoVixHOYHudCYnbRDVaOswWo3jMwnbEKP1EEVtzMhyn3Ct/37W540BmDHimNn2C8XNtvW0J5qOR7IYeOUnAugH3RiHudntqaAyOfmYSzBMRPnPk29V1Y+e+iY91CTqAdp6vWW1kCtUSTRCch9O/HKf7E3+NgBbzkKCIWyk/tPMojDMHy+VHWozdN7kcgAcOL88v3p2dIXlWZdM6qQZWZBKkX2MoEzVmm6yX/71XvnY58UxMZgx3lFOeknOv19pPHz37gx/9wZ/96Z989skHp0ewgQhuSAVaeD1GJczZ8Wo1EdnmwhhQqiGOiUmk9FLi4JHGFriOvDRy4B+/Rav5SwIRaypnu4K6J8YiNoJnzePSi17IgPRpiIoK34JPnec8Fa5eI5JpEQoFMoG28U7C9fdN2EU+XhoKJkwD8KDCWNN+W/6ISTRjQxqpz7QZ4KXdMQf7vUXg1nQrpYPd3QdV40uBlbcDyGFexDaOsSuixHNYaW/You2tuSzeMjFznGtmhKEOi5tbZZDSeEREeL3IWCxbyC7imUnTJDbNchdrXycyISzWj8ASY6GwvY3d1XZH+6CbE1S7M6PNGdmkvOXgizwTSCRsnFmvJG3VaU4mNYhDVo4bicA0BzI45UxLamZIqPabNRAnByvoQV7kmrVbqPMpdqK8TozFmyfkSj/03bo0okdZFP0HDBINl7I79tDS3ASf7X1zOa/PFI71xdkPpi5L4OdEJ/bS9hIsMhKaHqZRhY79tW3cBHQ9UlLyUoAq6DHKjqsXWIwANlqlDWrI0EHHQyj408cywKuZT+bhGdx6ZNfiEUjIG9vjXic7vWWXN2VxJ6MMdrRG8laThXm3txeXfEYYjc1B9/CBwUQnp0f7+4Kp2G+5nltkS4r4GzG1Wc6YWN2/GhoIlS0+v/zW5IIS6kCpM0xocj/g6tvqgwcfPXz0YWClbqcUlg4XZlhxuqVgP2aTu9HVJe19eXZ1dTm8HfYP+6h40DDc3VwTj6O9k1Z9z+kSv+IbhX23I2Jy2Tybl0Ty1Anh3me683B2g60QhgHN6mJ2d1XqSLBPBU7t7iHa0NmeCYh7IWpIQJ7o184XGJPZZenqt8Pf/vz1y99eXL+GYEyGSXPFb3/529/7+x/IQSvMcqai/6PRih2z4rbBchTOPjGmL3zFBfHF0w2S6r3X77cIbx4mkYW1yEfHGSpsgRMQj7+y1U+Hqco5j95RFwHnstlLWLTFdvc33779P/9f/uXnf/C/f/ado0qTGABJpmOOkihibaLk3CqgJGrOOOYMuNMCA7g89I3xHk94AQNNkLgTdDai+hoO7yCXwMMYDlDwUINS7mb68f846tuMwHMAKbr30Ur2NOO9Uuhxw/HFKtIwyfOUhaYOOLbKuCbRVKxEcEPKDe41JicNILSc3rZlndtvPeKA4QDXsKPkZhTpXh9PWSX1NkUI41FCYFSUbzluLkiRxDKx/5A+EqWVhgKAlYQZZXZ4FJwGpS5HKMjwsMDBG03x3ezA+3arCnhagpSgjZ2/vj57/eo3z7/+6vnXr4ULiuBONTcrNj623MbFE8za2pq43XnYIzY9z79/kl8d42CsU4ON+aPf/+Ef/cEPv/PJhwcHwn2NHaPZTJ8FPTJOgFMGd545NfJ1HDI+XxhN2L4dpTuOGfpPydt+XeeP+iPmmcLOJKD0Q2ED2F57kQ/kJcQBSTokvxTbzhfg1E4ywWZKIAQelsZGTKZztPhDFfzlvVYArqNBZKt6XfJOcoPqIGWo8o3hXJk/rZlqdW4uUnzj5HJ3cYzO1goDuqvA6A5D2F4BQ6dfwckEBA9wp9mMVXIvZ7XKaF6aRfGD4m0XBk0yReH+KLcq+08O7s7Ok1N3dW7K1cWNovfjTRS+ToIAyhv9D++Af8OTTIya1H6KWsVMttVUBzm8PidEbI+LyAIuw1yHiz7nLYVh1aeR/K6lKRx7UUXqbu8HyUJz8WL4SwkBNV8xtE62p60mEew0tdF3TMvjpNcUynEeNQjAaDC+vrvVgoY8D0pqK4YJ0uZ9PWre7Fa3XuUuLAKkGmS+wVeqDFwDOt0CNSv622dAZEIGtNIJmZ35lFVZoEQ4LjH8zsyeLK4aifymbo40rbB+LlJzAgdNjstt2VwiKC2ndWO2O2EACiy1gj02bLvmHdLY6YjejEZJsZU2XWyr+GI2CyZytpZhkv1SkwccD35GAActaFW6oj0eaVd2qrYPG59ZNQSQOWeRUpsVW6uwjyDChgvdCGoMfA7hx3x+rb5+03yOV1yul2pgeGq7mr68RdFuBryYc8ObIcv39T2rIwJVPppJCXtvh8w8+fnR4vDw6PGjj9rt9l7/SE8ALAFe9uvN5WZ7QSFSsxRrCEI21H2Y4O/ntW7thFFpNfbMLJCExBsTaIDdFekQ5ApK0zH2Ao6YbmqokWL6+X5A4512egknlfPfzr786fMXv3nz6s3l8FJ3LArVMULI1S+mf/76R/3jB5K08QpderwyeoKrWCiDJB6Fw9Fs5C0gGxEiuxcFX9xrNIgbp+yiNAoDQcu8/4FCSWjOKoDuyVVvIyMaTelReV7lMgF1ZgHel7oeoJT/+q+/+tf/6uf/1dN/gFhRdkjk4R28XWyQt89RsZB5JBlpTTuhTg+iOg4guKq5g+lfSCs9nO4c7cJ0gDznCvb++tYkPSw/IySfo9s0dXNrzWLkwQp3fQzJS7OicltFN5OGDArdDdR21u0udbtmopWWYQ9IdlDg92UhOg8QiIi0WQW5D9fkhGowhyWMOeDHmyIHjU0y6qKgCmoKlTRpUAEBCgV0ch4VsQdrLj53zDZtH7hz362EiIQJShcLThrdXRkc18UnQWPNBG2Zn80LrTVk/j/+/OmDR91KYzPbaDFbD++uX716+Zsvf/3ll1+fn+GLWcpxW7bsVFQ6qYmvXnwVi2lxfWVh85+DHQ87hsGyWJPa0dGD733+/e9997sfPH0swF6Xhoicboc3alSz4c39FlP9rFThF4+XOiY11wl6TWCRHJhy7mQ4ZWS113xwtP/BXudxu6kw1ndfyfRYI7JFmnyyK2R/hYl+cIXWOC5u8vXygBlfxgDONE8ZUmbNk5R1mdKCt7fCHdEfFF9PRnC+N2s1pt1ux0rzZdn7AJWN1WUAdpSAbiWGw1GvEMTx3VZn+H/QQe30ecxdDTO1jkCCntUfxx7vYOQpHdbLBkAuseEwx1Ge0byr8DNQXHTZ+WvcVpnQxFOT+IHiJKoUpmWWXCw8nizse+84dDxJcMXnKLakiICSpYkXqfgrfUNn834ozqoKKnarZIRRjaRY4WWLaUrf7sDC+c8Hp1t1sdkdKmTzk6QrY3fcOiGyqAlNmFm5HpXW6dpq9Fmsg/bDkx4kCYkdNIMmQkqkd6GiYJOyEBZiQTCszj0Md5Gmoredjzh9TJ4BuY6nq5bt1ACeat1Q7OUBBV/QBR6A/XM3gUDpsdDJmaSZoyC7pqdCESxvlXkpgORQUhS66CbTQVQT6XmNcrZU+cLIUBaLBwRU1iBk7ieimaH19youeNVrd0Mff71YDdqt7cGBDI+UWl2rgYY6pnW3gsPxQKBdFhQaQ9Q4aNcOuk1DB7UdgEzIuk41dd0Zrja8HU9ursdvhotLKTeAXVE/vvqdnbuL9kulYx3BGRxXl4PbU/kiNRBLAHmslIvOvVF5NizqlPBVS522zBiP78H8RPIH3AfOE0xIRkB3G8SYBla2W1LDgMDxbMgDCo5/1/FAkC99Wjvee3q4e7JYjvgvDKa6uRk7Bzrz+seNDhRWTUZcujwbA1U7G66nO9MJgONKkLFd9GcXpbuvhj/7Vy+/+vlv5AMuRrcTvXLmoIKsVe/nZ5MXL19/8L1DgAT+AukmZ26A2IrM+HDUa5FKIkpxD0W7bkqbZZH9ccs0B08t+ZMi30TduXsvFZfbQpGE9ShigqQW+dKMh5MnUgQI4BTZSJ4UaWEMaIL25G75L//b//4/+Kc/OciMLSqAHohbTSvHlHhpfHJS57DECed8+XGz0fbhWh2ZlIVRx7hoAhRIgDL+RKrIdxUdxuDy8vpNMfnktVyYlJJ7Mr/aXHfKvehMjONJFxd6Ut/A7tY+7NzX+7v1NgMpMe9AVUTL+srhUEfDe2RdimrxYVIWSTU6YbLl0LPhgsWniaIRKIHvlYbjlZECmmq4+LXastkK/DQ14w1YoVg9NqBde9BtPIGo2WsjPt0Hl6t2N0pkih6lJIUgwOqj0R06GLrKRDkAiUPtIuvJ8O4NkAFhvro4+/LLb3/+d1+9evmO45j0S+y5bJurj8dd7Ar9YH+KtfSAC40HU9jx9/agSAVR0oZRHhyIlZ/wmjARTJevnI4wAGhtvns5GZ+t1zfV5qq7v+223buYhCEOD8d4Upkhz1mVW7f62Z5M5tcaC2e9+V7/yf79jjZFZXCXEJmJoGRPba6fOcrZbPJFeYPKpV5FGYxurs+H46vlYmRbQPxDCoENEB+gOFCnxq3KbVv0Mx4Pet397kRBPFhZUoviXz18ubmBp1iUr7bba5mqIj9UNn15tqrNpsB1h8HY28A6Fd/ciLLkPOIWiSQYf4JWdO7Hl+N9Zg25D3Sh3o3q5cXtNvMT7jPQMaGL0nOsWv48Uu6uhNg0YnLdbjPHhaTlbSy9f6VZHIGAnzgmxd/RosyPQyLUkPV5r++hGJOo9eV9vZtdi6ZhK+AKizbonNfAelmuov4QE1SozK1kryyYlALezVW3XR1v1lPnWQC01aY5Hk4zklfTvamYHbwZfJp0pNz3W+WDbrkFftxplWuqLWgY5FeK9jRsg/FcdLHKw8vJGEytRK2npcx8OoqMil0yHH46wcQrI5QxuUKMUN/RDoRPqSE1Z/dQ3K5qXDHYncViClP1Iq+OkBGAsebRFWkhkxNxKFkWAQXiDWOaJ2Ic4f0aQOTO7a9qfYes0uYiL0brenf3YVuDymmj1q3sUN8qVwcNWrR96GxYvXJ/22+Nj7sSz7prr99cHZ3dfnNx+4pzwayKtgS51cq3cARHx3eHB6f90gNo/8JM8gmpwLgwrorsShCSDGbfQwwvSZDG0+SsI5QVUpux6XpF7Rr8+uXNOdzA4X5jvuGXv7u4PJOp6DQ10pia/XCvsad9u8duwe6G7GAKF64PV+H65Phhp7dP8oRcs8waUZDmWwapVhbs8h6k0/jCw9LLn1/99F/+9Of/09u3r78ZLK5HulpSW90wQMFc3Y3evj3bLH5wHyaytDIKWQDUnP1Ql73PuQgpY8s5qJLXumtwy3NL0WvEGggIA3UvPHQrYBuJpZ4laxL59CvhhsCrzbr1+ZCHQ2TjRrHvBDN9lXp5oDkixA7levGzv/niV3/38s8efj+ML6Tf7lhWhybvwzXJ6/KzU8bk+pFrkUKad+NylWW/AvcvG3g7rze0By32NsvTldWOSE6mJjJK9YFDvnzx6uuzs7NbA1BuR/crpCAyGJRdGcCii/K5AffsUK5MK2h3toePy83efaujxz82cbUuL6cmiFXvbsoYImGHJO/g6Vyw+1/MgsHM0SesbOhOeZS2AAkcsiK/VO50lkanvrebNpGKYCDY66YiAc+stzg9afQfnDYPd/kc5W27tSi32uAMI7wYminb7R7zAW7caezyx/f2WvudNqqqu8Fbvt/Nreb881/99tU3z98aBULNqRG5ZpFcquKFso2Fj4/PbciPtNDvfi3W08+0jhcW6sshlcI3nmWCceDsAijk6mr2brbV/na+2NwavMGMNZADYA8LYrDUCUo5FA7w5Y2FMbo8CXkA0N3z6bTfrO/tzhuVkUsSoArcM6kgHxubG82XqyqsOw1n3xX54/nHeJvP8/Ly9tV8et1pbfu9Wg8oum60qFZXra2j80v+Fabod3v9k6Ojw71u79A8FsDzpuALom80XV6OV28WpdeV3TuzJOpuXk5CYg0FRFh/4p/sIPWQtb5v4/y3zbgXVC8ltHD48rIYNg5G6JJlKHhChRjKx6sxr7CHxn6qy1g39W42t6iSUenEwBJ7JCIcK0dvkpTC6HoROSfmyQMxC6RZ0OLS/MMT5k2xAzypZF94u9H7sR/cjNgQxyY5DY67ZBldyXvL23sHByIARyrYXzAJFJOQRqEEoYJlNelyvJ69HZ7hrc0hTYINF4x3U+1hyf2tIIJFXbbb5QMshDuVPbqbQRZ/hKq+spCAKNXsLg9DVta147yRYVVSJHCyIPqtNd0oMcCsJWLiiouN1cfDAJlT4Z5dJDuaWg7DaE6TS3M3EpwxSuHnIxJEVMedG6sorCY/oudlR4uyxhD3pOiZJgSZMneRWfSQ1wZMb9qVo/32gXrLsjEHFjpsPzvpPmGkdG5DUe1WYW+OKLRoVsw5NQQmfCktO5t+66EQobar9tp+NX0+XVxAzIDmzYa3F+/ePnj47oOHHz89/UQE3yv3jAbY0gq+Oy0uM8bdDrg3C8F7JdAJBF0npYHRXPLKEsrdGg/18vVvf/P1L5XYV88O5MB5VXcz5Ol4DyuN3snB0QfH/YNeo3XQ2fNuFkh6YNnSPKjXbLfbZ8mChaZ8a+VmZ1crBtdz0+8ehMZhuehg1Jg1vvnZ63/1f/03P/+rn52fje8m59Odu8UuJh0ODGdQxrmySu4BWDeCBE7OujqQcnwstWWRSRF8s79+AcZh6tQWFphXloIAtt1N2xBFZ/13qXc6w8TNJqXwxdAFABGr6HWtfrWzX9u+9iPrQoe6H8Zb1kWV2BuTBJpyZgdRPf7t33z5o7//faovh8AZlXPlBURMC7nOWxb2I45QlEXxP0ly8WlMQywMVd5qEfuamcoB/7w3RnyaJwWsFC/bxcmDb96evTwLmc6rWuXdzc4lG4svWW8jfJh9WprAbISvG9/ONLW2DtcdgAPkp6yhnMK83JjttPqYft05JetAzvQTuGuZ3emCvqgspzuTyXYwWl9dic5cRXk+L4GWrmZ6jHJsIxpAsgmpsbtsscbdtqaL02qzezFZnK30o0LT7YAHyWYoVrf3Or357IFI8eHhQzbO/hvi19ujcVXJDfcdDW7GL19ePn9x8fzV1d2d9eRRwcVRF2u456xicdxjLqON/FKopPyQpwrb6jm/uTRuTFxSWRkl5eevvnj5xjIizboclW66h+uD/UWnNWs1tfrfEzd8PBKwYH5Mvz2egIuYcGWrFLUAx2PeRDc8uvFqPZhNdrfLSSkxQ89whOSB4urFrYwHq5k7l5SSAOcmtX6sK1cXL159++b8a1yundbm8KCxP9tt96VbVrcjXah3b98qa8rcXTYaLw6PesfH/dPRfr8PXisgNhpiMZyfj5bvltvLSkMzB/tDhav/VeelynQ5koywShWafrlqVPZLKxgW55kTCjGjDKOCXJuOd+eTgto5kCPTRRvWyApVD46JQEqRO1L4Mui8q3R+ZCS3VJWVVbH1WNLmZLzwmd0gASXIIn34iCwzv42+K0oHVIfktLJ19Hpx1uIAR+VbnI3JBhRu0KjWKMfEX4lPJS8p06RXFTLqdSKVSgStSjNpPvC/aNBo3uKdgEFTTPNUitY+zTvxxSbl9XTMk48rs1NedCY7q2nZ1Er5BZ8L/QLROOFtygftNukyBAnAWWoBjEjgY7Ux2vQc1k2JP8UZpCXnU4B5Te3FbPIVqxsaWSqT9aM0U2bMnQUxoLLofpyMZJPQpBeWksPZbSNcU0DT3rjT6Vf0HGlFMxJa464mrhAAaIlWQ1iashApSj8uxViuU17Sw5Vtx2DmvNsO5BeQK1Ab3ciTTwABAABJREFUPhCeqKMrPkxWCvTHOpi41O53LJ8IXsb2XNTI7s8D7Fvc79xdzfvNxUEfbFSBQSSoXk1FwgbbO+qKSx7oEcSFG7KryW/RnhBFztAN99PsOe4BvTB48ebr69u3UuE75wNybBCwGUntxv7jhx9+8MHnz04/xJ+CR6ZVVdtIwtBCGWux04/jFiuTHcskiTQOos6wpGry87Y9TI59vnv7uvav/x//3b/9//ybq8ElvMhgc7euSB1Cwap9svjapuqmFh0eHaSnLmX/+x6GjybNwBPf1JWiduvUpbE0vGmCQzvwtUEQUJEX05H51NSt1r8WY+fUpyUptXlFJqy/WHQ3srSpHYkz+/3O3gF+W2fcMStMI31tnzk4hU6KPSghzREwf/vlN+JUrdd8m7hGcn7vX+nMxKZSnG7/vYaKtorZjZrj+VscLyokKq5RRNqz0k/+LpuvC0v1yvxWMGdedet4r3e5331y0Ht1e3nOxpvMesidbnVmiOeW88rly/H6lrVU2GywI8lgpatHuJd6ARAOKrqmCXxCNYmdUq1t9pIYNwBAwfpmrkJQHg+XtzebyR06GktZv7pRoE6wtZiZyhenzSWrPTur6DVm48rN9ezoCGbhpT5egEzuV9XIcPoV2L+1DxgQ/snZHYQxUi9sLCHzdenDy1ffasG+ffHyErHVyNh5SNZ0GEcwsguyV1HsxcpZtaj+LD8pff8T7VXofr/Zl3zZ0ZzE0uby7mIyvXGSkm+uTdsHC03+Dx8ZxskR3tRrC809+NQTiDlSin+xV/E7g+eIw2zMVRWyTl52pwobrSNBR7fMMpWXEESHA2c6cT9NosZfECR5J5KPOns8GangoFC9QGV08WY2v2u37yfL2lTRF7XJdqNWNoTHC2QgSmCh6Fe+XW+bi3ljb9JuhB+FfFN3MkVXq9KQuWyuOfY4Y1ieCvoYuipos0lae8L/j7KKg1cU8tUDyis8ee3Sql2575rPxtVzYEQfgUpGfd1X/+gfPARCX+kGXnVW5c6EEoil4IrBijgAQoS2bHZdYgkd/G4tRDCTifurlhr4p2l5alKcxPbFaxIFRBzEDTrUjHNrSsZAtpGSELOE6zQthLAJjgbH730hneed8cicOEzlKMSqYFHihIQXmfGWsnl5txE0lofvXVf+1AzA+1nwyyKPqBVbxX1ba4pLBE/em0zfbNG4oy2YvIxtia5j5GB3NIG5qulCWBBqIMzu2qZF7fptZXKEgKhhpflmwm+zuZW0iaTlQrsf2czHRbUlpxbOhhxV4ig1ljyzP85ktESF5XKryeA3D/qdo6Nmt7M9OKydPOwf7nU0z8AwBcux9se0KuT8Zq/LcgRfbBVZDXHV7fWIWllPfPeR2uhuVhB5q3G724f6ko8K2yj7uEN54XqkTLuPTp5aIBjO8/MLfKEIpp4+PH58+tH+oXnWpwf7TxutB8tSG8JzffFW1pa9lHKDAKRxmEGKMlkS+56G2KXqwt2dYSNDsBRCrsmO3azUl9292q2sPS6wBvBII6H9zoOnJ9rqHx/0Dps7MopBeQn7AmyOsabbmbckFZPgi/VKEjyLB+UFgdJoiwOc9Nm6/vWvz3/6r3/x7vzduHTrVlbIgIkl5asG449Jd7l0+ujw+3/4edCOasm5AS3LHIYN2APU90ZrEl7lwN7tEnGhq1RAVZhYfO1xw7nJ3WmXC96GGgMJx+oqCaPKRWyV0A0OKJJs7q1+crRvgWhh7xKVHq/PzXEDoqPsvBux/UKlX/3tF5fnt72jAzaVt01J+aHwZJJnc+/xFr20KGy5Qj8SYP/lITqoyH+mUFQ8oaSe8MxXXI4YCf4RyAcpa1VbnV0I3JMPTj80bGQ5G1lli8o9cU0KyOqMZ4PXI937ckESbkEwmR2piGaQBj4WsP3qYFPuHZ0AdLZFgpWFcthObUmOWHS5AKD4AG7hMMP75XbrBqRP0ALPAZOrg5GRv0GP68nQ3oCXZgYnPduaRQzOTQ/O9+83+7vHPdSW+B/kqbmZ8ZGU81Qs4zYGzqddbXVzM3v+6ub58+vLC6wGNowxtHBckHjTjIALSeLYKmeVfGW54pBaHR53sj6etjp+ZOatqkW1/gQAHD0NeapuNSext/P0Uf2Dx6UHD8vNZt7GYE+VQiAlZdGUlzCoFTTf7AElYT4rWoFVdRY0/eom8ZJnZ3Np2KRRJkXCIPACBA+QfnEm/5cgwO3hULoZ3p2F6+zs5eu31+AZCXZKg9nyYrDk5oqDE1JDfJg8/7sbhO4E75wL466m6xZAgc59obekMQ9WqnBWmmm+bG/nHbNcJD/CG0hbYwBNY2d5CQTerB6ovQBXMqIoy6TeJAUXlbVpdbIB1A1dy6oIEix+9fMf9CdLvCKVpYQ0Riq8EesK1v3xHBZFQgQzhqbZKCm8RctyfepC4LXGU03dZkBrtRJ+ikG4kMkIGUCg09+OlEfqi4boqMwSmnBBbipjY2emJKngOFa2IDFAJlssQ/e6l/aapb0mFjZ0qGl3AGwY6wBa6ERI1C6t5KCxzPR+5jgkh4VkQzZMTr44J8nH4yJJF3GRyKCAWObKSjDIRGU0MdhTaCtlA7huQg7bz6PkFZluiuMWZxBwnvMTJ0tEpBwUc68LjGgwRKmNGtCZdiCOv+SVlDbGH2EQc+PmXRjvUUuDDi9ZirA98r6hrEOvP5lMRUgcQ0n5q2ssl3K1VDZPSh+19bJaEBQyG8TV9dc6+A5ptOpa001L2ZqB5Z8rQaLNGFOqaHxku8QRVJdkgV2myL0P8h/WYe8Aw45pQuPL9l4dq+L3v/ODR8fPWrX9WqUv1F+W7mbrayyX3CQ6l1LRA87HzKzQwFihcrVOg8XNAvaorHY7y2YN/ASsUFR43wQ8GDZ2JshLKohERSA6UZq7e3uaCuRUcHJoLUuQQoeodaiWSrTJzQTz4ujKr4qJDPwLLiC5Q0fXGlPjFoieLn31d9++fPEGW9SiNnWnLC+hsfu2in6v3kPZ1v78L/740dMHSSKyLfEDqYR4fzz06AyrUeQ6+YuE0j8OD1Er0niO6Sz3km1cD+tXo8nAW3NRwo3MP8FvgW29i1mPV81BLD179LBW767GI6sVhZ7P82EUE8fGV/KqbJieouH1LRT7/f1esBLurHBNc1W5+PwaU+HXuPUELSos33O+Co0W3RXl9zsl56IKh5d801HRa3F0kMW3CB46j2V///7RY9gdXQY8tjQIseLbFZTLmIp4+6vzt28UsTYz/GIYHXv3IQsuL6PpzaLb7ey0T/unp739RkPVBeTmklTwW6F0VNbJU6BxEmIIeUl1kmd21DJWtoKD8QaA5fpmdX69uMBjwdwOLcEupqZ7tLMzL9oHQenUHrbqgjB9iG6MPgVyuoNoLBuXsByMZjBOl2/eXr0742cILhzHdPAzslmERGcq7sVtF9+zLL6sVZ4lSondvCB+EwuQzIRI3konVoyxdgMhR7ZnNrL84KT+7PH24cmyWw/2kH3l69ADCYvucbjaJX8UR7BIXROWCuanzVQz7dlkb9VsDHdVAMqnqXCXT7LhPM7A+pxM4bLZzb5H1TDhHtLvMJ5M4DPMYzBEJ1jw1FHTvc/hE2lHIII0E6qQ8ORcKATHxhvdIbXZXY9mE6Q+jmfSsl4ZKYDiU+Uy0YQzxA3NJzK3UnswXlLBtPi9FECcKmyj4tq2c92EeaQ+ACB8jvmp9xzuama6xnj1V8u7EcgeBJfjLuEH1yAAma96iAmct1Z1Dpmq6DtZlwZjw2kaO/PaKjYK10TiiU0t3J+UHyRX8kBpkvUdGhNLlEpilT3A7otJh5VIg4ArF2MavrNETb6aj6WWpvXKstusYZJHDIIhVbM4NaTlcbFqVuSKYXQVNSVEFqu7IcFxem2ytaAilRnoc/F4RUvLbp3txLiZHr/CJWBtAuAoL1Dxheu6u1/r9BosmwOVaEXzhPpwefduvnN+O766lULIwDNWYDJHH1pgDBkv8SBTg/BRFZ9dcfAJX8BGBdebTNhoKgI0Ua/Z6+42uvFetmCC/jKJ1yEKsZutyVK7ajY+YLfc7lGbzIWNu1+EIbRx0AWx3uGd4iIyDlp7FCBAV3O8juNO8hQhM1HWEYaWZnMVaux5kgKgORkZqimc0mOAhBS6Ix4p6QwnV2ql5dr8uF8/aJW78XMckMFIY+/89XhzYxCgnmEw7xbeO6S1rMvSCF104OzBArCJdt6s3icG6TfGz3nkPBj4ua3NOYRgtGymzJ0eDAe+NV9cXN/VQQPbdeU018RlRvep+jtWq1+uJiqTlDGQamPTRnxY33TEW7vSf0wo4ElOx879ePv8Fy/A3kWRRYr9vuKEyv3fq3PWDuTLS5vOfv/v/8Wf8UwUfbkmTl9RY6dIC7mIiogvwkcQIERbpBxDYN7zHjOZQrRoFOe2sauzmh8643k6u/QxS6s7GoSZVLbrtb3yzsMDvh4VLznmOmkgaEJmKxk/Zzhxjs/I25fnw+nNxdl28xQhkGjHYfZyLkq8B/8VfywlRY27QheQK45izy8W169JMeUZ0hmrRSe4D6efdsv/85/XIYFo1A9r91u5CEeJg5Fqh09UiePy1y7Pr2a3+4dPWrcvFJlaOw+Omh89PPig3dzXxju/r99dqRdWDzsYPw4P9pQskNnd3S7Orubfnt9+czX5ZnV/K1MvzwHXnKhrd9Fpr1tQYSGpd2BZy5g/EgmB7LaSz0Vt5liUd4QCKuPB+aanGdZMVsXy23t4mLu3Fy8mk2sNPGa8agx7/vzNc1N431KRrL+7tDI+wI0Ua+H9sjpuO5v63mDmOeJerFvWzlPxAnIxdtphLnZe9kypP0qVJGGY6HbuW/UlUAJuNOVE4ayQioqP1RFTOl1BsuhToaFK8jq8sskaXnYrWlRsb7ZW3d6w113Ka9WqRz4lQzAq8hXo1ew9AckxFqTaBjo5/kbm+agDm4WCXizn0z4WzqiDBdAfSXL13sgfRx8VVktK2oJbDEm2mLfVKl3ZRC9aLiaZmU9kyxlvxosIdozPq9N2CwCOFC61SMu+3emX+FoJjaGJ9MDO7muyTvI0Ve4iDaMza0qqv33x5lqBINnaMd8OZvXm7H50TY9wUWWaluv9K0Ct5bR2fVHGerYYN+6xayLsX9y2e5ujByVptd3GfKKZjE+DH/h2eKdxrDJBXatUDkyLtMqYFt53t0mBknJ6IcaoQ4ym1Yn3HLAJ8rZ4xNqMGffIoLBOf7/c2q+UevLuKx3215cwwhmawiPd7DCBQQtJx8vbAR3aPPGPXt1dzND45sLoV6w2Q+qFnA9jwoyN5PYsd2RfGno86AFjXNCjKaIT2wLiulNTAaO4nNpeR3MScQ89Y/abOikg1oJZkAa2PArVh+WeatVxWh5qIkOMr3LLNUkZpiIE3FpeqVEZp3Uw8lU5JSRq128nrkfCg1hsd1rL+eBt5TIhQT0JYGRps+2oO2+MFhzzo/KuQJpKIxs5XSWsYxJz1T0z/PBJWAZROkHS8cd3SYN7d2/94PH3vvfdcmM6Xb3TarWqnF1RDGiU7+d3q6vxRh/tqHQ/XYN3387q14Z4HFhJcB3sJIreWkh44wZDGD4uv4SaRPcT0IdYvl7rmXiGf2gyQih2PWwsO10ooQXtMG3utlrr5mzUah+1sBYBFBgHcD+abO7mi5G55TDvTovr65b3ry6uW63jVr3T0eMhtWFzajrGKqt3i8Hzt7Wt0Er/Uo1yTYKK+Kjyiss1AO7cPzD74OCBBEl6ADNwk+UqEj3JNiX+o0NzJJOTSzuNn2hToVjhLFpSMmipHDkuUBNF3/19M+2ycgbSZ5Kpgfny4ZYjg7KFRXqu643pkK5vi0N5aVwyaDJnNr/RHPLn3AbxXrli8MJyPiWR/r7QW9HsBbY5rgDdbdvdEZvh8vKvQ17YDxLFYMkbuXCiG3kL4XbSTi44IQIpzUiM9EVSzYWRoOyUMtKYVkD5o1MgnxalUv8W0dmHTxZ3H390+MHJw4f9p4/2n+3vHe829qb39flxilZmBmmuNJrEXzc249r86er66GbTujkff/Pm3e3dW9wBjgkySofIeKhOp7zfi5u6XdcGN9AA89tx5d2FOiRIu0hN78+K5e/V608enJ70Do72Dvd7fVRb4lRBCr6aq+uLN29evDt/yZFjHFmRi/PB1fmAY/c+YRafwQ3n9t1abrFQ8LlNv71fT6bQU3HBIvRZF5EdQ89DCysNpHO70WuVXXbhECTNohO53d/UTMS636Krn+pahIOMYXM38tzG2MFpSO2loWc1Tz/EWpnERb1nC9A+gCZFT/PetnbS2W89UEWRD85nRopiq3ijtIT3Yom9Bfyf1hZnmw+lEVxK1mVauwhFAdUvgsbCqLlFqj9T9TwnDcpryk1BKJrVGx3CuPFhSSKhKSJlTdNYIRZ17IHOfh5znaFx2Bm5GAa3sWysq10FLLkUyY66oHG3s96daWXR3tfepZBbtA3ajaoJPwaL9Y7rR5qLdtvaFQ56qzdfzO7Obpq13pOPDvcOG/Pt+s15BuNtxuOt0cZABBJr1W1vb6LDtH9835bD0endbIxG1dHNYrKamnW4r1KHzJheDMASkw431/pII6QrxS6LD5rpXzZVqG4dd8rSch19tXO8kwi5lE87LrIlz7/BKignz0oKbZbljhwCI80hjVtUJAvR1SOkk7vcmRnmJdGjVSJ4Nv1aySlSrNx5brys2XS4utOjwDghNWuua/dQpOvFiIoaKxOX0eFO16NSddns6TNNukpKiq7Jh+1uqrV7+C1cxRRLvAeTwXcgaera3ncNONWoL4FjLhL8vEpzHAIM4E57kxkQXISRfjpv1RZDtmwwEh+ZkaQhYXQ3UW1gO/r7jVancS8SuB1fXmPZbGCKmC66nSYP1dzfKnKLSqmzvzdVg2k1Dpa7Xbqft0GcOQxwFzQR1RO2jO2q0ydCxtKO5LfuZs/vZgaj3F4PLw3vqYTWTg+z6Vo7Kky7t0i7uPnTmYktRp7PVvoMoPV6PXVRXr+IrsLPXkzt4P7Ozv48lkuax3AZlSvVgtKsOa43X7ZHl9q+Zu3jRetwVqqvbKVO8PKtH+aK3Au0ADa/U1uKwnr9yl1743unXz7p7vSo7MqqwcpPhzpXDwyxiGeWkVrpscDjiRdRh6SC90/+wZ98/P0PFBUCNF7NhqM7yWpQEkT27ACB4PiB6QXnU/CPxlNIdB2dm77y+FtARMWx4x8WTnVciSheUQK/IMnGObIfPdVClj7cXmNxmcMZgQMAElUmExjzJLC0Fo1yI57Gfen6rensg27VxGvVB2oqLh42HBla0kdPBy/M+aB44WmEok52LAT15hodFeFQ9pLOc0ZYsMJq+ZGqS74sb0gR2JD8lGNT6ED7AnxK3qJTUEru7z949uT7OHs+/vTkpH142Dru1enwfhX8Ur/+fgiZs1ZRqlGnNf7x7r7CsEnznLzxbe3s5U8NG0E4kUFBFQnP2V5fCI3syrpUxrh656lnSmpLHLJQnU7lqN94etJ7fPL4wyffPep9erL/qFbVrQKqFdTXRLv6aABA/PXXz4fDa73mCm38WVnG1CCKsxyPv9CqfovH79/iCqPqC5NQHHhP+c1f5P4V53zjkrWMX9Z4ctA42m9qE7KGmnGG4Y4CfBBGL/Ana2hYXKsc8J35jdxEBbDEnwJqgT2ryNrO13hQMBcl9Rhzl5vTeLWV9TJRo757221ddW7eQTkw87v33UI3uH5egaQMjI1rRal6r19FbCb9KRoQInH/3Y4SVp5X+bLopC33EENGV7mL4oblRxIGcjOk9BI2RFwzys0jXhIaHYsUm198UuqaaqoxHQXZgWW+rsrUqhZCRYZ1t5voIZ+s+6dLrXJnADS8HetEjus6eTa9e8yVINoPm+37z+4//rh0fqbLZOfkcRvTxIsXNzBSPKXl3qb/pKHroz5Ttit/9PHuRx8Chs/0+iyqBsVtTRbpnNpM034NV+vxgY0JW07QWUu9a9Vllg23FCyYswRzHKahzSrlx5RAZI3Yi5L6wmY+mE93J4cZgUhyykPVJgoyOQsTkfH0aM5lVAoLn/hf2KBZDpX/hFQ3urLwkRyBcVxjEB8tXR6Ie4gJVxokEHiJ9aa2692qCHY0XXEKNiVYxarhjHcYraqlfkmTFIJWZAZpGYOVukchYZp3ggGAchWFrQgQt0ENQ3sfw50Z39fQDUsdJFWEmbxSmJbV/A49LiB+XdOze5jcTvR3m6Ulk9HogMeo8uyW99QKnIQ7QqTtXi9wRsNutldn+Ojh9jadPgQWCy+AENPqXr4YDNiq7f7+jRlaYYVBrwhjVEMNNDc7+/JKXtWsh+tSY7iu3u6m83Q2WY/XFQA0BbuVOFdT8W4mQOE7clTwgdNjtgRhKhWgd1RcJN/EbBHpHWrSpBgcNeXtXbe/QP5jVtLOkwOtEsuZMQ79sOPpLIEKkQoEsFruop4CQZ6UL2eVO4VcpZudzmaJ9WB2U1pDgneW4zez3YNV+ZBjpEKFJFgO7/qGu9OXdClrnq5OBZ9h8YvOBs4xRmJ++Lj/o5/8WL7XoLRFkqWGC1wr/dyNFDZoI+ldgOCd6gLaFhFsI+WaqEmKl/OVs0PSJMtIXFSMp/M/ZzfwBavAcugAcVgV2PCFzKn20/oD9CGIsyD/GIgc5bwrbUX7c20ICOqjBmwxvXGzubkelFoI1GApHNZwZ4XwxWw/41tQemJbUARp9jptswYN3c2SpS/EG8qw0UcxVoqTnG1OD5Rw9F3hEScIcPCJVT79vbLk/rE7bsGLmAgpCGJSLsuwffD4Iw744ycPcPnsd/YM7Ak2SxnFH7ArzIlgKoYl5lDKkrFkkPKC3W0baqd//JsXXxjizprqHW61Hbj15FZfmhn0XAwMZ76BD1X7vdbRXvfJ6fHD46PHJw963Qd7vdO97sNue99iEYb1aq5SjbLE9/Ozq9cvLjECyBgEDErBJhebQCp+L33IiuUG82OOcREJuNc8VHxZd6tq+5Lxst0V/fw7e/tl7QePHrYenRo/jL+hqjo6GM4KCPaqJkNSkzqhPlKtA3DJ3sluadJMiMhHTJKNRNBFyc9QsEVCqVKjoeKG8B9pUZW8UfXsWgIuCWZVlwfVak8aHHpFAmNXtlsKQlJXI6a+4vm1uRJ3t+d8y7QMhqiOufEtJsNluKfCsDNgSWTySVD9MCpsue+BL0DLeFxgH7fFSi6y1/eyslJDLpWz4C0Egy7eqjkrgTqMNsOQK5BYxYCN5jDxKMi77h0VzfSZyrWbvsFdFGNXr98tdird2dVisHsPstKVt+msT7/X+OQ7tfPB9vxK+Xp6d6Ekute6X3cPSo+eAYzsTO5loHADDA8OE9/cjkdxjcVQsrTt3aN+RwWN985yXl9wFoIXlVFSn6RJsbdVVqPFaASnx/iHTx+TTqahlprrIfgJePJAhs6gs7shNU9fSxwovsMf+BOFWWqJjgQ+LoJXp2yFC3pPF7yyjLPNb4fvxYCylDfZvUfqmcYfBoAVEODn6AZtaGdnu/OVgemG4OlTy4GwltB2NerK1vBwWApl32alpYKszq5rPIB9dWY4c2TNXsyR25RbytHCxsmmoZY8v5vdlcpqGbZNoV5g5lO2y7sB+tbyOvASfgPy5NPjk739kmqwFzSbXS4DzjXgptYeK2j0zdBtrdq15bB8dakQtaw3MxiZKphOK5r43569MOjx5Ph4/+Dh0eET3lmwFfLBCpsjTDLjm5upqsa8Nm1MZohOsdDVmsf3dWQt03rdDKqwafd17YRCSl6tqfDHFJlhvqjK32UQbuAFoePmX8Gb4qZWZZmJbJalAfHf7/bSTtxu9FO4Z3UpXbhhOaxuZRczSZvmm98b4jMbb8fC2oyaD6yK0sB2Uh/PdYhVZyqRZrFuWhtBkg2VXBrP9stdlQ9k8xsJPTir8kJ7MMKU7Wq0069+/v3Pjx8fIDw2gE6LAKiXHCFju8geOilSiEX/ObyAipMYvFJBqMI8O9a2ROTupIl+igNPFrhOBDUHTcbgvtKegvztgv0m2UITb+HPeg3UN6PwyYYdJ3Yk+lfGwN0y4E2c/M1Kh+7c7k3brX1evlyt7OdWzpFPmS/qTouVVl9TGvT+mQUisZt8umtW70BNYzpjsk8rM+kyO5sz3uuedJt6v81kkgKwTbFYlJiwQL2iyHFFmdhyG8S78km5Kx1hu3Up1NLxet7fD+2lUhG7RqvsyFNLRMgm8/8ci1wcPSLnRANH1quVFi6L2qPjw93He50Pj/rnZ2/ltKX3OVWO23Q8fXd+fjdG9ySjiO2xeXJ4CPpl+N5RTwfTAcqujU3zIasdnBY7FTXosmj0ytxTM+XPYLt0PgGE+sxgvt2FW1MQyNa5EjYwxi0urguLnhaiuPcYgvzg38JKJHChJAskyGavv/PwpP7guImVUBZutrpHAKmFenELxD2vVxbyP6JImlzBQrFBng+gJmWndVUijy2AiLG0PoAizUUJCJgHJoiHTNkiCyKCXPnlcrRdv+McaIC/u+h1j8z/rljvWq8BUNsErO06ocCtF5cX785NmXoNBQpGDexDywvwyJVQg/C479yzjZBuVaraNVcVNok+UWxIZOI0lQLcx6URCQkxgEBfpkj3tlo3RSkecDQtN4k390eIsAlkQuPs/erO2ZvWJtPWyCQSGdSEH7wb9i5ioH2orQnG9LPqu5cTznl13e0Q1vJG5q/RXnz8oCFAwkb1m68mL9+gO9lrzwj64vjDvQefovJFRNva2dyocLxxd1dObR0s+eCo1G6mzkZ8ATtbPlgx5N7o4GWjvuq3y/KNPNxFScJ8pz2u7ncmo/rkQl0yDCUsrta7CFtR6y4PjBa6UWoImAtWiPfOytkfP0I8WBftMmmBch9mE8t8pQyl8kTZ29Gi/KOvk9VyDYIZexvbv7LnIoeg+GTwrRj/EkVO5tGCHSXU6/Y2h6WuxgdDm/U3dvZ2uorSpriXG/NFNf35Q44oLJComJe6Yyb8yD3qfWb/6pTQFAxOVhkUHtBTmm7b3C31KssjZR/A+H6rdljb7h/3To/3jo6PHVVpS3nSnvaxs/MLzSNWaL2+HQ+vB9fDGe+wwHvVJEfUVav19LLhTMTUiTBIBGe+ckOvjzCGixvh4p7yRIQkHTHdbdvArvPLUadb6WOS6ErKldSXYB0tdG2C+m3nKPKLkG4taYW5b+Du7tDhmttXD+YPEZEV9Y49DZzHZsrbfChvg0B0fXGjtfvLgVENDcOqKq3ttr1xt7U9Qa4GFkrN/N5xeRDILtMvHydhHB8HQ0avujnolD45PPjwsP0BqZJMKaE4X4ADiM9owIZj4ZXYf+6Xw7rAsXbfP2r8wU9+2Og2RnPJJ9Tg02WFLY7TqwwksRL0qdA63Ey8CkLPOYo1QeOTMq8djpYpwIK0XlRqfGqKxVnk5W1KSAuATgmaRlQpSrexxXq539kfqI2vO7X7AL/fa39hvzgw5W4DTnbaa+7HaffwoycF3TVCNJdDFrkbjAy9RbSnqvKUbsqN7M79NqSfbEO6ldNfPZ7eLuej6kBKkTntY47eHKxLvcNKpcfjia6XtSl4hBhD6qPGO8G88btyFzOQPgq34yRIMnXM0oY3Rn3pOIL1BNmeE+nnKNa4u9SsdVkVJFHSDrEIsFnIxgMFjntTPTl4jIhOTCC29pjq3scfDgb4dQvP02We7h+eHj3stU92S8LQNmYqI5Wuby4vL94KE/jm7Ku83/XN3dm7t+/evuWaRNMnbxYTxtunm1LqsAE2sbBMtsPl5Xv0fNbK9eZqbRTTmkwL8xAdKqvc3TPBSL8BXEL5arwwR/BGEnF4J3g9aNJLu90jyih4F6VpuFUgAsrGiFxVE28NpRfHO/lEH8i4pis4yUaCkpgx+RfqurjI1FAHkTm5rPnlLZnsNJt7kDYkXzVuf++oUe9x1sHnru6u3p6/u749H45uxPacVKYlXFwkizjwRFQhcuvcf949joxyv1vt94UyzYM91JitvT2HSLetEVfx3yfjmymzg+GRYxP7H3wz22B9SJBIwSUn44iNP1B1Sfp7PS8GY9dqSmwteALRpLS3hW1hca13OSho55O6EuVfXgFFV9p3q8oRD9T07Ds7d36jmUgtS0dSS15f63atsao2lx39N0RNb/609Ppme3lVetppPGu0jrpLPMohlmBtMdLJ9m+FCsNNebQx1X4HQBUnEZLMezyYFGFpb7N4ULo8XN9c3V8vqpNZY3NbnQ8Ku6h0EX7NVSBYkhcpCqjSGEuccbl6fmMP0enJBgVsklQmvKfgUTFOoA4KIeubkD6tSxwQ00tYUax66UJjNuUGJKwAddjCeDxgyumI4h2tW81t26wdXSI6DnRINsgELYKzBfMD9FtlkN5I/r2mx0qCHDqNX9HeaXQqUhWrdF5IIAkSWxpr4ixKHki4g5UsFubZwPBpCNvducXyv9M4bsrcRIT3hPIGGeMB5VuxmlzC49NwwYCMrTERqG9X5+bEKEfp2cGxoDyqCEzvxnPAumZQjMpIWSAaN05nElqr4eTmavDyflyawgAsVsPrwMHDyxNGJpCl3WF7fY6mKDpxUU2sKzoW5yNrKSa68VvGfvAJfPsmX5g2AQMJwqvSilQpszDXoTufbEd0ZtoLWT7lITKJYmmEBRRacPNGBGe5FzMoIy0Q3b3Ws9Pj7z8+/vSg//j4oCc3IRtY4JKp1nIfwTw/XPitQFrDdTDTBSYOqxwefvrvfvfTP/n0vilolzGSwGtmxgrgRXLrhfMon6JPjokRHyadwo0jrWlsFLnRovIhjg9rwK+KbgmWwKnnZ8VB0JhBEJIiEgGU4KbXmHaBIMx7BhyQGmkt27R36sDcez6apWCCkydnvNazKs7UHcloi4K2lsZSkKK+CmWXB4MkcouUufhAD0d8PKYbslULivGrXqo/j9+zqkoKyiSsppv7XuBJvlKsDsJEZeJycDVZThosU/tAZ6jSvBORZHbgDsomqg10gqJ5xudZCckhERAAIjfRGUjDDoXvmr11nKsQ7seRTDrIP+DxCL1XfS3oOz3ZBqGRVFdQE+yiMRg6ZV1KqpoyysY5GxSw7wmPoXq9uLm5vHn96s0LhKcyHtaKnrrSwfzu5uWrK3hPwCEJevftarMT0emMga+4eNHy/onHH/PAohW63yMei/70vG/MWMoAUK0bVabtSHb1TAgFE0kx5OBBd1V69eb+rrb6XiPpZvUG2ZOoA8SLAQVAFzoIydfbayZA0z+nyu7TEYylXnhBG+D7Athmswt/kUjTVaCOGy93b0fmKqzWN/CKstuduuaybqPGkxM9LxB8341GaaA3Goj2teLxKOJ+Fw6uSmFMWwoM1OVuCSQd4u+gXz3cy3CqvfZJr/lAOa1chotRf0WxqwZ9O55ejZfXqxU1MYaJVGIAjUwThvsjkkiyLBgtRs2l0BGS8R3x+ha+xucbRNXBOiP3g5AmPoJD//0fPWbc9SJ//evB+qtx++H24SfGehjiJ4zadkx6bfWnZ+Chm94+ZpgKIC8jpAFwKwxU5oMV5TtPBtfv9EmbMa/yjA12pQEs1azq7XA5AoKU1z+/mzR2x1BoYmMue1vVr7k0huTASZYXGdV2bpHjV9bTe2AxgFT+jpUCS5EmSn+1AwmfzLzKpatvaqkw77sy5Xym60suklmhDxB9o4yO7san6lyipsYVk5llkLASEA5IkWLjB8j5LNG6kUROXBG5MPv6v1NutbKFPsBOGoBdCdZruTMZboCY7zUGb923dK/cLiINJZXWdKiXFaKMHlFVQH7RnBmI4TwK9AQl2H5cNKaO3Yli0u78rUTXOzXT22P0UocHj2VLaSiXKFXNJRChBVipMHPQHsDrD6qTic0eKoQwi5zsOs9TQOXIyuVL0mynjJm7pAGcd4FHvXIsZXh99bYyby2ud+a72+nuVLlIqxeq1sxGI4tN+SZpqsoU3tk8hAUAeOqHCFPL6IJ27yutTXc/586i7TQnbRNfdKfdB7srkX3UeSTsJcHY+fUImFiDYrbe3g++oIqmezNQ6ZFpC65yHTrjie54Je+Tk/oPvnPwpx+d/uiBpnhOrGlRcdoBGVbqMljDsJ6WFdQdbiOfRYzdRfe4vf/48Mn3nz36/pPaYWsb0ivthMirOnINIXOg4gTBAEH+TjKRauPsyjE7eZz7EEOuob/UXyXKEvlxF7YCA86ANB0lBWSaXFhc4pLGQLFKJI7zrva0Y+p6u3S/X+YG4GiqeWq6bcn80Nh2a2MCE3JHSnTTPsoElUwwmyXJg5pT/kNcw2fUVHu3uL5b3UBD1atrxVgdB3xYBV+6zOUa3cnFkFVbTxUrSW8dPBfKmDTQyg42UeKQslLI0M/v3rw+/5ZRenz87GT/yfHegViywIFqV6UeqKDApjmo/AkeGatDAmHR6e5YElYv54swRDKT5yzIO30DdOAOwxqjB9MpfE+eGTHdca0kcZM2DkiJHk2inE1TSmWq04MI3p9E1vTNu3d/9+tfvXjxlV3n2/pH2HF7N7m5GFzf4qxNqB7fPm2VjAib55f4/HR8oV7JZ1R/JC+WIC/xrD/Ka+xQ/oJRyL4yGUiWSxMZcRkCxQRe7o5qY9+//erenrFSYj6qkKJna7gl/hfHm8qg9O24S4j7XzjUXHLVQoVRrr8A0rOZBE3vS+GqiQka4l8nbahTLhOovIluZq5rtTSubi8uJT9yonIgWe+i8TWgwVi2lBqC1GHBHPIYsFiwmEDeSXyEVDbkcOFKLalxgv3eYbt+2Kjul+8xbm1RlGqbGE8ux5Pz2fxiQZDSz6jVVaBrQ5xIEYZV8U8MuX8lP3LLjiyjGLBrhhFRg65atOuzzHGvfv7J/m4PImJx8bXMWFUt9PqayFV2pc63gkHJBby3ym0qgLuaAOe6ka/nkphIlS334R50+NZIlfO7yhnGApopQwG2bdFy1+AI3m8H74joWNvhemr7wlnf2eC+W++aYrzCEVZez3fH652hLLMJJvPSaMxoaBOX4KsplopRaHnbhp0KcFQ8n6gxDRhUmebh1MZpMx6/Ri0LKFWnQxqHEKZFU3i5Zw6oXLCjmo59P5JdhylsuvV1agE42mjeWmgPw+AK9okycQVcmqmFTZ5uDgz+/xXew/SVoZVIAQj1hJSGToJwjkIWZIiAcRA77fsGk7HMNHnNzUa00doZDN1uyyhr7rjkS7GTE+36k4vW5Lxx9SUR0WEAMNfirTFxzDNfEUMkIEGm4a1HyzsQurR7RGyIkL/Q2BlqA8Q3xo4gbTjcf9ju7TuqoFOIfijwdlW/wd7ZujO4me0YEqKBhRZM5SheiLYDuNxOM6MY3PRwGka83gGsSBt33v2O+Irm416rHqW3c3A304JKJ2pw4d+aqLe7q0tc79pkxB0hUauhvJzyLdJgiO/R8vVwrhvZUBCVkG5r1jusfvr56U++88kPHj981lfoTTeGbbF0Vj7uZA6q1FEZYYdmC80COw8+7/7wJx9/8KeP907bFTlFukBih6GK29Bs6OmZdSfr0XwzmiHPEyqHLtneht0zEryzoMDMkw5+IrC9qAG1MlUyG5masKPov+LERMeQMSem6C5HHqAVkHw1S92/+M/+/n/0z04a1f5qvJlcjK9/c3v1m8Hg+Xg5jEhyq33korFz/OyRGVco28Wuhr7XGB3Qk/LmdnJ9s7y8W76bTK508ikYAgau+rNmuyBvS9sYJyd1chcqhFK8qPApO8eVxt6mwooEN0puXXB85+1mur57O/jtbGF8yuvh9LuzxbOT/sOmSdd4vFeirkvTZ+KlYwOutwNY1JpPlJZYndDOYBJ1PgCTM/YBbLS9/5B2DywBDYmwMlqKhZBckmK13EYkCYp1/YRDLCq5gJwkg5MzpWDJJCCVm8v8fPvim1/+6otf/OrL169fMhG6ACgkUAwejLwlQl+eQhY9mp0e9KS9Kt4loUKUvHcv/qXn/eqVno+Hly0qnLIYCrsriNrZBMi2AxlcaiGfawD713udqi7DdmpddNQyrW9kVEFRG9PItKXyaLrFsF7Ui9gQih7LF0sgt0ZeijTASq0rl8TApGYY8yFhwzKIdW2BngEPshkpFfOmHUmAjaIPAw9njpZYhibx3Qs84sKLG5NlirYXaBWIoeT02AFpSbadwzlDgTheN2v3jPHOTmdbvvKLWX0wVgo+/FSg7IoOm3tYPL4kErvqbA0+6JrUQdc0rJvi3haWzYeS7wx/5fw4mwk0hQuAMbkjeERMmvPZaq96e3axvuHu3H/4+eF4VDFq17IuBgnyWl1APKSjI11yuvTeXkpJlzv7LD4df9843Are5beBeSWIxnc1NElRULLqPIid7eiOSpQWNOXFZHCVeiGkcHhvs+4p4y6wm+uNnVs8rBaUOnZjp3Jh6IlVnMmrTGfYlAG0QFbpMjcC/q83KYGZvXdzmgfYBiTMKTpYm8wKsJfuRUwZ5kryq99KK1WTt1xqdMqAKlwMgJihhsTUTL2XWcdAyIJUvp6mZuN5x3a3HqMl0c/Sbeool+RHQPgBZihbRJt46VMjZcrFsNygDS+NAK93wefTjNCQIAgBC9AB3pTQT3T7rfUeqSKyqglsp7BwKxtDhxsxiS6fpuj3uu2MhG6ENWVSiNRMKwZctfLDFHny+M565XwopRCq+GEoL7T9vD47OXkr/Dw6Pm3WO8nGVvoSCRevzoDvSyG2aqdqN8XQpFeZZIb9zrHkldtuYYQdk54AC0d1q7ixYXgY/lVlhoNNl9SM41lZjnYng8TJcSyO53uHIw21fM0wngzMf6FVZDJuHLb9w7Fugsn0ejy4HF5d3N0uH3S/++mDn/z+k7/46NHnhyedZCwBpChOJzj+pA93K4oJi/befNvKKJvHHx585+9/+L1/79PK4+aOuFE3Aufc3+U0aHxTTG+1N21zCZNpmg+H24vxpjZV27elBDFFmjQBKos4T8IlvezpU7lXpJHesQ0AJJEd5lQ5gGPElkFwy4hO02uto2MX62ql3H/48NkHTx6DzBc5EzUJebTSclS6/nb67lfXL395hsw4fNg65Y+PAW62ddGgcMQmSuBpm5lhn79Znd0s38BnSejR7retK9WRvb3jTksCG++sInniXAF6RdtlOgqQhktsyW+KaMPRQc5cOVoH2KB2k0SVZ8aKLTbVgWtV5Sr3GodKiRzDyeRcEym2PZZmuexrxIqm4/klZyGrdzefjyZ3N7YOAfLYCKBS8+DodH8Po3znwYHKcx9WxJ+IrMhK0ueqCGkUJ33MTzRa8lnsQJGmD+59Pr+5ufrm69/8zd/+7V//4me/+eqVIdU2WeOGz7XB8O+0p/uJ6vePYxp9TwU6ycVXdsRvhZnL+4rchFrR0V7p9TzW4nMzYwj3VKtRRpcJfN/qVNut+uFxrydxjgsFi3mNuhstl7e89ky/VGNfbSmv2zs8z2V6RZaGfLuc95+YYCAW3MlKDs5J5x7GK/e43wU64kRwRPrfFVlEl0maxGNR4YwH5ZqIqYgZXafXRAslQ0V3e4vCluXykTG5Sz6HHXnvqueOKa0Ub4hAUncKolqFx4tRbzRo33SbJyoNMbRqofIu3qo0MWOJayr7iIWl4hRiuuhWSe44vZu5ZCUSuRJybRG9e9bVJbqoLe1nxg5eKzEB5TOp/uX/+LbaK+0/ae6bkbi7nfCg5ZulyZyjTQWTqWjWHO/6tKaFdH1NdPcaBuPAwwgDNi1kufXd8V5r9YAMm2VAcUzLg1l5MlJyMj23jTTPYoNIKJB2y/2WD6t0zKaRjqclYUiaYREQ9Mi8VK76RPz+xTvwHYXExkpOT+4+vr6kXGq2VLVgGfkBsUwEYykhOrhwGuSsuDVOGobeRlWkCaGEwCHD1fTBmmG9D/hvWpbJI8vlAMMPdiMG3ESnumFr5mUD69pQA0+wMeuBAydZrEZJAM0Sdyi84y3WK5BJJ2P5VJ/gPOZoMZY0Dg6xTJsHFWH7EUbhLpb94MgK7KooeUttA7Ab227HTEgdxJG4IJqmE1UByypMI3OCBekAKaiVzhoURVveH7lZNbrt0/rD6120+WNqKpqfJz6Bh1oNt4aR370+u5Tg7xoN1LCRXbz8EnRnl+ZpX8pTUU4DbVhorrUsBfwnxVxkZ0u6jllPVRGrhgYHPEkPB4S4uFHpnUuhZsLpV/6C/p02WhzJyc7u8vZ8dXtzGWDgCkUCi+iUqhCCk59dXE4PD7/CLQTFZoDX9u7oaeOTP/r03/vjz/+dR0dP1RJNMVCk58s6dWyt82HnZPcqXc5Pufy4ffT3PzA++Ed/9tHRh/XaUS5AmD9aQGUg/y/8q/hnSaS7bhFPZ6++We8veyfiW5Ue7n2knr3wMuKM5aWos0mPJW5MsJGCP8+PJXFuWQKXIFcFDoahXRCRsK3aMPPq6OFTgPq++bX6qySPo4TWYqltfbt7UHn4qPrgj09/NHkyPJvPrjdnb4bjqoFes9Xt4gqSWD8WLQQRsjO9mZhs+83N7NV0eo3W3MW3Gjc3i8H+/MSgLe5swjiYGm44GbrvaKeXQGqzwToh+4fzUhNGQ8FBp6Dk/iL4s1V7v6K8q3Q8alxfl1s7Sx0yymgNQjtdvBYBlMq9zbbP59Q4HHc7KIhgFHXkXgzPbu9evzszZnNwO5iOxug89z77+IMffvrdomYgi8jNo+L1FgQQRSgpYWcnchGXnEYBNwp8k86SnjbV5/k3X//N3/z0f/q3/9OXX381HM1UX6hhNiz6hyqIMmc/vBddSYtR/8X3wu2PV1PsaZx+WooK9TfUftQqXRab4S+AT7RYnhztBUDXNRkJWDbDioGcwtyRMdkiO3l8oit5Q2PAEvpJNVEVMFMiyA95d3JD7SVULJA/Pi06JJ+d3uBCNROMIjvnPnMHiVa0yTDRqbGkHykrQi/zIf3k8vyxX123N02kwninA4kqiP53B5G0WFC3xeHPLXmZhfFqH61rDGMjFUB5aZcZjuc3d8N2/bylD0dbU8IM6+/90y9Zh09pySebETtLQKgySCwzGMNt8nF5q0Ww6IjA99kCG5ndt56ZLYnNtKpCoGkpLQ/r0icnB6ePqgvjJ5KeAzTUicZq46NfSOmBN4v1W92d/qgxOd+s1GnHDtJyfFmuy4bvoUhSEFxLHGMAtL0gj2PhRTUjK3iOk8luY1Ku3urSE4Hf7O8uEG126ptmdbqnZN7o1uqyxqlTqYTvn8jHN++bw/aNqEYDsHmdpva6GP4ybHZ1GrUag2BZQybEbWOwQ7wQBEusMSUOTMKMSlwYqLazO13vgiwIvOZkmhe/4ZmKAfQtmHytsYuXw7lUHTYlZ6edXjVcjvrYJPKcFV2VOkP0JBkFByqzQeSthZBt4BBoQU0t3q+b7mqg5g7pYpm3c9GuMNvYP3LHToPLQEFpbgDgM0hQb4Quvmpw/nrrVvP1pDLttOiY6mqA31jr2si76MJrbDuGEuBhWzRXR/stTbP9gsJ4jeTDiKDNUr1Dx5Q8BwU6uptyaXh1jcodFAdYEVEeg2QIbIiJHqwxCsZQaYL3Ewf2n1iEX87pJh1FptwBMOglxyMHUhNKcAswE4UHk4ZqiTC5QGX1207t9TcYXUQDCP2H0sh6NiSYG/fL87fTbhMp285h/8OTw89/ePonn370xz/83h+dGAW/KxoCURAmMXXiInJL7waZ25Jqm8QUnJw0/+F/8snhhzhzNQ2u9OXpRnBZclUY/Isj49BBpMQV49c40twzTmo4G+NPuZWIezROboP6KY5m9JYbcXCLw5/bEycWeBLvEt9BUEayAIAyTVq6Q+wt8mNrmXouRfRXDlLxlj4mcd12K+Vrdw4ogsazaefV26sRPgiNJ2OVz60EEQDM7XwiFBo40YtLpausvJEv+vmF2lvzgZGjuE+EWqgl8Q91mjUen+i2OYGN2F4OFzCo+02AW1MiAoma3i3fjtfnWyPnSpOduqaT1QiLpcrF+qZ9310stEW80T1YrRz21t1NiQ2g2BKaQi4rP9wtB5vtwOygV+dfDQZTDMwaStQ3BuMLhdPHD55I53GYonMkF5gaoBCmUSI4Y/DkBqgpqa0WvL1ASSx8O7x4/uKrX/ziF3/1Vz/96utvIP7jelKOzgaVF+UY1ZoFjDIvPOuc0ShF/+QB/+Tw5nc7lCDeL44BLeAp+yNFCx3QrD846D16dPz02cMDllPLDL2c0UYwro6aPXeF2PPvp6vyxNwbaa+UK0Ez8hxzRVkhL0wGnlMf9Fj0cLHafor2iMErbBFMmsCsUOX45FgB4anrcxh4aJGYmEUalcxwOSh1ZlxgQP8XF0E8giKI3oou9mARSERFkSU353VJfxbXYnl4uoQcVEdz6Sw0PTyr6byu7jf0WYIwKWI5aS6lpIvCUHNJWrgM95khulhikEmK3uQGbHZZbhMeRDN+MJvdwvhAAbEIzG0GSDbh797jCy9VnzxpfPbhXr07v8BBY4vtnRKeCqcuDyn7ot8UQq9Z34IS7oKI3K7ubjfj2xHQUQtdxDMQUPOBrERqVUpGcsw9bAhg5uslQvo7hc0rNnMNw8cH6OxMFL+O+jtHh7sG4LZKRzu7D4IeaZfwE3VaO8/ACk5wXGvpxZTWBkLCmkoiZEJREso2SdEY874wKWk0GAGHy2nFGhfHXiQchRzR8bEan6YbpTd49/vzm3LvUEBcT4gUKw8UVrkfAebZFyGsk6WbiXcqetSr5sRTTchGh7v36051u58kkvoq/6HmAh3TRnXVKAFiIgsEGOmW55WRQ2mC49AVanznZ5Wmc0zOMxVQbovSvExOSuQZYox2SYbWZssnyrKX5iP5Iy5QeCyUAiA+5/lAHrYXk47FrDtsqSyAN9JQQrwIkYyASD31PErVpklhUXDavvE7dtOmVYeXvbyrvHw7H4e6YwW1ygv2B3wjf2/PIvKFs0VUihifg5AUj7NaZHa1+MIexxUiTHIaWeYcYWA4ZeMl85nkL2pYF4FxUqrRxZr+Uqs96Dz+8Nk//PMf/+PjR985PtUZJBPtEKGDYje9mRKtXaUJxbYOkdoK4ojo9+P9evdJc16/H+ozXeMCDG30/EbtfK2FMfnQzZLHwNPXFcJLpaYsRY4etHNQIbQGGWdlvHU0WHRPdDcFlH9TCoiXlvovq0dm3+unwl7IEincazp2mItnnd0on0zxtELpKIknTYZyklNiy/GH4tBTirS29LTRnW/ak/neUXvv5up2MLsZr+30cjBtKO2a8W6Wo4R+IETCMDG1WZgFb6DUjFhyf6/Vuu9oPNEkrKY127xb3L+pDFuXN+29Rk+zbhQF5s/19Xz3alJ6u1pfajgSe5Z27nZqo3m5fz6qTu8mF1fvJsNZY+cQ5fJuBYDvFGMXPW5nhvPB3RRl/9XUyRhe3VyJVIShWhPng1GLt4UhlwZQnGXTuAbJ3zBXWDGGAwDL28G1GdStRvOof7w3O+beACa+ePX8l1/8/Bc/+8Vvf/0VamG1HIqPQqJ0I2zuNfrWV8TN3qcAZXmzhFH5xZf9yTZ6MTMcbel1Uc6FgqbOnLFG4+Fe75OHxw8fPHh49Lgn5dMKcyRDzaTTq7Abhi+i0F0ujVbdDA0UXgig59wUnyuVFiGWQIi/Tz5UcSlEn0Y8BOkE2XfHgsDIwXEo6N3UDS2DQD9B0Iyf4M68C+/BXUXGXKKr1intFIapIy8ItAv1S2Cm4uIQlObVgq8kaIqT5jqyuEGm5RrYOcKj7gZLAIzPrIWmCKF0Oo1cnfSdvsqCsdUUm43RSLzFSl2DFwhEuTaYlm5H5eFYrn+Hw2rti3yhG/A5qazYBI+6T6rS6XCFaNscQ2eoun96sKnv3M6WEEZpy7oGr5wfPO7IpCAtKKkSYjxq7hwcsPmayNcXX6MNXJ0R3ImJo4jc6uDaAEJo3IE/zM9YzirCEC0TsjzDCfiNSuOuUYGgJQa798E2Mzia0gOa7K6xe+32uY/CEm6d3DhA2+lhBXtZB2C01BcZyPc4Mevd7lJ7pQPA4xzd3plWfnn24u3V27ObsTT3Clc6F4HNn3kr6k2uDZmEPefyrgEpCzSe2qbNTA1De8VsDccUBh9VXV2moAMYMGsy4mJG5TIHm7kTt9ynJ7yf3ZZKkL/a5l98iivyIGqp7PYyObq5afV0AyB3DXUQy+kYrO/rGrhubxEYOQIS0fRUTSvzeLozFJMGuUBbpcgUWmvFFylxBGfpLHLs9ChIaJlsI8tRV75b6u8Is4cHwJ4kwkNOGkCi6kcI3XYVefhDreb+/sFhT8VZqDGdQkc59gjiS3e8W6+W/Pe2oN8ynfSjdU/+Pf2fub738SJFmYDX9UXYyb5DY+nzMzdF/40Dx+mmWu0HQAvXm6vMabVRrFjjk4//8J/8O//0h5//6Xc+/yQRyu6uugmtVwuGPscgjojT5DToJLBF8aMMRbPS5u15Y7Trqi07bTgkCbrb+fNfXa0nZn/lOlSDDx/3moeCfz6BOpOiAyDSfGczl7kLM6mVz8ktnH95wNyAVEbUvyvOgU72MPEHX5CD5i4gJCxFLIVbiBrKl6PuXxfJBy0UAd8vX85SfojFoK2S0pB35Kd4XxaxWzZ1s/TgsLM6PRkNacv5+cXNq4u9by87L2/bN6M36vkS70I/sShMYlVfYGDgbAhejhlOF80k4MKup92sq6Ps6LfYaUIN2yNaUjOxynzZeJv6cGGuuGHj27sa7obGnZrFdlK5uxidvb1Ulq+tm1oCZ4vBg95DeGERLQEamoe+ub5VnB9e5hoSEWvc0vmxUq4F4pPJBKiwM/FTk5NewpLfTW/Prt6+evfi+YtvdMM+OD7+8OEHWE0khM7enf3yiy9/8cu/ef38FXaT+LkJDFMC5UJnvSx3IIkRpWI5bcP79fOUtY3LTxqyooUyzdIXO8BP8QzVbEuYQ5MmD/r9fRxhrd5ek0eBy+4QBhVNU+yxAShodQ19YYgrwoXF7nZoqBJK5KLTqij6SmHRexSuvFjhQTFDUfOuTxqFIBLs4oIT32si5ZSkGUyKVP1DsK9sxp2L3o9DwMOPYpXR0iJXMNX4KC46I8b9R3TLVStiAthZF6jqUOTjUyngMMFPgYY4oHgIfbSl0WiY0/zeEfOAmcuwJALNVFvivMf9SenXZahHlyA0LGUKeROMK7sLBawF11BTm8sK2NVpIeCxAmQ81q+oXnNYaACu6/1ak0Z1tdt7l8GS5lEutCLeXtAx1d5ht9vv3V1eDgaLy7IpLltjBI2vevSE8hvv7JiqLKtQUtyTwgLLGV1pOUqW34RR/CnS89Js5oAa/CDV0Wm0xfPcfews5mFW6kVb+S49O72Z30rwAC7PlnfOD9OFl5Yq2jPduNnbb8laRw7R4zOLu92TlqHotuh+OHl01X5dX9YqQ02Uersau/xy9ZU6G6a4uNQI3Ug3RRKnhmJi4qE0cfuRNo43BQ4VbPQnkijQi61ZhVsMsWZOcdHUHYBeuAMIHdnkLXijBsg1oC5Rho25b8wCEQYhxYmlU5m36quiJmAGW4ACKrRBDyGG1jbazJgNiSpuAQ1LHHf6aHHkf8C+owrVB3Qd0yAhE/Sa5Fmsg+4UMi3holIr6qCQeay+84TSQepv1SrJoJcF0pudZddl1BemxO0YtlGeam4TR2qJf3xYOegerFY9SfnUi0DKUu7OsGoBkyyXM+azSDXh9U7UIcFK92FRJnc46XW619U7k3RQTi1XB8HzIhkkNrClkUx+YLGsl/b/5Mf/zn/8H/5nf/qDn/Q7D7xVJV0wMJF0gaqG+CxGhEiSSRGIiMYBRCBqDjfgExjpply9vp6NlhNYuNPjfW0IV4Pl8GIxu54hrwOq/oPO0btXq8b1grOEMB0Si4smGbiaDDQX4xitKwU6pOHLos9TzXWROUKF+k9W1E3YJ/xEuL6hiGHM4sjFU+K8Fhog6ipOapYiRjreXAyEXYkLmOjCa/MvsiX3EdQZe0H4vTpBmaxUaXuwp6mn8/TRyQ+WH92Nf/Lu+vzt2atX569farC/+vbq6myyugUqQNwbSHGVA7czRUu7XajTzMoLo6R73ZZZCw2Dq1WVg+DgXiQJk8yK6FFpJnfo3kD9Lu/Ll7KM48H68nJxO9TLp2+3Yp7po5N3h3j94Iw3vBlwr5u37y5fvXsL2mUnw1o7NWm1c6JnOG0R0dfE3zroG8DkaqLh68sXX3715S+++PnZ5TurWSp9BjmGAHI0mH777fNf/t2Xr1+Yd2gElVXJDkdQ4h17j0K5R8tb4Kii6H7rZQmj5+ME5EBnvaP5rWE8DdrWrsZ1jwqL9KuSKb0ktcsE8iynW1E4pclxa/bgnhP5re97vb71at4hSaw3R2Z+dAwCA+uFckxPy2xyszWhGBJVN6XbzBXYq3QH0aQprLl4Thp/PjcSuhkBIZXBYUk1vqygJOsVfS2vFNUal56E+Jd6d+1gB941HiufKGg+FXtiJa/oypPzFwxQRYKWgIw59WGsk6tISMLmCHeNomiKAhgqZEuYi3xY3LYCoc6Dk0rHxCMbURQsAdzj/aDlTcu8I0YFQm2lxE2dOsTZirg2FtsK+8UhiF0nwkyX/vjqq2/uDj84wmKwuKgNzsV/UL/V2RX0xO7+Tvf6Wjmr3GbwFhUjAvaaph0tDx+Wnpba28d08r6jQwsAEmB2ULu4nmuBr+3VSn2VN9FuiHPktSjvTum+FU74lYoqsvBSS3Spa3B+tdDJCZ+Coo36BOlHTrTdjiu346rWH4pU5MoH6u3uXTT3r7utB8KD6o6E9sVohHd8gIGB4XMEJYmkTuptCSi4oPxo5HQTqFwzUbXE92FoFczxnEFesemAJT3g7XZbEQOH3BzJdlFVsBQptwMFcSM14Dr54AJjKk9l1nJnSAa7Tz5soiOquBCNCR6Nk0SLWqKIgiKhWdrvSW0TLMlmLRLhQ8X6z8fqqD0QcjEjXxeDHWMi4CrSzuQuONQpLQBSqwndCEZ6TLmCAxuyUOdBoVOiShWbJ07ciCevPFZ9E6D3nfmqr+n1RCsNTO6dzsH+3sPTx02dvoIQyaOtKVHMZAaW6o3hLwSmP7eJgZVyNOKIKKozEtKLcXlEND5GROHQWo33vsRMkpSu4zVJvKhvT5GdDat//pM//6/+y//tj//sL8pTJEtyV4DtqeOxT1yvDJxiWGPaolX5VU4RTEtc5z2E88a37m6mu1fPd7767aUTevbgttnvq703Dxrd0yAa1zdlXWTPX7w0gEqnjaAT9kMfhqHN8/Hl4YPOokt18PuoX4UoITULye9QRYsOioZiRXNS8nt0FYw89xJKm0jYR95m8YMnYokJcWEDonAZjegjpyl/6mdlDHKXz8odOW0OD5ybu1CfZ8LvEUSA87DSOg5OmkcHB0ff++h7MrZnw8Gr85fvXj3/7be/fHvz4nb+brYZmBjOQA6nI8IFULTd2+kcJqilJoblAQmXMyOTcz1AdgX9RfRkDjUVoxAmT48PkTklO4Oh/VUKnJ+vr1XjhvM3RzpNOp37Ut38qYtLhDwGCt/Nbhcl9Tz8rLXqnunP3X0zJOLTit8L0DW3cLS8fTd49dXrL3761//mi1/9ij1/9OAhfNMN8zUz/eXK5IZXL89kC5Ij84/FkcKhcPItG+1X65xVKx6gMaNk80we9Ad+ySN+KV7CdtjCBGJ5yn/eMFqV4RtOp2e3OxP8zLNJb3yHkFPR8sghtKV1JaKyzu1j6Rus8jDDo93lYq+8Hcvd4J6frUa3s9v7rZkHd+wtxUoC+TZMK61pJ7louQb7p2k3wHBW3CUIDyBmuTeCBog1Aasz5HUkw4tjnPhHCVQcDKLEYczdxnhx/RQOk7nHN5GBe6kbERYufDsMzzIl6TricREtxTmq2zFvNJCAWorUbCXrTfbORlM3ceeh3hOUEDJdHx5zWhkAXsCK77PAmiPVzhuMhiftscVxD7KIWXHSG7vsNwFx1twdVG9fYAAeKu7Nr5Huuwav2JkN4cvnxtZ3nfZpbfp6/fZmOewbpOmuYCSrnV7t4KgewLiAitRJ0cy2Ztvvmp+83m262NQbcWMFdA3goF6huWuTfqUpqozefPfgoANIqzNJjyX7APvsavlthS8MxlG+0cCyXtXQ89jk6YDa27m91t4xBKK8xyR0dTm4Q9+/HE3K8u0Fu7cdlCbuHO5JD7YlUu9xuojdJH3NcwmS9doSxBjf9+uVblNOK6MW7NKsjK5sdTvXQTObmJW00nI3WWP5ktVYIbpotnc7nBauBzYpYAIeUjwC7wtjmfi2UCIpRUXh6BJQY+h3drFaVmpSTPCrKahy1QNMFgBq0fQn4QW2A/wyBDHspb5Xc/rkT+NxwGIDaOYwRfoTCQaxgHwUgIs8+9C479llxaEQfLdava7JBqZBLW4G4+vr8TAYoWl9vBmutoP1uj+Vp5KC2zVyFvSk9wz+X8BqaqQ+rgUUvWmnQp7AaLixBvrMoJLnI88tx1xP3RaJPypaGzhM6FREGVEVYYgzcrSyu995+ukf/vF//s//13/wp39a2W1on6QNkz6DaSLB5K04604K5SKISc4UmoZ9EPdlxGNF9/Pbb65vnleWA5SNlTCijDb9+uLhQWd70pLVPbu5On/+9tf/9vXr52daLVmdDz581vv0ofIo4C0uK9HIYqLd34Cf4DC4HmyWOqXTYvCTgEuNwqmXY5JXcyaYHxGAUytQkwUk+i5XxY1JSEWOko9yiiZjeuVm/bE6kPPEDLh4tyTDy9B6l8QKwHFmF8S+Oe4plwtgwxIHaLVTWuKpU6UQMuDu6DY+enSy+f4PZ9N//+zi3fPX3744e/Hi3W/fvX77dnQ9YvFqU7o/gNShAXxz7Fs8EvGZvOVcc7zoHcIBh1RlB34i2EB5MLBPzcwxTKWa+hYttqxMrrbfrK4uJpsHx+2Tvp6D3mxyr59xZ4GIY79aM29J12zARVpQOnByJuTSDuVNSEBgEVejs9tX37z44q//9q//7pdfDC5uH5wcqdZpwT+7xexw8e7N9WQ0wwvNj46WiZ6hYKJIC8ezUD3Z98QDkYH8V7zwvQUo9FLxsL9KodVKF2aEcqNqCy3FTOTPCv9mtbw1mm4yrQ5v2oNbGRDHRnzfbe+ZhcmDELR4YbUCQ1EvtXuKStX7btyQEit4I2ZGxLtbwafIknKSApl/b/CofJEHq+O6HCs5IsdRwSaDQaUouX34degZEW+EIt+8Q5KxTETSZUV/9UqToHciEPlXkp1DmwkbhtUBiFtZ11MLX06/CThe1iyY4J2yVqkwYANeOXRMKLFiKfwVL55bvEg6yiIGshBvGMup9FNgP/FOiHU61OB2tFiIAykjwOHsAINhsWOjck025XdxbjaAG5OcFwHmgq/HA4ckbpN0TpIbm5FONoSRhliZsdfQCFiXPJkPNrfUMZ1VmQOL145226c77S5CiarxxTpqb8/uDs4mN5da1jD/1jIyAnLeOOkyRsshB5CHGoJJkxanAs0k1gDyOca8D6bPZ1P1bBrfxpIABqrZAgnptHXptJncP5thF4EmpnfXRkePvTUFzGXKTiTykkltd1umKu81+qbErofcWP38U9OxGUdNxDhuUiwF9+y2NDLhPDH/d6YPiwWu4DhNXF/WWb6rduR48yqU3mlKxHqhgO7uVfHMzZgIXRQbNL+sX9LJNHAo67nOFLZ4zXvB3gxN+GTlyZAzFQgLn54MFKeE1cdeQIiSEOeWUx6u35sldRqQq8ZuYpgnc6TUJjwbi1HW9UUcPMM7d/DYHXal1QTEKoblysmXOwd7ur6RL6+UAb55fVZ+805CuSDfN7OmdXzQPzllJvVBJ6EgsLHk2i9Epwl6UH7ea6/VOKYUXF2g/XMVOnRrza7pUTXNAbea9oRngArT8TWJa2/3fvTRP/zjH/2n3/m978NDcArAmpwiDMiFtrQollbU6cn03tJm/i9CSyZAl2CtgpZ8Obp2Z6+/HXRq/Y8+eloDcuy2dZiMbhBUj3777fOf/vKnz7/42eXlGwwdnW33L37yk9MnT5589kxzjChpOe/g/pzNllUDUncU3kXgyZoqlTPkyirQPPGqomSsKMNT7EMOV/JrCXD4S4ywYxc1EgXk8DOI2T6Hj2HmjFl5X8yIkpBvlEY2AhDFVmyw19bVbzwlMp5jvV1oSeKw2S0Kg3R2+tYwkBX4K7lqnUuf9b/7ycff4daP5qNvXr798pvffvvN86u7r+nY8fxith5tGoRHrwrCc1cF2bZrjCy30NYQFCRa0Y9uCsRX5Ylpc9tFmCK7yFRMh1Mki932vNTvdncrJ/0Hq0pn0zGtyTnaTO+mZ+8u1CoenJ4ePnhc2jEauJHRHiX+8s3Z8PzrF1/++lcAPl9MB5OUyu4rApU387O74fji4mY8BDqhYEhltD6XwCX5pVD30fiFhi98+RiA4oH3PxSv8Bd5jroqXkhUnOK8Ks3Gzig/ktOT46ASibvW6XZe5AQ23BYB4sVbIADnuYsNSzFAdC3DHPdJEQ9acJz5hlK+UZdOTJGVgQmvldv1+3kD6IxGCpibWbVq7pn1iSDYdTCRVaasUxnxkxPq+WSbHd1ZuD5eZoydl5MwIpAuXp6aa/UIA8Fcx4BJIKgi6Af15oU6Li6Ek6E9O+ZBi5P+NQPh+ZTG4jmCHI5cRrE7VoYGjzMf2xSvWtzB3eZ9JPLnJHoTksYwcU0BhNEex6S5NotY3I3rolBED8xsYRQ8lQv1d2n3Q6wQNSx25dg4Ij5MQkbqqYMLTGVDN896PKlxHepNU51mo3RC66AaW6/BYjy6Rdlb7+z0gXBlT838mPpwV+kzxOCQGXYXD/79vbpnmu95wo6MAbb12dwMgNLImOnF5La+MXspHCPyeKsVMk53UBfjHFaPH/f30MWXVHTxCIC1pGBJDJSVJ9vKNFTMyWkwAKqfGoM4/TIyQ2PRdqjkphTUcHY7wuC2YtE2d6PV3WCSNWusbwYaHHUgoAlE8laGzU7HgbuHc/Ta3MoG9MrH0QiaufAGIrhEFd+SnKlXJqMViupgBuLKljJeJiyS7HbhUlhruHqCynV3zugLEZtAkGrguCdfSHiiRN4XFqN4QlZK9/ipyOikSJ+iUwTCW6guRAaCkaCQgtEJkrlI9LGwNtJ+J52oZs6yqnTXWSGtoMmNAGMjahjyN+7IiNfgt9FKE0Y2wakcmWRWIX1JfIGBiN30B7T6gIA+moMZeGvmh7jgeg3Va1vNuVujnQdXi7lM29Hj5qd/+PE/+fDpn/hkZUOumDuTZXfsrDb5lfjiTKUJAz9TDkrMRFKUm9bdTen12RW46sn+Tv+4Vf39xmaiI7Wy2hpWsXjx8suf/+1ffvnNN9eDy9HkfDk+Xy6GtVX70YMf//53fvx7v/8j9IvrnUlunH+laE+H1GliQp8D58RKzzqhzn/c9AxGzyEnMF6YxKrldWglal0gSqj4oUV6qghYXOqSImD7RZcyidjJ8wcxDdR+TLebk3rDrs2/gcOXYV4Pzc5xPuU34TGgV4VuqL6mY1FWkF4yUk1DBXsdwF4D5/Ux+URkS2g2Dn7w3T/6/c9I3t3V+dff/Po3z794efvyevXycnIGU7EZKVBtIOC4eKpcOhnFtTwCOgUWrA7BzI3NKFUXGDGxvIot3d3ucaP7Ye/0Wfvpxw8+3qs/2q0cQlvbUo7RdHB388mFabwiyEfPvtfdf1qt75Hp8eruYn774uLlr7744stffquZpF7u8lUmd5vJ4FIGCiZBJOj2kwSxJqn6WthodwrAV7R5ob9iHgpTm+eKZ+1J4dXbGj+4/BjMRE7RWlFOeQMCF0tgwFFVF/LBfr8vggX0CFag6GzZLA0Uu7o6Fw1NOreTDqrr6BuxJcmzNg4f/kXkta2oJAADlLRzHHuYp8y52WmtDF3ClMPTp0RIfRq9onsLBZaebHROyfCJFwkOdzvzZ5OUFVF4Q4eV+ifMXAkvysXmlYFDROt5Eo0I/Q9K6kH7Xtwml76k8Et5KyHK/hRd/FQPZ0BhOLsmH6DI4CQGgMfcOJk+22pwQaxKIdUUmGuyVpSLT8pux2hxM1geebEsfNbO/2ONYsOsKzGPLckeSBl6S8fF3KXeHo9Fcg3hkfgU6StwrUqizGptldl/0PBKtJSspirF5/WCnnbLO8OL7fxmXDY+oSSlnum0OpUb8guYZzU28QnNANhp0H1SP6xTA6mIVh51Yk0AmlY7vbTSNt0oQKo8pxSc2dNKNZSmgnv45NjovqKGxJShgSZTlPyfaoP5Npxgv3tgIxRyTT10twxADSB14R69IfjRptpz05Nwgg+RT6MpGS00UdHtlGejswPIaIqpRUHxkPgpmqOwpznN2712tSU9jXJH65RL41v04M1wu2QY03xSGTc2dzWsoNLzNA8Aa7sTFvJkNsIfQ8nLymKUmGM2oFQloYgC7yT+izID2fAV4U8awTprRIrcEzceROQnWAVXxCo4jy5gV2zEdpAd3srvtjTnysbTo2pLQqfwNYppmK0QcOn5sfq+UinkBptiZs+5q87qsno3VwgJ6MitBZQQKXJJPCc1W0IskZdBsNwDXnAsHWpqpDgTdLEHh5verFUbdA+6rad7ny2Hj9bX3ZejaXd7f/o5lYryG6crwKJP5qaGRq04HciDUd/ySByJEoExd8lA0F/85cVf//TXTz9sP/oHH6GJevZZ9+ufXd8MRj/95c+ev3rx7va3MOYAiLw6GSvFC/kwFGdHh6fPjp+0Ku3Z2nAf0bMETE2LFNtCuSP4fg+KzeoQrQRpKdiAYlGKVpkMcSpzuiymADltwQ4KQ5Xjkh9TZHO6eN/BKMmEAZDTcokB4q5KHDrXcQC9VzBFkg181l0Ypi7eG4hji8mDxBoGb53U4wpWeju6unNBJ49a4zuQ+nGvO+Uiwly066X+gUHvnN17J3Dv8Qenpx/+5E//wburd3/765/++vkX37z86t3szWB4da9fRUNUqB9T+WZKgS+o/9BBuzTBmz1OR1F6XPZ7vccfPfnko+8+2H/27PTTJ0enncaBQZIEjWcwMWmvZT51+2BvT/B8ePwEtXgbHS6+y/m57P/Z5atXL15fv77ZjBNjkMR4L7RTIkIfBoMvTV4o+nw2uXUN0T2etIJZqPzPP1bYohUP+1484+G8uPhz2j/vmHXNfx7PP+nbggWE/d/HN72PoyJU/jM6mAmMEWf24+dq0JFYi1vmLaGyFRcZ3bAoamViq3heVQZh7KYN2t3rV41K2UPMrfM7AbBunMp4qs2TxKp4iVP1ANl0eDmKKKdNqi2xMNHN56XanMss7jImyii49Ciai2UcGQkihKoGSQ7rRrcIcpFyc6yABUrdXVvStDTPABGOsUSQ3ETh0WM6QETPawtNRxQCYXNaZIUDvIuZKUoSVDrvpVgo3koOtYvIV9YwWyPeZj1zjb4FfO+ZfEt+Ii6L7y7FizypXwuzWJ1KmkzmDx82Pvuga4jbl6/mL19NyESy1/c7oGRNKdawJFKIQUBFYUh7maDOhzQ+V9uo+KEHrcPdUrFUjs8cvX0IrfL9ndMzW3cX9d5um6e/rS6AbDsdM9C7w15PX7qR8gRZR/okRgn2EDwj1zqbtK7P7uc3AxqS50bPAWxm3gveLqszo0oBHVxFUe0TrAmTt0FT2nMdnUN8cGE9UaauaFWVhEWHk/aJ5FNpot0ZHH/BpM0AeFuZWR32GgNCEsYH3WdTFAE0W4gijRwqlNhydzpZ3OC/KXEuhClcgPhZegWwG7ekN0AQoVrwJ+Hmgn3XRuZijKHQWyrsCzG3ZLcyb3lhlApRWJrHaisKFR40Ai0hh0dUsp9JRgpAUQ7JwXkgu2znCkclg9STtlCzJu7iU0+hXVPHD/7FV/aZiiO0Ue+62ggQz5snwVUKtM2TDkyy2co6HtcnZwp7xYRotsdAa5xIRIsYC+F8znSwAaBwZS/fLI57/b39J91nT9aXj66+aPzq335Zrv7qX/zvusdP/uS+S/8LXjANxnsKES4Dk9Q5+yTOlUjjFVmlGqz6m18/h5n7i7/3R7vV6ep2c60weX3+t3/9y7/95V9+9far29sLPfw2WTKc7YuzE7eeFIiXaquLCT+td1Rf7Up4ZxvSvITafC5agl0XtQkoc/6iV5zEBOhxIO5hRthir5cxSN0m+UOry1YGg2JBorC8PIuflmkhm64muoJ/Aq80lsPEzZHwL8RTODfUe3Fi6kSrYWhQUJbGrSsta1Xae3BMJwQNqgugXH7w4GMTh4722lrNRjeXg7PrSrM/uYZlWND+/ePu44+OEAzjFWSsJPeenjx5dPjgDz7585/+9G/+rvZXv331i9LNy/mO1KLCibqY29G5WGsddJq2lIMVZKrmQgOX7vfb+9/57PsfffDJRw+/06wY1fLIyIJGhiXVU+jREzNc3xl9F4Kz+/4+JktskU5XC5GZ1GUoJwfXg1fvtnfzhvp9kmOclESZhRsaPUccLTE5itIudDwp9a/F/P+3ANF8kV1ynm/vf4tFKB71PnnD4leOjpwzCAc/JkHk/X231Xp4eHjc7mqF9NdmpHJfFzBA7faplrDDB1DP+3v9vjQykAMxBp9ex7m7uakO74jwqIIaBHQ+WCD+yKJdXTe2mx6GugIRKnnCY0TUO52iN5b65u5gZRDA+SFQMXKgTlgkUSJGhYfx3g7Iy8DkmOlU6rTLB92dg26DI0g3oizQgzlZVIYAR5xy/5IoKcKkheSwwsOSBFC6jEUNkUkry+GHNKKQHWxiaFPyV4kc4sCnSJFT7dHC2CZLUiSFJPqi0yO3tL9nUxoU/QkF4sQAKuXUcGp8tAV0Bb77L+GZQwMVKFUMitjbrX3+eP/Pfnza22+uV9+eP9feia8gejdVkSVeXIyAHUSeeGLljXSVTGZw+w0ajEwAnvc7EA8aGsFTt/AlzVJbukpD8NV4LJ+xv2u+IBp5UCo1wCrq1E71+LR7XH+otLV8d36DM6zXpDUBWsuUpkuMS6ZigJSML5sQh7q6Nx6j2YEn3xmMx1c3I3hmVh4WeO/goIEel5en+ps0vcbbTUvr0wLLAve34GHIbmZoJxFScqAbqBN+bh+J2jEatK78/GA9ur0f6iyu90mit3LEZxkkbQMEf7rDoCiRcXFfkwJ2ALjvAWWCuiPwKVVp+qWpnwUxanwS2kbRCY08sAJHjbuWaE75dFUaDe5v8UNezycDzcEKTO642GSOvnOShE/hCvk5tj9Ju+jsnKGEi34gRzk6yRLTcD6I9vKf1yTz54M89LszafvDN0YeCEHsP4grBRgnzIvEDXgqhJ/JklTuFAp5/qmLENYiJZKQpLwcBJSgUrizHG5ubt6gJpzPX/9sejtCUHX79W+e//ngR80OdVBEMDQv/7SJ1iZa21LQ/8rl6s7I6V6+MrNjctzvfe8PHpMYXJHXr979/O9e/PRnX3x19qu3g29X5VsJSR8ugpKacoYKo+jYeFPhIb/kfqh0pr5u3axHNjf6xU1bdB3YCYrlaTC38h/UcoCgCj4bSSCL4o9Yd46d6+IgWfecD58R7o6E2GxDGrkhtdgNTR1VKUGMujgmGyrwQ+MwsPzgoQRNRaoyGN0FSuhqzcyxv64mXlv/8ODkwR6yzr1u4HtLQWP9fs/kU2HafNVFfHrUWoxqb54bvbW8vZ4M7kb1TuXRdx7VOy4STRPQYPnpk0dHxycffPr0v/5/ru42w66ewM1sOB2b2jnfzEz2bZrJY5QbIlbcxKmTwXhVTw8++eyzP3qw//TB8UfdRh8kOmkv5o+WLddcsF6Um9Xw28G79f1g96DdMcOtoG8I/hOnwGacnrNQKHA6GAm9KiShELAsc+SGX/E+XKJhSKpHrF8RBkTN+znf/5evwi5ENvKymIiIhZ84F9yiIio72jt4/PTx8QkWTOjgmcYCikBovddKd7vNgknXF23+wgHeq8eIOo77+/BNOOxa3iAfJ/2zHJtYbpbfdXc7gXEZnymTavySFEsoSy3Shup24ebmogDumAEJwrtsjnG9JB00W+wYWVaaQPZk6K7jRiLieanHRg/H0aZeqE8fiIvicK/+8KgDbL3fO8HlJQsxgoucXt/BKohCOAkhjCFZ4jayxvXAggsuWJKJM3GWadiO5FeK7H1iG6X5IGtcJ8n2IQk75dWLryJbQtBdSWyLKoljCi0e7Z8XsFHJK1vZrLfFzxrnwbzCr2xKHuNp5l2JBGkn+zhU248/fPrwyWMR7enR3UF/dH5pdKBw636D9nIx3TtqtU5hSLZ0Pi/uvruqhvxghSvi9KQv2LSccjhDw6wYup3qpYE8cP6jwctR+CnWmGmRu6cFZmwzerXtcXW5X2ket1oKW6XJoBGcBO/CMNp6v1dD5QC4axiSQE9SmoXEiC/flqLlWPi7kG/lpjQN7sKNPSKfjf39VrePXQi3zkplZ4sMezzE5e4wNxspx+N4s30Qm9rTxABIwsylwPe5xVq6t7lvT7XcOFICXa4v1o1Kte9OwDJB58vLifhQJKk7NQzw2mZ4pVwpXW+75TuVCFhTDd1V40dR9Vdb5vFKfYjTtdYRqHKlLVdk9kBb+osF3NErmJnzgXDTmNW0fGlDMPyMnAU+lf2keSheuBT6nVi8T+HlibCEZROLI5aqiGYCfrszQOs7XvHhyQ0TlRPGTiRxRACcPSbND8J4IAI1Pa1vzICXyxdReDm0MUSOSGFCQmPrr3PePepzjZfyP6NY7m/u7+SaFmUD7zoq6fjmzMKmTR1loGYwSFcQGyucTT9jTXcrkNL4/vzs7O/+zW+ns86n3/l8X6l6gED46te/+fkX/+Nf/vrrly+vzxfVm3l9OF/eSVe5Ae/jZpminEC1FBwOhtC9fff6N88PP/r4aK/ns7WYJQUmV+/bTviXuPFEx2lz3AXdTkwRzcSgW9poACeKbAmvs2Cxmmxi0rYUXVK/3D495DDbbEXid8czblXUhUqILo+6VkAB9Xp1hGEzMx8BauotzgUlrPVudHP3b/7tv/m//df/TatT/vT7H3z0wYdPHz02ohGXVELhWvn8DfLU2tP94+1e9kgr0l1BMjW/nrz+2XC319o/6ZsVIQhV5Qcq//yTj//0x382XQ7ejl6WELseNCeLIciZI1IRum4x+fXa9XrXcD5SOTNg5GGv96DbOzG6Iu2w0H2l0IhkvoYu/fHdu/Gr37z55c9++7emG+6fmDsjG4HZGGUxv1WvKAo1vbUUDjFO1OhuC/8jO+JnK1qoFxolD0TPF/+jd/z0/vdCzXt9HvndP/wuz0Xt5P9xPvIuVqCszeuzzz7//LPPHhwfAdTP7m5vri5uEB2lhJYWFTDq0BUeHBw+enh49KB/eIKQnNVrZkwIZZmODMmXXXN75p28v2TDaLRbR/4lEK2bo4RegRulM8URCkyKHPi6n1tkNDFmiySpFjOZzAcmGMIgXZYE9Xu9D6FCGTgaLrdwsmScVAobEMqtfgeJf+/DTr3PE2guR63mu/L0lXF0Y0c9WVSHjrQRS07nTpqrAjGKLiKoZEwI4ppJHgEvTrqV8USUeKGvPUvXxyPXmU5jSL1bGOqBC7p2eklnYqZiebO0haa3CNH1Tm+UgnXOuS42LuuTk5ngRm2zhk7v+NmTR9/7/fVicPx2+OTxzWoW85uQL3nS7d7RbueJuHRhpHcSAyvV001pSCkirM/oNOgUSAYJLzkaJYzUwCbTO/UD9SZkuUbTjjc8+XRjTZY3rMNqsV9rD/b2upq7wHJqmv12MfaolTLMktE6FfE9mHFfqXXTTAwOFHwegkNJ9lWjb1xC7/Bov3c7uh4scXRBAkPccYK00luzdX2bgYTLmXEje71WrVsJQb8DmrkFFQTK+H5Yg6rZTfV7RJmGyPRA4Q72+qXuRAFCuGhp4ilGI7PVkEImkRyQQONsO/Pbto6b6dWtugLUAR2Tc8D4icoFQoMhpY+HH4ealLsMwv1sdzXvIQOeIS5rtiwIWlqCDUNZMgZIxdT5Knx5UTXztyGuUUqJL/BT6PWI/rZQQGdh1InqSkgQyy7bnL1N4V2Slrq0cUTesoY90rt44yQuc+wiZHk2saSrApgxpmqRWceRC4kLLog/iJvIJPmV7y5kkbcBwGJeUNOBeZU6R7XPH5R+UJ/3RqV38xIXR55Ygp4dc3ihoINIoV/VzCAXwKi4Tkb2nn9799VXF/Xag5PT73jrzWD86y9/9q/+9b/9yy9+BleCvmVcnmjegeJIlJLzSdHkPq2tq3diEwLgPJlMbn714ubB6+bRpw3wbxZQIS3pibK6dgmqK8WpKOssqSVMrxbbajW9U/q/HC63aYnDr2apECYjuruNlgD4M0erd5BAM1SaKc8l0ksnaRFNF0YynT78AY9kSEorHTgFg1BXHfb0aH9xtH9z8fb//d//y1+9+vabd7/utLofPDw5Pnzc3D08+/z7+0enPbORWt2zy6FJAOihxNael1QH9R/fTl/99sZa7R1OTx8d1rm8/fLhUe8f/eN/7/TR/v/9f/hvf/v6b8EdTHdQqttptAzdtkO6TKhDE4KYvYy10uAyHrzbUkAjThGdwYqlyXwxuZuMzoa3v3n1m1/8+pdfffvrXn93PPxgNn06mwmuuba2IIjte33yyc4WaYC4lUStsOo2hCfhRw/ZpjwWTyMiFPHKeS++FSKVH99/FY/+7gXxS52MeKbC2QyXrOtgf/r0w48+/OT0+FC2HOOEFrXB8EbSFS4xOq/eOthv7e8fHe0zAKed/UNlR34FIDmZLa5HqbaxUW6sAl8jmG/fQ9XvYHJsQHiAYAq8Z9J3iC8kcQGnuNdxVfhYzhzQPbx1INcAn8pYjrLyn8wMFZrdT3Y+N5y7J3FhsGR7KWfdHiZpdmpGtjYArbvEHuOEC6C0eIVKCoIcf8dJJM7eNdA+Gpm7kry6NCMbL+xKRrHw/dxLHBq5HJ9OdP1VML5CGFVY+DS+f9w65zhNCYl0o+WLa8s2ZB/yrfiZuBf6IIYgCSDPRa0U32Q4LZyRWCLo4/3yfldlDB/1/eOD0+99PF2PXtHAH3785OCoNVyOW0/7e58cLZZDpNqCd23DUyNfzZ0cVt9+PVLPCBcEhIPECcL7mMdyp6oPqf+APmjUD1tH0j6rUmvdXpWkQEfr6rxsuuV0Z9vRvocTUXHeVvJGgKTkYrT5Bu48xsbGBpdqM7N6LTjS59rupoCftnb77UVluz8c7l3cTAf8m5kinYzxRBmZZy0X3qmbflhWWztpt49aknArlD0GTEkQSMcbzaojQ8tAZl1UoA3q/YPe3kNzhAB83lxf3yDT1N0OAbS8by3vtRofdOu9HocL+Lo9GmzPLobPz3G9o29OiJaE1aIJk811Ws74Zuw8rEeLmlVimejCZLpUD5Zcy3j42jfwMdEbiADw+kSsCn+IjaLjl1MMBzHqgEm2KeD02HE3RmiZVQpulSkiZBDqiXOk/G7pyRkJzqQAjV2Zo4yPknNMe/pIl0QbRk06fJED4hWbqGJF1XLeQSEKvzlX4lR5gfPJ/41jQcQSZeuAymjej5t//nT7gzejrxel4ZL2Ly1oTBuf+RkRdaDmElnQMqmctViW7y7u7l4KyO8/efr7WhovrmZv3rx6/uX/8MUX/+abVy/O0BVpG7iXq3WgkiP1eYS0QGW8l2a/5vYlvev3KK9rq7vJ4tXV9M3j9oE514mcBZDJNhVIfnCYwuZR33g/rGgKJW4jVL+WLM1DvDelCXDbcnqMeYe349vz29vLu8l4un/Ye/TB/vGml0nOEuzxwbJm7kvI5qDmPFMKDG5oZJNsVREVGbCfLtM2a7Rjqk3HASibDVZXg9vL6zfV7d8oWP71Lz968uzjjx+efvrBB8cnT6qNPcAKRcrqTnd0bwrC7nd//MPtL9+OmcRvL6++udx7cvLp9x+1HlaPWp2/98M/u7mbXF2fvb69YunEy0ajiWLSUaQXswyqRb9Qf+Xp8Gb0G0QRGu6Su+XDWSM0P9At+nvvxrev3j6/vny1nr3Z0eCzuNgurtbTNt0iI7S5H27LQ3g6/F+z5EDCsEHVF5rdrSeL6FGfVGiSCFKUjmfy4/v/Fc/9z48U///d43mFH32Pcc/mSoihrzo9OT05PDo+PDrc3zc2ZwlrWEKYKNSfZlxQeV3DuFI+RC0SSGdKb74nIrMx3oYJ8H7EOtnKrXMlHT01wQN8BAuNUAYlA6dyMs80AGG54gUFqndT6dfSS3WyBfN0m+uu0rXOIfAaoTihE4TIQyTRGr3Nc4m3x9VzH04oQeMDopGXFnxT3vbo92lYg/XFTjCsQZkqwGGXISnR49jAkoeSmEy0Ic6YSv1LsoW3jnv3fmkE/Xw+BW3Hk3Kvhr+ZJiRyXDfGwcrFm3NFMUseodtzYor9yNJnjbPgxXe/ZG2yR1nyqJn3m1FVCDWwkPJyPfPx4MVXz6Gg57p/a/sfPAN8aH/8gw8PTlpfZmAY6AhPW99HaTjYGd+Z/8YF2l2NaqNL0MnlHn6+bhujL03MPrKQ4EKQ2My8isr1nJrAmCHkgC3ZrXTZaZNs72dkr22eJ43tiCVJlyEk1tRIRrmxjgF+bLMJ5hsyvkSXMpor9vL+weg6x8YaN7FAGB0/NkzsFvHWfLAau0EAAuz073HyGPJ3lRd6bd0tizvzyfIwr03ByRwoZ0JO2c6OplGPKNwrjbLU4cXV/Px8en01gELnAu3vVo4PWrB2zcpOryfOqO91gpne7TdOJ03tl1IACEgpf9Ufn4HIc7dptmGQRIvhYlAbomajmtpIraTFg8BHla6uRjHF4JMqYazSl5S2a5J11tFycznVCrgDmJVRR54MKYQkRlSbhEO1vLcPzt8/6ANC93SaAkTTb9OpfuCbq5vrs8vLdxlOrQozMVUuu590R9R69j+awiEsBIXEJP3jFdFx7+UnaShiloNe4JQ9RZvUSvvro0/rf/7Bzo/KN/Y6AFrH4Pjo8JPfe4ZPVXC2QJYdbSxRmGLs+Gp29voSyUF957DX3OPY3w3e/dXf/NVf/vwvL6+/mG+uRujB61itWHyNLtz1wB8Kde9K3ouxa43JKi6XwWtB8g50hJ7fNb6dN4/3zeRJiTf6PDfnb+OauS5pVaV3CRAHl62LBUwZmqmjDuCvWAWShrFteDG9Qez/4s2bl2+vL2/7h71n148+Hj/48Nl+53Gt0XcWEld6sayoC7FvSY2LxhNMZOEoJe44v8znoNa9enf57s07jdw+Z6nCUwXXlb9ajlaTq5ez35x/+5eV7VGn/+HTjx4dfvTjz37c7+wbzgNhuLg24upSOu3BB0/6e3v4BX/z5Zvh29vv/eSjk48Ojen6iz/7i9l89F//v3TjPldsWprOyQQJ8FXllOXKdWGJagSjPlN9Ht+Co8iBSFK0+4j+5a+2/f0Gz1s9+MmDg4P+utHIRA6hgdqYMH56f7W4v1rvDCqNWbMLO2k0oiX1KUTlvdjQNPH1ne3I0HtJKtbddvmtUDNRPsVveeL9o4VW8mN2KH8UheSHnVarfXx4qMtML7LcmmcgeQC478ZXd+Mb9hh9OQXVmrVG0/HO4Naly9BCFwT4XTITK8FfQk4jUJJz1eR+q0Rocrv0hLeLNPH1HC9DkkL3K68ndAv2xoVIBIstk+iFq9K/w5lzaQyL8o+91rZCboT19L5d5lFI2ZN5chygaFAOo9H9RWKM0ex+jMyV4BlqNVvdDXWsLhFCKoWaJhLudC+G+wo4nP9Hx+s3kCGey2PLJSL3IO3sWLwNmpBtiTMVA8DbSIsW1miXmmSk645O9+v7iy0WPt/YJuKZtfdE1jli6pXODxiNHUve3+dKjFMj1Ylo2+S26oKq+PLL317fjR48PnVozy8mvd7Rn372rGE4ZbdUu3x19euz8y+elyRyq83psuXkAPQAOWO8qRy3p3eruvnoSArM6C5Xxtatahww9wjlKHi2jNtd6/xGMwpKIAQ5roObHFgUzKYLCW11clQuG9jCMtCDSWL7StUjnJPumWHXk8cIHkg8dUrrMR7OPj9ZMkzsjE2d3swGFROCURFiCAPP85aX48FwM7m5hg0YQYp02y36OR2V1NuC/pdbKoERXV7wemQ/K2rxeA2BRwcGIkBebzc3jepVeXO+Mzb9+nG99P9j6r+eJF3z/LAvs9K7cl3t+5g+/pzxs7MzO+tmsYYASBhSZICiLiiFHCVdKHglhf4JXelKihDJCJkQRZGCSIEgAApmF1gzOztmxx/fp2359Laq9Pk+dQApu7oq883XPObn7X6vKRlWzr8eeYMUj29p0pMQHE5i9YqYbITFtrgKLIP+DdXxaDCZDVlSUX+BFjRaTu+zk/loWFrc2xeOOdHgHcVNRLvy7VzNxhcCc8ToYzbRAK6lnICs2INovO7d7/dvHhzcv3Pr3u17tw5u9wf7JCEmDIrz06ePu598bEkVGAMPG+0iWAoZqgMFWWdoFuwt/x0K2ibBpNgjnUHFDBsOqFrPCFZbaXSl7dSt+jvv7v/W7tGd87OnCZpHWpX4vrm7d2+fJcRU+HjQSlZpLemHz0d/+RcftvvNmzfu9dq3nz87Elv+4x/985988LMnx08X68ML8V/GQlyg3GZcUYKNqhCNWLmMxCsSqHsLbL7ABfV23Ywrs6ePPqv+7G775navi9VU630RvtSU0BkEkZaUK9B+fzIzawc9AEnBgjg80vsJST57MX32ySHp54NffvT8xZOT8xPVpR6/eD6dvl5ZvPKg1rvLtC4igAbhhlLuhcfRmoOA7hwqRl+CpHEgbFLqdSZrcTSdTAQhcT3R0IiPpCBXYfU6jY3FBY+W6yfjk5+8eLzT+tEPf/DDN++++va7X9m/ef/Vu/d+9vH7l5S5dKy7vHXv1v1N40gxtsdn+kC99FL/ZqfxN77zNxg0//4/+C8fHT6ddWRTKBx4isI1aiOicXQoL0XJdWo4O9XCXDFB9Gxn78auyr/b2mbd2b95b9C+o47Jcnl6sbXo9/fIbJx0w83hvPF8fvHisjlu7lZvvjGQETt9ymdlvnYlhC+0+1/+L5QohmLEpxD1EJ2AUkho/nmX/cvfHAdOAbbrA7kGX9e0vbc/UOJ/W8ExQVOi5VeK1s3Px7PzsXboNACF6i7r8/VK+ueyJnVfz6irPTbkbf92BtUew28SuyP9b6YLLSpOFIzEAy4vhsR6sZnoxxL4M0erZkBZZkbkKqI6CIXkohIlt6jCOOhBMYylj9mBRde6mnZkbaNnMVe0IPQlxnypqrqiLBLAj0CcKJJXwXCGYmUAnM4Sam1xNoBmFqeVQrAJ94TX+F2a/c1VrUyUTjCM4Ki0i35KUQpCt/1C87CfYt5J6mvAuKCsGZZVs8pZcohBcuTiDiswrGhp4R9Zay/rltOvX4FeeRW8cUmICf9I5hwCKOMAgdOv6Ol0+6b6m7eG4+FHHw8H/Ytfe/gFt3vx6Hl1dNWetk4e8aM2a/sHcIhxgbctjYzvdmvbjeOnw+fPJ2Zun01ScUFxZNHK421Lup2FE7EtYkeXYhQRCRMqQ69ShprJtaU0jxAEejsCqgKksJ1EJmKygBoipL0Lw7ji+UqcsJfNLucvjp4vp7N+e2CtZHqJeytavX7r0Tq0bdStRAqXmtD24ZhJZDY9OaJLtm4e3GVvQQ/UBdLyQEYLLIbArXgNm8Lks+w4Ep4g4aDLAdFRRU2zKx2l5t2LUxJ70g9kdBC5lLiIg0cjVXRnTcdZJIWC604HhWaLQ5iXX/xFe3VRH0245gRH8lSKTuNJZGS3XNXpKHFbPNcshngjUI6LWDluDXG2cLsweXWk8UeWJuViEBI7DTDt7dH57Nnh8LPHzw/2Hh/sHezuyABmzFIdY3U2HBIIwQPot5T4jvBdIg4VEnA5FqQNwhQdEoj4FLsdOQEMeYJtjHkIXaMecXqT9poXFztXN14f/Ordq5dXQ9W2z7QVlWQGOF95++Hg1oD+Ixh60OkShiaHo/d/9NmzRyed7f17Dx+KGzs8+fif/Okf/+Av/9nTF7/I/BK4TyuiizUJrLaAoq1LQkIgQs+NokB5xhMAJ8lsyZ2s9vWlZ2U5r5yJd7/6eKf38o2d29uwusj6JHKAXlCjEaki/juz4hcIEy2kn/CjmhbiqgvHZHN+OD16fPrph5+9//MPdTQ8Wx1NK+Mr/ZU+OpN1H5Vhe6+/XdtRoFZMDp+ZscTsFpSMDkAUCmeBXJGi4RW3mDTg4eHp8Oh8fHguE0+GsNVDQQwHB0J+uKAI4+gfgjW5PP3Jp7NPPvvoT97/4cv3XvvtX/lqr3ujd/Dy4TPddV48vbP9jd/+xsuVB08/++jo6RG3+/4tBdC2//bf+ttvv/qF/8P/9T/55z/9HktpbWt6Mg71F8wZiNWZ6XSogHcsCIojZOoxdjHOqdSy3x/cZu2kO5OELm5TGjG8rQtlih7rZzpcP51fHPPctHa6B6/GPD6q1SbP1wuF6hISCKbCAAIQoYxkBQQn9CZ0Jr8QFX/Mt9CefJOP+fZfnZavibrx0BuakCi0v88Um+zTCMpqV1+uZ3IZk5Kr2ZSoygUn9eLkRHv5Sev4qLPzeHePzejO7fy/uTvgg+0jiWKzZtOz4dnh2fnz0fj5xcXzDmrTZG2oa47BmrRRZa9x2WsUq/zWOiXG9W+VXUJh6l+1J2ri28SU67TPyXcLMcg2w59WQ/52nEcoJrGU+WTKs8eUVE23oOUkDQ1106VvprpjTINWKcBo3cyUugD03BkoRl8JBtJYRYwB9ICmz0kaCOBnrfKy2GALrLkc2Hqh48UgG6COJIejhOi7CDSW39Y9zMFlrHde2TBnpa9Z5PISBe7ZYSrqZTIiW//m5Xqe5krN+uL0+NMPPp2Mh9PR+Pt/arXW5+fHaPRaY8fWbjwWqwRiXrRq8+kYORbw3FfYqL5hy9GTU4CboGc9vaRAoxyJSzGvyF2mWtVvkeKmxH1agbdke2o3qLCosu+RCygFDGYCc+q2EsmHUgKre83uXm3dWggJFEuptluTKKd86HR+fDJriIm2T5geU1+9wUbI24j6C7YT7ix2ua80nHKVFX1yL3Xn21p1drYa21KdK7UZA9s0lRXw6gsmQomrWKO4O57bplJcdZFN7f0q3tTgHeG1FzkaC8zWxbx2PqpfTJox00e91wrLdif6DLU86NfIiPXZOOZ2HrlizkniKCVTw8sUjGQmrwttErgNpGRBKNaPFqkpi8aylwuHihjAkEJ9iTqMaIMo9Z5UGQPgBM04inHKytmsXj+yy2L8QLnQcSKUN0wchbqnrrWsEsaovhTmvIrYAOKiAKBH8YmnZWoYg1yoACdYAXbF17QKDIULe+AlW1tjNXh56+vvNH6ndazqzrNlVTmxc0EjBzf3vv6dr9x7eGutVxH2Val88ItHn/zkRbdz4/XX39vev3304vnHn3z/Fz/78Z/95fcfH38wU9QtIRDpRwO/OiocahHJaA4Zgi3olb/gpRAOGwyaC81pXInUYPIQwiXPg5nkZHP06faj126/3tjls+1eSrBs2ySYAXjIFHDd1Z4UFAvQ+wXWUlOBzXxyOTocnz45ffHJ8ycfPX762Wej1ckqLE3uM+/d4qPHBtJo9hUfrrV1WL4lr0VGSFGeRZtEg8AMFJejTBA3sGhZwUzxq8nx5Pzo9PxEIBM1X2N7JAJoYBromzachLYklQaBjW2rumwq0LdWJ/rww5NHT398cOPgy1/9znuX70LL9dH6j//+H1MavvDOS6/dv/vi8IVosqvaSvOYr3/5nf/1wX/4v/uP/6N/+s/+UeJJhK4vp1rGSlOJyiFmkQ9piW0BCkigZc5A4oqMF0mNCuXcqO/ttO6QAhcbJeXz8JOL002TcHJ22dCrQJrMRXd/q/lqs7/VeBZQiQlbURIChAmF5ohFyLvQKytc6EzeZbPKIW+z7tfU3+G8yWnZX3zaVnBo4sahD9lssDhdjDFn6b0KQWqP0OuZF8sqNi51RmgEYB3Nnj/lcO/v7r/y4OXZ/LV4CG4m9hXkKWAqV3ly+nx4+mwye3FxdaTkD+QQ7KEGPStPgn8qchdCokXcNLYWyDEjAXoYUdqzEzPG61ZyklzAXlP0YjHdtDKpTUgarqpa2HSmR9WVSEN2PjIgmVDdRDqFCce6Iw04FcACxXQMbmm6lDWUV0JpUGgB3AB4meYCMJYqUljMwK3EGEp8yVYKiofo0zYjvniPljuNSGOBy1dBlbIV2RDA6Z5IqRuXo/6EL0RrwNNgBE3bYCTNeZTQBlOpJIkXCA51tTucfvzLz5CG46NFe3d3Nln88Z+9z+3MQUp8sPpiXdDfrYthaz5HYozmbHY1//QEAM+mk0tVWBI4nta/pBu4MB4nBijUn/rNx4G+mEpAwLPTGEQhS2GaGS9E9Ul0DxIQiBBvF/sPb3yttjROMac60l/JSJFARrvXwSw9U3V0lzyRsjM0GQKlsLXzOUm91u1VB4JMleLabvd7zRt9Pa07w9fWR88mW5citvYNixIo4qohB6S+GNLIkW+rSIDXXK6lkx5Ka2EqzZ6QI3lDyRARySWUpTLm6OjpF8D2YTqJwxtcoL3Y0noum6qz3rT0xJxxYI8Wtf5IqUy2PM1YFZDAbBiek06H0QBCe7xOS72TzUYWtRaahH3RpUJpOl0Jxh1MRMSCmCJ3sLXRUYGXJQhr4PxB4pl1GB0hFZQMENsad5e5Q4pmFxcX4aMXwUPdy5i/r7kyFoMayVhFt5DDiGMJbwkCb8S3uDGFQcsE2XWsNCuhCg97732h9Tt7qzdGh59dNcO7xZJr5/P2r7529+37ApuZphSGfCyy5Be/PLj18OVX3pwOLx599su/+Bf/n5/+4i+eHj19pgx9XQ0n5eTg+gXPjBhHUpv4gaQaxd6Z4unmF1odjST8KOSbhs/0pTXbRmFuCpfSvFTvSevy7MVnz48+2m3s93d26ygUWiF7wRRJSqZL8nC3kJxQ24SBxoq/vJydL+dnm7MXoxePD589fnb0/PlMLy8RkJUFg1l6deDoy5MPH73f29456BOOGvf7KpJ2SNKkKAuV0WaEJOuwsQRjKw+lGeNwIYxner4QSiOmj8JNtDBfsBRyGAJow8SJmFVwIgpZDNUpFyWD6clo+Hx2+OHz53/2J7e++s7rb7z2haverVv37nz248PhHnPx5ej04m6lef/V/vpicu9u73/5P/8fv3R757/8f/3Xq7GOIo2xmDxPAFeC2Bg5BNWpCxLs0weEqFKhFI9PpjuNWa0HT3k2KJ5o69F08dnx6eMpzqe3UGWp4JCYE36NRveielDZGQLULKRIMa6TMDzJCCosCvYT/ZuMUZJsMYfBxcICyt4V+oUEAtbPWUS4BzYMaBGfKGN2m0WX1pTKgrr1oYDqqG1S97ilMyytS1nIWAMYlK0Vr6lilWIr6+fn66X+MyCGDEjy0qCqpgnnZHROfp1Nh9M0d9YSUP/ouG3CaUkOxpn1B+r4Accug07MPFYmk6P2x0UEamQKhWc3LJ0gJSHoCq9yxjWdBEBjj+auEp6S9PJNuBRHASbiJgQEAhjIozGykGflE8SqHrciAQLtmM19Gy92hsQ+gg9SKeIAKOab1BVFJwvdTxBeEl0FplreCG3OkSqKBygdiR2nDpHnXRuOyg1AGc6aX+wviEKIo38wm4fReNS4Nh1b6/s6MCTqYFoX1e7zZ7Pzw09lXNy4dRe8L4epqITmGCBAJS7ThMCAmi4+Y2VouDAVza2Vc/YoRT2lqdSVIiTz8uehUqFJZSyIVeJUUe4sMqiXa+hbS24Osa04DekXnEEIFolcr5GHcbhVTTM60g+T77o22AKqlFpxJhKxaAh72/Vd4KhFOI+XXVTfWvBNqrOQnMUGyBFP7aedXn1fB9Htvb1brcG+OCY5ID3GuRTgYlXlc7XFSkRY8qur3l6vfzCoKVrQnF6lHp7ET6QwybWajghzXY7WjUlz+2qz37rgV1PQVR9HBSm7/eiwk/P0Xj+diugXjm7tdPy46O6iy53FrDI6IaFoKVaR6NDrbOO91a3lQhflc5qRXpLGoTurdUrID46ljLFlaYogUPxFeQOGTHTJCgLWYKPdizcTGkW6DJtHWOIo8mQlMeFF8mtmy5xUziwEB/1P5ZvwgyJ2uSp7wrqBXWiFLm8XYJT8PzTAozez4fBkPli/+pWD33yt9kUNBxebcSpvClWtzKU1fO3XvrB7d08K42g0EdYglvLea+/d3nv95Gj6l3/yJz/7/p8/+eCHx+eHZ5vljG2oljY1cLEvzk/5JU0R0/FmFOsIqSZxngDOJBFsqJNdKdRfQGu7eUGRUy/djyBd7bQwQhH3J+dPTw+GN1R/aQxwPiIy4I7oDbiyIqSm3DFWbOhPbsXahC0oRXX46Piz9598+otPn5++mLD8aFAJ60krZAOWNBl/c4U6f/HxzcH+ve3tu/2arAObJsmg5J/FEXjNkzNI4vbFMoU05Z8INiGQQ5bEGIQXhdJl64AyRIKRdgfWZoOwBeS/6GNYNCWQ4+V8PZw8H392/Gn3L/7szfd+5d/+m//2oLv/7KPn7e7uxbzx6OJwej5/421VFC/uHnT+R//9f/fhzVf/0//bf/aDv/zudmeb0Rzr5omhKmefw/6K5K7z9eziCX4fMdc6DebVJJG1GDZnjFWnHz5+cTxcj6RCCSWtNXe6erCwTWrHNd++w9OV4lBScwGTGSh2x0M2OhU9dbkcCR0JNStMMVwR5EVCuX55g9f5VThDAbpyTkQY0r6aRPOTs6EW1jZusZ56YnwOZGRJVgwWWCWAR1BUBFDcmZNXbJv6nGxrlep+X+OQQS+FnFKsJQWzsYDJ2I/iviL97D1brvw4fz2LsCPVh1CZjRD1kcqQYQ9mlO1JjfYW/o88Ik9R2cBk8fmjUzGW097EvNtAUkZearHpNsDgI2VHaSb2wFBTLIQfLF6niN3hAWCVfK9BSmCASYlT1yNi9UifXsnKMldp3O6LgZRYMmdH2hMbgSKqq1MAJQYpBBjqxz0nhAG/NBqYgtYj5HAnzI2+BB6JHZlGBMPEP1hI3jk7G9iG7mZNONJvMPk7BlhL5QZJS5WjYyE+pxJ0McJIkzKVRTKmD6FFDBKF9iRpkHXCcQIjHizwigxkRAKD0JkETRd2hSkZR1wRGS9AN4OI+dwRpYwO2hibWHhvHL/MgMJzlNfQa7KrsEpvpX6rngFEbfxVmYXxaqjOw3zDil9tdfqDzV5THfC2mofjcfVE0+BkL2pMyEbASVydKVOhvg3LiUIT7T3LHdNc7D4KVc/WrDaS9OVv0YRiiLiSV3Rwe7t9o7WsdfQkHK0FdDClX07XPMON+bShIp4GhuPOutKabu0ozG3lVY+s0qHF9Q9PUTRlJ9SuU7w1Sq5mga0TdVUlJVzODYiS2a92Ljp86ci09h3MYlWlj64dkjYq2RkhC+Lv0C+c3wOwboJAVCbLV3bB5zB4ayo5JLn4kS5Jo1Y5mxl0y8aHqjB1B46d75gRFa5gW7Pu0TmBCNBICTnkp7nuqxAkN0LBncji4nFxpBv3tm7eqXz9ndq32svW8clhZ6fxdPp0WZX2cfGNX/vGW+++RrpgLx2dT0XivPLaG8uz+qMffvznf/K9X/70T86ePQp0BAfCo+xy+L6U/TUXGwOkIAF2QaMripyhZxbGFPk4GIlIEq40JbrcDs9VdyNSFBhG0fn+9dtIO22t5qlzCK1M8zK1AKabEVpMGdTG+pry30gJgMQhF7PRSovDo6c6o59Hc8hTOQfiz4lAlbYQ1nr1/PSzX3ywe++NB3eGt7vLAf4CsiFP7KnxLIPvIB7Gm6q8bBTMJ0OVFNAY5V/JkWLvUWOenhJIY1ARlPOwyFaRRxNoaTexQxjJhFc4ICGRWCOe9PxHP/nu0dOnv/rWl7/41pdfOniJZevkyfinHz6dHt/86jcf1nprite/9ld/796dl/6T/+g/+cM//6eT6Kqhd3hfiYuPUSOeEceu9C5dT58MV/VnncHOplXfaQ9kHL9Y6hJ8+eyzyw8+GE+m6077ottrrfeuOi+1a/0kWUm030kV0drOQKsh6rBiIZvzs8ppp3revBpvrSdDBRUokYg1ThAB36SyzwCyiN/WNnwACDqW2TsLIzEs9YGXp+dnnWfq43DZ6UzQ2R6gCWtaK/pvndA4bbyZCGNfDMTmNh7BN8DfrkT2ck7zUnGlTgf3mmhUPVlMBFnL5Xd6vEuemGZ/GmlN1hg7045ow/BiuxKIAfKWLAQ4fkfSPdURHUsTbevGwkDxdEQzHtYhrv5ZbTZW5IObcWsh/pwWSIpNXQyMl4yfLh3+F/4DTBEDt9R9TDFNaFgIHuhppB6MDlF+PCjIEfslMQi5yxIBfe7ttlCnAAYWkhRzUMObracN2ZG1XddYuqh5hggk4gArs/RZbrzIXUhA1/9MJ3q1nbAWISOlJ60rbEU4B8bCJKOImHsXroFHmBTdJDq0ZQqhydUYKXaAmIWwu9KAQ0IKPfJN+GbBvsItEr5a+CsYxHX8pkwZxqBJxJCDQDQS4Wt/LFPIlh1gDMIAejvN3l5LQf3xiq1pMxoCMDFeUhndnlVp61QGmepu/eVOV3GujpCt6YaEuVyP51uLGPfq51XtY7kBbvRqg+601jojDDADotiEwvOhitLKhqCpIbvUKgNQt0h5/JbaDToLXu1I7V+tGXs1aBfwqRRRa7bNM8THIAZ/U9smYsTTaBRKV2pltZhQ41sqEimJhCLYqinb0jNkvnop00wuioZqnFrTjdKkKfDOOz3lBRH3YAgXPAriSYXKsuYvF/XmBJeMS3oWSEcLnMDOa4Wdmy1C17LrPoTWFTIS8s+4FEoPV/yDfV45L3ARsMDIg3g2sFhFnJEXXgDgGqJLmiMAG4120W7f2L18cHP22mu1rz+88Y39zeDF4YcIFEJ3tnqBCNx+cOObv/fl/XvdFG2YXWol1613To6W3//jn/zgH/7Rk08/GI6fJp1D1UCh1x4AfgOMsZSSzT3WFPw2mUKjfIUaQg/8LlgefRqlTaOkQWez06/stZXONI2IWtrwqA+pEeeFzm7XPFBZfBW4oUBT2W7t6CiEFMyAXRAHVNp3KuRytFmcrKfPZmePRufqngm55dzSI5JenWWKdruOVcBoLsnEP33/w4MHL+3c39/a7tzeGjQUu94siUflriieIkzIn9gVbe4YZlQRkIq2vdtt6ApRW5+IVxO4VKSxoF64Uhx2JpglsQnmaWS4vifbXUJgrK6GHm+Xug7ni83m5OjZj3/+k1//xnfefvieWWMNLz4Y/aL+/M2v3Wn00eSrr339C4PBf9j633f+0T//b8+nRy3YwaiWyAHOJDIFmQGaa6FksKuTk/Pnx8+bXQmUfTmQei08ejR58cF09kzlAtW6hdAvoM9Qlemb7e6enOgt5SR2+EJUZFBHfK0EQhLfIq2y4/M4hKRa+YBc9rnAYZlXiNH1EX8inpQVvl66HAGtmr2Mh1uHGN56cbV7tdnmJey0ADq3NVDlVcfMqMX1Do0/AbwRV+xQ9ClWZgEnHi7QEpIt56PR+PB4+OJcCXnm4SsWLEqAc9F4b9JMIb2oYDZECKMEYSW9hBCY6J4QA2UvmRjTo47QmRo+ADjYFjHCHoHhmsBN+u9EuIB8D6ZoRCEIXCZPPXJlnK4kbqjINhUaic6SPFLZ5Bp16YUiTaMDeQQ2Q86TeZjCQxaYWA0rqL1iXjCAblNPxioPWCho6kyLUKpO21vTydVUZRZ1JlCxDAxjzO+Q2PwO30skH1gz2eC5w5EOTCccyfKBjAJ1qEicPJQfIjjJxiiNtGypyXtwtAHXl3uQO9kfzByTjFyTR/sug5NPjwXE9B+GUF5lsyPNMb/SoLuttgaRukRqLIcixsGJ6Lud1c4YOEW1KFkPZ+P+kM+lukgNWP791NPYMPpxY9Bs6zVdj57XV6PObLez3tM/9bI1mVhGkRD2mnChrCnGi/xwT1yd8j3XJka5YbWUDMzirEMe5yYeSdSM4lUs/LOr42d6reIWjcnm4mSqvEObUtKLMhojX48XpHvZ6G2afTGwsZGBLUmCMwJsvarxVmePHT9dCWUaIkCjNFQdS0FPtmjAiFy5umLUqq1aHbKCqZt8scSTcwACKhxP/ZJ1lirkvY3VgR2IU1eZJ6h+AaD8K2QkGOSDmV2/u34LKxGa4iLKpsS8ko3LVH0MCl7zkLCRAC0MDSZcpvQLzgSY5x3OiPbuzc2th1u/8sXtb94Y3Hv+8WfnqncPeufL8Sl3XaPyW3/1m69+/Y3lFoPAlIKug8PRJ2f/6B/88Lt/+Cfzx7/kaCdBS7eGcWxyHhLBwABC8KHDNeAEFgMbgbKsBmwr0BtagsTSgPXkSU37qx3UnzAULI7pnYNNExYFN0hePLrz+bgVfiLuXofbgf7NSQtA/Jl43d+qiUDAiTWGGj9fjp/MJ49ni8NldVrtpg0zOY922GLtW0norm6mVyrjoUd2pDq63Pzk5092792pD7apMfv3B+kZ1ZFVJnVB/XSuHQqlNO/1fLg6fnr2y59/PD6UWtZMYkNFFm5LCanIrOGAoY5WwLQNysfrg9m/7ErIC6yLW5kcQD/SUZmU4ejF5snhx3//H5//5U9+9O1f/Z37r7462Nk7eszOsbz50vYb7z4gA8sT/g/+g//hwd7+P/nn/+To6LF2AgKQwtT161zq+GEpRBRAMPVYas+7LzrUtmVnslV5n7HpZ0fnz2bEbLkFeAcLxdWwNhT6u7iQul7fjmVcdS2W50iLgSECaQrKijvTv0bTK5QudCAsLHJs2d1MN/P8HMS8dyBzt+khTgXyAPXM8p2mtIrOFHX4Wu0L1Fjiewg2G7O8LmZOlr12EouuHVqkY0VQmBGwSvdjuLMU8h60un9yePz89Fwodb29as+2pvPEK+KIohcJTkQfcJF6H2ErOLBRtIiPNp1GZpOchP5xS3L4UxvNgbgMn5gKiB1B2ZTbZUdj5/AbmQw9RPUAHyMIhzA1F0CHqjDwMecmV4HAHNi3xdcSXBxe3gcwQX8qToYBEHeSjo/ToDYW+KLdvGS1F7tZmG26GYIh6kGkJqRAxFwMY8GJSOMBKmP0Le96zrEyLgBWkTuyaYFAy8zjwPtgJQFWwbjcz7aXIgHFsVC2zi3oYmhkttBqy9mLHhB/bRy2boZoeWPuHInZziLPZBzXwmnhRUg75uFG8IxQxZaoGIqsGes3ZtrWVXLGRmC9YxwwnnlqW5Cf0x2NJCBodHXVEXahOJHeUUoFiq0ROSvxEf/Wg366qbWi967aSk130GuEOqaTOHfiICmVbtjSmy27pKAjBYchk8mQOGNXShAC3o+beb5A4soZ9/XlTAH2KbYjbq+HzljDueaSCv2KTGjdMPU6j8bU8BWEkkR80NyVBpdKd8npjXCh+8umLUUcSo17Sy4Kqxv5h39Beume4otdQ4zSRaFbBvSsZUgj0wCGnkoUJmFNA6bh8Niju2LfwTN3Qu5KYAk4ysu3ga/Ac/bBCMMULIWxRBX00WeXOcmaZJPICLkmAAQsws7dPiocY0kT2V3dv9t89/X99/YaN8RXHE8Op8vNRWc+XpxDgZcf7v7673ypf2P7fHKu2ECv2v/oJ0/+xd//oz/6ox8Mj540dWBrL8c2l7td6VQAHgk0kBQwDN/N3+theLpvnCDeAdkGqyTi2E+JevKrLmUY7vUrNIA+5CuiG2OJ4C7+lN29rVv8bdLNqs9b3TutVSmDIGqvyRlMk0FdrCd9QIMakbjSB44vJ88WU0lah5vmvHmzfmOgfgxvoQx1hiCGHLWvamY4HqUDtj5wKE99Oh0/+uTFS6+8fH9vsNpeN8VPqm0E7pNWWhqjKY012Tw/PPvhT//y+z/7LrWkXtkplBIGMowFGQvHDgUhQoYCZjt9c71xkffL0jgaZwSij5JKJh/0VQoBuDTf9Xh5/vNHPz0enb39zle+8+t/8ODOXUXTnvzyyNLt3GLNbygc9+//9/67t24e/L2/9198/OiXGwInPGNlTuHZ2DsY3AC5WuvNZbe13L44rwj7pgnNTjB/AddJVQI62LHoAoVvxzMeVjGO9YEbaH0z5T2A/0nIWYxri2mSSeWqp2JqCA06Q1YscFWAqmy3dwXM7O3/77MTbXsBQM9iVYik7bNqrcqphtQiMkt2WKaa+EUD5GGXpJkC/R5VyjGw35D25FLN/Jycv3h2xK9/enwue2AlwLjdZcy92O5vYBsJWsiLiGCEHS0W4RJdGK1IgBDkE6OT6IPCvQyOPJJi2+h4ZC+yHjOsPlcF+zyUDEJt1FQZw1BUNW1bGBjSwMv5JhqJnkM4FcZk6etSligJu8pD6RykqMClcxMRgX5TH2AyqEU4EGsMw5IycBqZHUtWmkURS2DoRi30MVlO6Fti3RJnanhRaJLWCpG93MJOkjayZoh6LEViJKB3+GWmEdtXoeBhU4Vlh4BQr8paZ72RZbhalr0wK2cbTGLCQi4bkr/iQLaCiCFoj1RnXzGfbHi2Myn3FpEtA+NkLzEJG3rKtD4T51tiI1nkGfyMJ2XRgiMpsBKDE59k92LTJqWDNkEnMZpRFKxg6qHT5SMMX9a6i0pjqq+Nb/TI0wq3Fb6UCLz4W5ATAJu5RsZNBBaerma18g/Ok+FHZISONsMCZ1OwNbE1o/H0LII7i3IzRX3Y+tN/Q6iGguo8HWI9a5tt6kosV52dfl+PlP7l5UgqIe4ozNCKsua3W/sdcDCsTSa85WX1iRGMC+MZmUP+G4ckAp+HB3ssTyAcINifKJVe9sDu2qHsRch4FtZJSEr5NtCAUYeWZL+tfPkJNQFGTjMhm2F/YqSLmFCeUcht4TDlPlYv/AXHtASsYQ0+ip1XO299cee9uyoUV68+PfzgxejT3e0DeHA8PWl36v/Gv/m7b7z78qIy7/S14ap98rNn/+g/+2cf/OAHsxfHlcpsVFNvUtFrtu9iUxfrJpCgQIVBGmlEk2sYyXSInOAsYzdUxNIhEwYyzYt+b7PfrYQB9NjTyzVkN60rOpVBVyH9/oEONzzky/ONKOD6bkeEseWsyx/n76LZYSoa+szXm6kyppfT4zUGMHux2JzJoOrKcGDPwIJVs0hUBSUhqcGLbnXcuxoNr7QQmhGRJHU+++jJZ3fvvHJrW+m0LcGocMV6BgQ3qXi+qU7ns0+ffvqXT77/dOuRKjJb+P5Fz8JH9ssP+kfqCzbaKjME60WnNqeCqdm9QiKzbbEppfAF7fVi2ZZTrsdhWv9O2DxOhs9/8AOh0Ivf/K3fevntmzfvHbw4OX1+dvrSg9t7u+2bd/f/1r/9N3o7rf/7f/Z//uCDnyNyUV1TERyVAZdXCp+/euelt19++xUNfitKlH7Wmp815vrnsXewrUUfD52jDCYITOTnWiJ7b3E1GGqlR17i7k6xk828xay+GF8OTy90rCkWGzgWwZVglaC1QtFCawKWFizb6o1XjjiOzOarLAZCx0MrbYfTbTSVCFSLu5fBCpYbC9gkowQdEobvhbCoIaMuNAVdiu10rkPMmWbH3AnnQ3fAx9CLKgFNOEYkQk8NQ2YhgJsE5NDYSIhq58Uqih+QtdGd9KtIc5T2Vr9T0/FQTGNE5tLfSXCsgKUgLKEcVqCaVZWJq6KzViokBndsOEKH2dR2dxo7O+39nlbmB0ptK1oXZ14CidAk8ulSyLDKxWQF1Eq/LXFotH2+RDKqABX80GDVpgbFQmFl4Si5VVfI3rA9KsXkiz2gQJhJBZZQTgJF7DJIaETGmBD4JZIcrhypgUfBT5A3AMTfjBhY2rBCcRh/mr1+T9EejtPxZMQwEZLkClsUusFUnbpZmFXIDVtMB3VLNwQENkpF5JxEZgSOLa0PojowGZKYEy4vxzPl4CLkhgsFIQTkYGLNQssoTjHHWVFWDutoidiCMlITWxLSAFgCXyablcA2RAzftHD+a21K1Sb4F84uVZRHBowmUCZGKiDjrpu5O4TGGgghMmFXK07PshdZMhwtLBlt5pdnX5OgxnCRRkFMwyGefI15v+qMKB9iTCiUCz5D/IRDRkfzBiVmdrKcyf4WrsNCTR3gvhZKIopzLCA/ZXzcXqkifGY6GzZVkrBcq4q6PbDd+mADWV7IgA7YwEzSQuG5hQlbMKzNN9c4kz9hB5bR6lox1+YyhAVa5Yus8vXZbuZgzgyMlLv7la0om+U0RqkYAz3UqZd6dTYar7958Kv3tx+KFZvMp8+Pn0i/394dPHrxiWD5l9+89co33lzplctKsaz+4gfv/+F//sc//+5HqtseDPrP5k/P16OS/OhxAhmKjhxELtuRgROBr6lepI1ATsYcYcPTy1dAmO7U6W1ubF/e3avc7MX+w0ZGjo0DeBDqv93TYLU2qCg4qy/2aFPraFapJmBH8+kS5EqjprAq7QJKqpMTmcmL80fzySfj+VNtfaqDigpQPU1ZAENiQyLsijDYTNbL9pUCOoPOVVd0EE4Gqq+OZ8P3X5zcu3/z5g0lB8FuaFikT74Zkdv185OJZIKj4dN1a8YYoDY5EOusZGA01LJNB79M3Dz9sg/2D++1WYXXhU0lGDooENtEwsgZliggMuejl+lSofPznT4AHsuQncx+8fMfIBZfPHr7y994786DW/3+9smTo9Wsf/vlm52dzrd/76/wa/9X//nf/cHPvr+ej1B1CMsEJCj+9r17X/jCF7/2zlcfHNzWVrt1VXv26dPTixdyVTydvILEhEam3SBh6HI14ltbV483/T15jRGRUjyK4EqWQU0UM5jDQzsHgQUaNkSWo3OEME7XBLAFsm1pZpqpl5kH+MIMy94jdGAz8GmUyuFoh3IxXaBxEIKM5CeUmxZEsDZCT06YEftYPYUAGWEY5CVJno9U8Tg9OhGMtuRWTeB7gjhl7dkJhgCd1CodXNWESfqoKHAC+GkDaIAcoIIQhebp8QIsLrUs2abVDgTMsA4yTAg7omeIfZaiEyv8ulvX4Hck8kj/15nGjw3dpISZcUyx29w+GNy5vXvr4OBgcPP2wSvd5o4s52gAJHFECXOMbUt6uCRWVcURjdFCIrYmnqvJyfi8jgvgAeSRUgmMo5TtWMh5DAAs3FCJWEgFov1YvcQZB5JATlz2XhbUrIVISodEUtL1oZZanCQdKMRkmt2NhlygsFhybA1hXV8rXNU9CegpyyPRLXfDZXCbCC6WLS64gGnk7AjWoTHAlfRAkQu3oEOE9JTtxjxZQ4vOgf+AqgIN7ileQ9wmBg0vEvASJl2gIkBhQ2L+WwueFJ7vEa7Cq9wyTnK0S/6tDQtbY5XQxjr0X1Pc2FzBOToP8DLYrEtcN4ajFQs106A4As51QeGaSXR8CrpiN7ii6UDIrB16yX6n80gqv3UHu3obxNMVvQfYsxSIMF5Xmuc0CvtwORIZyp9W3UxOVUQF8QkkrqdIMy/1UlSaqEyFlJPQK1Q8PAnfV4bJVpK2Iuo7YivwRSuZ6VqICEchjhEobDA9CJU050wrWkAQKtiU90DAX/iUA26Vf0VpDkkvJ+W4V7my7FfOzjWuzmoHfW0AMujCCBA7r9/+6hvdVxTTG1+OFcgRqo1wDE/HT8aPO72LX/8bX9x9tX3RWCga++n3Pvin/9W/+PTHh3d3Xr/V2308/cXHo+/DSWKL5TZcsbK2JSsbEgPz8oQyzUISyuT/5USMl5iSyRsm9ayjPFolJVq7lR5jf+mDGD9Qr9JnEeIOpfGpgifE+mK8Wmna2e4sziS3rtc9RYMY+qBB6NDkaDp8Ojl7PB99qv28bN9qc93pEiJ7HAlpIyLCo5AstXzlk0kr2e5WplwO3Up7KfiQisA29Hw6ejScvjJL964YKMk9gXJYqLXs+HiskATIbMpW3lJTSiJKR2VUVWeTcmTKdH97GfcHaELM7HfZn6DwvyKQNj9yANIaQhXTRHoiqGUuQF5dWlqllO/afqOl6vnw5A//3j97/NHT3/mD33z59Xu7Wg1c1UbnS8UOUePf+s7vb23aVuQvf/4XLyYyPYFR/eb+rXff/NKXvvStt15/76C3MxufafBL0kXKI0oaJNIRG3ZwqIywQKdB0CDILpJ3lM9N4ByqKs41Mi/zCLJgV4Qw6c/bV8+ET0Dh9oi1gBpcBryhcICgAGhIRoHIfMor4OiRARf0CoKjWcoIfs5FYv/X7j5MIyIR9gQ3EySEjkkgiBd4vTg5P3p+cvhCsvCYL565HHc2KMXJuenjRGx3RRxdqVZMCjcc2O5eeZyBhV0g3KKTdcPWqndrMKjt7ajnmKwmGhEE1El4zh+7Quia85kEsxbbRktdAvEPyLWwodJkuN9X8r3x4P7Nu7fv3Ni7uz+4u7f9oC2IRPw/Pm6igj4RthRfIhcqJj7hv1lsbdeWA87drfqk1rjbEtiI6DNgh9ZaXttDkKav6naRFw4M0lK8lmbAbboSq2jZFGCTk4TapJmfhCZEB9GAZiQKAo48e8yVLq6dhqLuuIUFRdHlC0lfTUCuZR6eq6CdNS1sJoQGJtoY59ooNBEc2ypnEkBCK8v+WUoSulO9IrNmf0VB2X6EO4dDZdwArY0pgrPHDQEEbuY7KFGEUSdktP7lVKzVvV17LR5kJGAJ3ZfhGmtNLE5Gg49YLJSYZaacGuIWKaEQxQw9tkY8EC5lLlQwzIXdj+HJEgho8vQMA3hZDpcBHWogNwmwSG+iokqYCjkh2VGxWAKfRLAy9JCIiPeqm9YV00r1kIwBjzRLECyFayPKkzNISWmjYOODOLhGcBuIW+Tr5c1EsWTLEHLsuNkKKeMKalKNMXeQGpTM6dFnjTXIEOIfEMkilwVxzEyCUm5RDuec7FH4q++y2NkJN0L6LZMvEyWZsApXYoebxqvbD79y8PWb69tbl81TmTeVldS6xqJ5fPjLi8rxu1+/9+6v3WtuB1M/+t5Hf/p3/+jpL5/dP3jv7ZtfkjX44tFxLGWeFs+ZfVcbDm6AtEwUCUQ6IkaG9GVL/WR0hpdhWyJ0ESDBeU5sDslev7Lth7BvG7sZOqGjsq2tJNcjWwydmCsYgxbidyYqY9zst+rCNVFfuSMaSalvqdfK4fTs2fDo0en0ybwyvGxfdXfFMwkctXyKEXDbCxa/6okR6VTWLVaX0tSIDYbdSXk2PSuicz9fPvvZM32oWoOaJzcG2XlOA2r21UL1yS3xP+31oDIWVFzrVm50LrsATYKoVFCSjgqx2als7XUmWCZiI/0PvIf1Iv22iHgFwQhtBbfgUawjerOOTyfCQsRQqDzcf7B7+/7urr7dy6PTH/2TH8yOpy+9eufldx9eNsQXDCw/5fw7v/X7HcWK69U/+v7ZdHO6vTP4wjvvfOntL7/y4K17999i8NBDe1Pvp4yoIumdAkIcq/p2Z6MEPOmCrX6aygkrIdbRj3RoO58YZWJvEM5IVsAn4yQ1aLN9sC1cKIaB9VKVhUsmnUTbXKuqYYGZHTC0tddKKxQG2AHo3Abww9KkJ4r2gDsyBjmAU1m3yoR40WAsiayGVfFmYOyYhDhv6TxXokHPRiONpYT2ITuZfly50ndwLICq4SIeUG1hA4lfInJa7bSQNDRidK3NplMKBFqUWIutHt3Db4ZcqAZc2euASpt3tr7V7/W2tQHknrmxs+xvz/d7oo/IrKkYw4iiL4nyiDf3b+7v393rpRaxTgahnJEfSbYL76W8pQQ06zn5xGbjuFwIOqc0Nt1O+/Y+EJIGJCKZ7Z7mFvNFkbqTaktmZcuh9Ewn0+lcmqhg2LPlciKcSqZER1le0ceELO1/UnYhASxwj4OLJiu7i2vzXDx9Q7RXqGjoCNnW5luM6QxDC02yH/kftZEGZsuKqIJGBXGDtkFw+1UodTkZV44pqRDR4LqVdcQMzczzTSak31E3K+ASMle2HS93MHcyhpwDSgj6WZIyiNy+oIizjNV2+n99jlNT1TGPzajAiedmTuXX9ZjjvzbSlEgM7XAaQxzoLEJ2xOvkx7qFf9YZ9UlZbm+xLsO4WoxmxUWrd2dAqmgnboF3CNHAKcJdVNKKcSbFhPRRLo9N+FUF7U/1STCWduRZULNyc8wkhP6a5pXFKet4fcjbjCVLgxD6nY9eYCEUpHzlWG6Wry14+YXch9KXYxlmLszL17m6fJlf12dZLcMw9vJdzmfM2qymV1u9W1sH36p9/Y3NO+1ZdzafK5M8G812Kjuz0+WmPX751du/+W/9+u3X7zB0ffL9T773D37w/JenDw/efOXOe3f79xfCyLWE3hoIZmNQg91JOSPFZKBhs5ijQdonTzSSQFh+Gx6pIeqsbYlfRlwENSxxQdLh4uztV+6KhXMbS+AnGZSwg6WYaXvsakLAxfRs0rvZPTtWGepCRU9VB0lCBLzz09n50VhFitHZ4UoQ/JLx54Z0A0CQKDyRBqrqQxkFRLqcx6KMGZUU+hADxNi/Yegij9Ea6NCTZ+cvfvls72AgUr5+2c4cFLEWFLqqUIj2K3u3Kw+a3PwbCsKuLxeVUy1gG2qnUMaLLFPiNkzBtIMjWZf8KlsXvdoawEDTQ3Tsi/QydqxIs4kXy0chV+eNWRfJWd986f6dfVXR55MXH33/iotbKuGtlwcAsBhF64rkfOubvyGmazQ7/tn7379z6+Z7b3759dff3j84YO8g0w9X4zPlqhvrep/DUwHvlBLpDfRYqW0f3NoZqDW7020PtGJS7RoCIVcjTQxOT4dDjtaz0XQ0HCFAK15mgKfdt9g+nBnh4TmBdnIK0bYCzCZvboFDu2/GAYnyog/5KSvAuhzzBBlrkZL6ZODAjFkTJURbQnw76gX/ePsK9EJ6LytDaUh6j3K/uQREkLBgS4E8CwotGQUQ/hgP0HL6eMLw094ZMAkKjFNYqSDiHjZjOCYA3fldUX4ypi4C6y29nTbM+/Xtbutmv3nn6qInJaJTXQ2q02kPjRatI4C8w2xwY1dvkRt7Oj53b+hVGONPeE4yWGXWQ6sJn8VsqH+n6nUWELez561Gq9/b29++Iwmvo7sePECUhEGRyBNmi8amsadAmKwUT/xyNiEVaGQxPVHreDY5Wq3O2Rew2pIET01VM1Wpe9YnFZXZwegqIuZU6q+3WvPcPVuA0oYzY6eSuBC9650icBIWg7j2DHJmk/KKIFw2MpAbepxrcjy4WahRdjdngODsed4XvPW7EH9XRBCExbmOjOiGTihEIZKhT0GDa0tAbuB7Z4Y4XAsLNtaH8ioMJ2QfLwIuyHnGm1FGyc7dk7iQsws1J0T7t1J3EDcyHB9kESlYag6If/xB5HZfhDcaiag5AlwyxfLJv9B/f4TosgBStZW3ru1sK4AWMVQdFj9RRtwTJM8ZCI28qGHF9pfeUYn2FxBkeJ4Zb5kRW4LQeIOMrOMZgWlfW1N7FOtw1CtaBdpQOEMWOqebaVYmSllIyOef/M1iBQGyRR5w/c31flrMawQsWw1f8kgowFIoZr6x+3L9C1/Y+XZjdqOxvtKYiSGaYZe15HD8Yt2bPfzyw5tv3eK5+fj7j/70v/ju81+c3Tt455333j3Yvtuct6dT1rjtpkqSMytGxzQI9Uitx79MogcnAaiQ+883qny2/7LAPyeDCWViNIp6Ep2z0ulVBnvRA3YkkcSeSXdUjyNpi+vJhrWJpDhTSG7TWJ6MX0ymI4AgTbApWB235Z+bTfm0RsOT0eJ4yV6oNlRlR1ohjLiQdMotio8rC58SEiLWVNKIbRAt5ulBbOihzERoMA19fH72/BcdyaeY8Y35XlUDkmSmEucaB62dh7uvXRxTGnawk3Sx0FcQm1E8pKJpF2mMPdPE7apXki3yF1O0P8GUEH8bfg3F2RRbLDcYXyRdhMaRSkSZBNOm8nBns9Px6uPPDntX/dde+sKNm7dFyr14erZ3u59cefmIKJ0Onr3WN7729en0qNdqW7rt3i0UnsXgk2cf8bZ+8PEvfv7452c8uZbZJiH9TBVtqVj9O/ce3Nm9/dLNu3dvSYN2UafW6iXBczo+Oz46Pj09GZ4fn58+PTx8cfRicj6U+rivDTK7A9jEKmNmDlTHG2suYBEcRju+htwClZmgx14TlnwBs4J6Cc/JZRYhF5mwGzDot7ChNrte0duQ8fhhSXMJXBc+GmQJcQL9eW5UTgsaMsC6zFTC/AL768oh5GdLAivVAZOhI3hmTOtbQqXYdWvT2VVLJfPZVXda77YZXqkUTOf+xwI/6Kouf9C8ulWr7snRgpxNVY2luGv81+pdGqWcdCDSAq59QgpHpafb+LnE/wWOea7RyFgNy7misQCT7VLpg3p/u3dDxl337s7g5d3BDeoFLkUMpf2hzKrMw2ewCTiNsNArFZsW/c4ugJ+M98/HJ1uXndGF4PRT3Ip4pzw5/iW1PBVh+BsFP9UwsEZ3fqnCjW6UYDtGPUS1rBlCEL9hUUOziiFCWUDE9HMacg2x2cm8A8ChJeVaO5SDZfFtmTflq/zKK+dmD6+PokNOLDqgg9nmXBqq7rQQwnIbdonyoDD4mJ/cBZ1HSxAKd7IlZQw0vTyujNetAnK5KVkZ9HAsJ/SHtVCzG7VCxHIqkzubqBIhLIvIMGM/k18QEV1kUVJ6EEcDzqCKVhE1wKOLs4UoQxTJVGT5SUSINB0fuupx8Rk4JLlORWAqP9VHxkCCm9jsWL1yEy5s9WOnM8XBLTvuXm8rg6DuqV2gn7IHxiIUFpDVyXyFGOU0ixIJgGLMMGfDcF1swe8sV3YnS5dduY4bNb6yOW6SsbpV7ubX9ZSuPzvDc92DpBCliiQj4mNTv9269+uvfOdu85WrcV0jE4RGA9P27t6IBL047LzWeudbr7T7rafvH/753/3ekx9PHt778kv3X7976wZsZGmFZOZkvewxvkWDNw16+uf8KQbwbCU8/xw3jSwRhE7IFDLpjI+Gi9qmoJaoFAkzTHFKmhEw20LCpBZ0BiKqRICp8Dhdnp5Nnx9tPjmtPBd7I9TNgrAOMdkAAWuPkZOdrINYz3nqPUwUZG1XXixX5+Ozpze2796u3FHMatAapNog9nRZ0Rg9DWKvRrOKBhScwIJEsTGmRsWCrg4fHzFBYseb6SWZf3NJlFOb8LJ51ev0tcVhKx7oHMF24bkpCJgUs9T+Y9Qv0SjgHSRnl8q+XO9NDgaKCzUM4gUKcgIGbn9RAUcsY3ikmcfA05G43anuffm9b3zjG7/+lS+8fT6enozORueqaK77u1uD7R0EYjodtbuNb33t2wJXv/fjv3jymfinTXO7KQdxcn7y+MWjZ5KhT0/pxyDKTmE4AY11Y2umEF53t3frzv7dmwfdzo7iJYpTpSgPeTU81f/Z4uh8+OL4aD45q0myEK43UyZtPBuPa9UTBWmbjTFDcGZSJnYNj9n6guRlwrA33wOX7L+/crAkGIizs2l0RxQZkeeLTZmujvbj0iSR2lpR3EjWEZ5FbCvALBBU+QeSVxHeMJvENVg+a+a3FQ+Ce1Yea2E9NrZ/K826l9J8URroQsXgxP9yNW5ddLq62apwA5ex38RdchlJwpJq2GjvNLf2yPuEhmZtr9vhCFbyB7fgGVEIqKX/jE5ZQMPDLC+X+GSpVDXF6Rz5Vy+cHjCTvCC1VWJsb7e9s6fEXXv7Zqu33+7tEV/YNmgOjNQyVCuNpIDCj4Tj41hsYZcSjjgqNUVT3rS9pcKA6JWZiiucRutFg8MfRbF8vBXqmF40q3qspNqO2auQR6pkGAmSZPmzJqGzoShliewKUhq89UXy38hrQVEkz+9rYPUnF1rhz9l47pSrs9iff+cu5XMk6Ky6++RZWf1QglzvoblLDgJ1tL2IBJgVmYTyi8T6PsQuI8mjDAwFzHiEd8aEh2jaa39JVb4Ev3KEkFdpC0ld6PXYTNtd1lBN2pjKRuf2HVDJ+j0dzVQvTYnlPIOZKKVgjAMoBEnJoRlf2I0RAiI74EQDVPkNyugrqtqE9sPsbRbpmnkajIoWKAVjpvXtylhthRS5GyKRGiTlDsZzc2+wL2FUBYblZjiaT92r6B2ZELAVcdpr7+705YMZlmZ2w5E+7NTBqH+eT12+rtkW94aNKy/Tz1+PKCQki52hZ9Q5ks+20uIVX0XRLzJuVlIF7ZZ3vrb3m29tf70y2ZnMJyfDRxTPXnOH+/D5GQp7+O133n3z3Temk/X3/5u/nH26evfOr9x/6Y3923vcnSSUpNglhoTZp4hjHkuAjYNBcVibaWcDYeClbH7RAAwkoTBlmPDU7tnios8x7ivNcA1vvJJ6oShfvN9t8+/T4Al80xF5avr86tmnVz9/vPnltHpSrc3DNcDclkitaJTJ/Wasi3BtA5BjtEGjKx0taqfrs0eXn7ZGe/eadx7efPNm86Alac1Cq/TbWIy2zqYx/ac7boAqkVErpkB1zXlYT56Nj/7b4Y2fbd97c/fgTk922npaGz2bikbUvvxivhJLomKQwFKsCApDZOYQBsNr+b/sQwJzriceyuenbFmOWaJsoCPl+0gZhGA8MlySDcD21YWoVO596eGv/q2//te+8M57aoFrpnfxoiZi+bPPjhfvLx482H/1jbpg0JQ3a1Rv3L7zrV/97bOz2T/73n/z3R/+iyspMbGXKLOsopsGmszsdFpF8hVQ2Gy1N2ltPa9dTa/aW+29bn+nDzpUelVMGvnhddGFTfAzD+TlzTvrB5OHOsjynCeTfjgcnxyfSzNuPZK6DjVmcjoFoBSoDCyWmV7/yrYHXmFE3AMABXWIkV2EhlA/nFM9rMaM1zLoAK2azb6C48HpZrevXoQINaUUpMlPT85PkdVZCtukTBpZrJQRCt0XqUF9C02yhky32ZIkW8XwCxJthpBdbudZjHN1+Y0xZSvzhpoT7So9YWI8cbmQLIYJ9ZpbvfbQYhF29BqPFmmLQBccFEDMEIUmqWC3tVKUeFI8GkvNDEQJRw2dncdypkWTnIJwXBtBi0E+ml3sS0gQu85abdMVZYe0T+cj8wXZiwAINyS0kY8SoAIUZGhrC9dmj+x0VawV2aAvIeKgTOdiuEqltxh+tjR5vpjLhNAFSE5OKWApdiJk3brmf3an7FBob3A0H8wpX2dyNsoWZKusV5C1/HdSuTpg6sJcFGS2qmEsuaW/vvByMOlRvL7lMX7lPiGx5Rbum+vyIdQg0QJEd74oBQsBB+GEXcXLOS6Jyyg0IpREQ1AGrgBMChhEoXGu3VLThplWYKtbb+/saK6kuCBfg4XcHXTsvEGRHPb32OMWSJcdEex41lDMK5tiDtwihoMgJJv6mh2FS2S8IaGlkuBGagDjo/JDEdTirOIXMAORJwzYwfgUuNvq9hqdrtpvdfyeHXU6YvNjREIYt5pcdDrvMT4xVZikNJ0sMKUXeHNBaZhy1dzpuVO/sd5qtLeGks8Sdyj7ncRjnUSnpHdrpNxca+/cIOz7emOz1Bm0ncvSZwsz/BxjaXJOeI4gFVUoBl/sffu3e7+7c3Z7Ot0cnj4drY+1Oa01u4+ePT2tvLj/0s2Hb78l4vsHf/a9k09P7t986+7Ba4P9vn62ShmxDYA8sCvzdZthldnMMvCx82VGrIuyDgMzkNjTfJs9LwMp3DfELacFXsRRAZxgEVEnoNTYsNq37/V6/e32RNWE/cqHpz/7yfgn708+Pdw8Oa4+Pq4eXjWW7X6i/nq6tLbbb9y6+5u/9mvvvPnG3dt3+4OuLcfcT88Xw8lwinXOZ+Leb93drRKgNlc3t+9MT5Zy3wT0ozAnh2cnjw+PGDeeKSuvGgOmq0IKJr3immxKELusvj/7sPrB1f3nB6+8/AqjbKuxt3O1x4wmUl4BQcYGGwJQihaCcCQQIDwwuFbCMspe5FPZp+xVgazCG3I4kB6iGNAjlOU3UFRLFnVbNRrLwdfe/Mbf+p2//fVf+Wqb/CfHtX6x/9qgOqoNl5Ozw/FPvvf06Pnk9fdu7NzZkTEEJfZ2Hnz5i7/2iw9+8MOf/vlwNUKYIq2C1IW4EanQxspOIcZ6s6gvzmpnjcbRixcvFuuRCLfL6su3b93d21z2t3fQZ8hGK0Ojo33W6I6tC8YZsepCIAb9WV/Qu8Gr0XM2nHERqAqsMWgkM7OF2qYMkQokZs7AvSxG2KyvrRNxnyVKOAJfzKZTRclSjBKU1rYGLTYZf+PFwwZV2l0KvZ6NhP6L3LZQiCIDOUhyG3Sg+D9FxIX0AywiIsLiR6hq4ioMA4DFFk2pUrNKaTZ7ayHglFYyYR4X3B+qDzKicxOzlDIXjtdKNLaqUxWK2gwIUS1HXPRWI7oRXT4NeFq0fEZ/RGbK3I+4eKVX2VDYN7tr2fEI3+gbeVGT935/dH52PGgrIEzmk0K1EVyOqYgw0l1ovpyVZFvNn7udTpTheGxSEoFK0GC7aymVrA1iCXG9OqqeS3lhj1ZAtvAQPLgNtvsXvf6lanu6TWH6kNA2XP/PfmR/CmXIqhRw9GWoSc5CV8rfUJhsXy681gYK6H5+HbANBsfb4Bx8VvobI0numzPiJS53cfewXif7CyYKMfCAPIM/2klukI+hpobDViFMOYTfxhR+mzG4muAP+bTNIu/TF3BKoas2Csr7MZZQJlI9uUbYkijepVgNMSW8AFx/W9u7OKlKNQsW4rPhSb+jsI+lSX4BHz2Pkq5+eSzDTgZJMDfAzD9iqrBEOAkWIxv4KjS9ce2aoktX11iy5MztXh332dvtG6bQqqNO8+mVRsITkq9EszM7c7niVDs5maBJyYKy5MERAwOsYxpQq/nc3WGrr9igrl0alJXED0RlMS6XREq0xJYFIuVv9s1cy4KX3fLZUTMoa5+tCkAbKUhY1e9tvf6d+3/9lcrbl0MtzJ4tlkf6B9240VsvZ0+Gv6g3Vm995Uud/s7P/uzDs4+X9/bfPOi/cfP2PqFHReiUxBAtP1sZOAOQ9gOqELsvnYe3I/KWx5YHI4KIB3MGpZo2ZNQZZ1JUvHVWNMV4iMIDcA4VwJjRx3LpBoNNZ3d91lo8rn36Rz/6J7+c//Tk4nDnTu/BQetLd97dvf3rd28Ja9zeNLqT8+XR8YlcnK++89VXX723IzhSTL5owMqyfuPqpmE02+cv9KN//OH7R4+efrxiNEkE19we0gBef+vNd7/y1pd+4+tazFAfaGyGiN/GXjuKQCtSQB2pzz59dnakpcDm8NlI+9BW9fzV/StmciJJu90WwM/eP1e0PBTbDWwEMfPanhNrA4qDHQS9fJl9iQMgDDxKZwwOOaMIHC60qt6HPeIDlUF/tfdrr//WH3zz99999WXFxCkYWgEljHw8QsRfemuXe/oX3zv6yXc/GY9O3/nqw9094ntn2p7u7d/96pe+8dOPf7R58eFoyrCcMcVKZrTrFWkLmEViBWHGtFWdnh0tFqfD6ckHn7xy/+7dl+69eu/e7QPiiFz2hKjqbnbB/YLxy2TqqLSO0VFN9dmoTrutzd6gdmOn+eK0cT6U9ygakJhfZnsNkyEVn88/MGC6MK0IcDAMuW4FxWoTNcZtg8yrlBwW+1VVGQ1/TQEQBFeZGHXWF5MJW5deCDKCKKDUUGoPsDMeSVfFOACF1WUV24MPN9tormXPY801BvXCfTw/keXGQTjHsdlvhW9Xr7SRLPWxYnfczKqyoU+qx+qmUJmZehg4Z/o68R96ybkY06IwkIYSYYz+gpTwH4OLDMFpK6M16x6J8nNzftxBmd2aCWA0PG29EEQsJa4/6+Gx2N5MjoDrFQVOAZ6a1jf9VV8f+oveJQd0ip6z7FAHRBpd1fYEC0v6C7hOZrORVZfMoWBcb1Vv9zBq7SqXHYEOLH0JYr/2lKIDALRQNmBnNZK4aDGQjoK0AUYfAhTeXROUfArsXoNqvsor14JmcOSr1E5S0TvNveLHUAybABRt3OaGHvgdEhQAjwLob4QElxJ3bB69i/8NRZdsLXQKicg4IlQCC5KHl6co7AHiUneJeYap1OoyW7DR4fI4uQdzjamzzhIXV75qsguArkX93t7V3v4t3T5UFlI+FllNL5bLi53utp3xMB1VT89HbsJHAB6yMoApSxEeeE2kDRiLJp2YAuykkGY6BY+xLjN2mGYpy3RNkqovKCfz5CiqQ9HDD9gxycJsmBrfLWZz9Uk5YrMQIYZop9t7nAJmsSNkPkZA9Yl+Yr18ZWBZMzwgu5JjeRmFm2SzrGVYqLcORKjJsfKFyzwkIdBJCOnfvLr9nVt/5e3e2zoqnE8mnx19Ml0Nb9+/rb/Zo9kHn1Z++c62Dua7Y6LxZ+ODxstvvvJmXVG0DsnqipVFJXBOhFjf1aBXRnbVUWBndCXrW4kuD0TJPDqMNOBhgtYqK+VtvgB8GY4ZgZ1MC7VTlf9CBe7J1fnw4njabZ/f/XTz4Mk//MGfv1g/ufFq5X/yN3/jnS+9sr2z1+rtnL1YalU9PRz/8M9/+b2/+MnH7382Xc0h78f/6PDd995754tv3Xiw391vKrFtP+LnZe4YbvVf3Hj6o/Hoh1enT4eb5uSquTgv8TCf/eTFhz/69PVXHr56/8GdGze1XZbDyS/clkw0aO4ctJVQVvzj+MV5bUbHa568OPrBd7/3ix9/dD49rLYOgBFJRJqqMhgSDs058BoDVHY2UJQ5m6WtKOQw873+H/jH/Lx8znKVw2XhLBsjkAVr71Tvfu3mF//213737YcPFQJXA1MzzDnJgcdar5Kr5XR8ysslO1nRm6PDdfvDs/feub2922EhEW751htff/vl7z757EmdCx158LxQXZ6bJi9TBua/0XGsCRmcT589mZ8MT37+ix/v7e8c3H7w4M6tfeuhmTa7eKK05A/IuQ796rdrNwYqL6i6sdITR19k6aRCKmxurOoJYTIfUyzwZ9JBogCHZclPIDTyDVnND3zEe8UmC9IRBwbExfUjSYxOqejDK65QYuIBrfJSiCpzOipBhfGMyBseGu8fyR1tjBEQ7gi95/BSWjk0yausP38RGchmGFmsh3Aq0cssJxSjy+1BY7df76g41cCgLIgMtelEzsfoQhWyRuOM7icZcsU+q8bSXA5vaofAYkR+ghHA7Qj7Ru4XoFaooCNIOiRSpogugEamFl2xdMtsZZ3m1WBIHJ4ftQNxwQaEHy1nHbBg/Jnz7d3VYGfV2c4yrVbSoVlKlOhDHxA95qC9/t5k5+b56eGpuoyriQxlz+detN2drOvVgvW/BUoFp4M0c7fp5I+yO2VHXBA4sC3Ih+PX5BogOj1AnM0LXAdGbaK/ro0475Rch1j7ChK4DXOKVwJsQrciwrhjpgXCnIg4FoAou0/GichvmWg2ygWxSxJM5olpSHymp9oYD8AdLEbCLLEBlEc5oYUee1FNcfSYVwS+LRRBHCXB5+Kyqaq5+qLCRBTelMXRbM6xZg7hamPHEmxtjUdnJ8cvCHhAoj/Y9iMDsdHiX+Z3r3IdiibOxFOKwhivkbj4TnmcipIOsjNNVqMQ/Qi3zEgSJoVrFElk0WouKApFI4l6oYpz7Pby7WaRuAAWDcfc7UYeZFSFDpRloU6R7VOjpeBPxJNCO66H4ZjTrUUZluu9rFH+ZoWzVTkxOxSB0m4lrCizsCvkSfy4tbnxXv9bX779G7r/DYfHT0+e65C6Pdi5s/dAuNLTySdbnfXuwTZhj3x1+0D0+UH/QFlU5fDckLXLkJSFoaRqd1Pr1gc7zf1+bSAtb7EVBxcmh0s4K2QwzCA7DyuJkEgSQMjgAlwhz5F7AwSxKAJE+Yin1fEn3eHHz//w5IP3G9uNf+/v/LVv/dZXWM9o4OdPWkzYJ083p09mKkrNnw2aQ2WOd7iMcNnKc5UhqHuY6mYz4i3bavMgdtlWm5XZor1///bre3cmd3500nsy/mhZGzUk7C2EZi9lYx4fTbafr3r3tvj5Fi1GSYpMVYFnYRRCqCn2gmM1qGlVhdbUXrn3zlV156MffXA0m0okAt6dVgMlQ7GLBQtBIqQFYdBpm3P9yjrYtPLyPm4tZ9mx7FkAodBEp2QJ8dYtUYKLgzutd756/zd7lf0EyhYkVHE2qQhqRmg4LMHn+fr8iPG3xmg1PyHwjjUX3qxqN+7vqzIzGNz91td/+wc//DEdSM9qVuho35y+ZKwMLQ83kozFWx9p1OfDybFM8MpHH338FxLv0uqEkcZWkbJ9EO8UseRgb3B7Xz8RUK4hq1usleQ/GurdUrrvZof9j9AWoMnk88ox0yAQhOlbhdQZw8CmDPdq1Skvv6VWX+AGoKu0fTiKwQT4eqrHakoxFk0zmaICiawoM7BwhUTA+MhSWcngAZbATUfGTwtHdDaTTb0KeBCYg2Ne1j0m/YT5XXWaVRlhOl6EAdQQW0H7QnHUS95oILxsiSI7a6lVqFmqUEHlc8UnJMEDv8q8TAeVF2xqUMTZwlyLAJmYVOug0JPKhh5VRbrYIxJYqDM4M7Aq15WLsaJXWS51TeLwI5V6USxSd3DdXLq12USoXSgYhZcwUJlFKlFr5dZiWsamW7OZVUnpOtUkoDq0oK/QfprUBKxaKHuMCuadICVQd01/rIwlyFp6SjlKSMiuZa/y//oV+DTJHPavEJfsasi7ryLURyRMMLhlDUlzOPcUR5ArssoF2q9vmZvn6rh7vaK6EE7wDZuEJeTOaEQRGq6pGhKZchk2JBCbvOLk/BUW7kweWmOiNIE5lEYhOIpIEsaU1dKSWYGQioZdq/bpmWunUxWxzpl6+Zcm66sBQ3xTyq7cb3HHhD9F/jJ2KmW0yRDP0GdTLPJ6GXUGJwYl5iabW7BdZ5YsAEZAaSGpxZYbtDKiIsVvXYyED5bVItdEyclyllMKsc5aeZITrl1kmRrCUER3CxQYCnRn+fz4kuqRd9fL6K2POZzPjjvbf2+C8fkiIgNVab7zSuULv/Xyv9ae3zw9mZ7ND0+XQ40VtXFvb+1+9PyHz0efbt9uPHjrvihn0Sw3b9/S9SxJEqmcFUJlhwk/JLzgr5ZB7F7Mb82ubTZ+erRCKVkwD01UgStCBY3Jt4ZXAnalvMXSR/+OqGylkgQJcmmA42Hl0V8cPtI9bK9X+/Vvfuf+jS+fvN88Px+L2q9f9qSuVefbvRnf/ni7uthv70/qGrJF3Kgq1H66roykSunULj+2vm6trvb6m8ZCij2Zbat1eeOg/9K9l8YfKeAg1EefGZE+V/NTqa4X1QEVG4xdyOe1Us2uYmId8qFygcvjan1SV/njlx9/ejo9vvFq91wKxaa1d/ugj9rOx5W10oFC4zUgDIkx2WjbpmYBLL1tKzsXtLAi2R2LYTWTJlm2kySEYQAy6nAkMMm6zfn+9uaNN/d/Zbf3+vKyfTxbC49VmZCzJD0NFwhPp7ZqqCxwEBQ76d0ZJET/xeSnT84++/j0V3/v7d2D7v7dG7/ytV//nZ+/f/LfnJxvTgtNsCupmAXACTEZCAWARAiiuduMgLkOFXOqkFfoEdsA8Ry1ZaaMIYNAIRP7+LDxpKX7NNddFZcIbU3gvAh5og7Wxlkavm5SBRoLPQCa+ecnBNF0r+N5miNCPNs7g1aClBstsgS1YjNcjGElgbdDhk+uvwYyK813pETR9ENSQq0S20P0yjqyrnKAwHxIxAuAz6yvGJTEN7MZGBOXQSYDbCMdRSwKGG+p4KZdXXWnXdvRUapLPWInlX6maFmEY5UqeTPJnY1LsoHbiimUIGZcveArAT8Sa5U92ZI6QMBHRaJ0WGXpCLSCwnMMBwN1CuFVlIrEYv/JAGgIFNDEnk6AHVt5tmUCsRfhFRiaiD3i7Ix9Q0wbMqSIt3dIovpNRRanpqnpMJomEg8vNTucBXYK9aePIo8GJvvBpSXgBThasOxNdgNU0pUCmpYHdDoeypE9graBjBzK0Rz+/KJc6HPZUAMswGtAJcXMFy4LMEW2yJnlBxBcEyi/rUNhjyArNbJRXxF9MYPkOZ5Ceiw4k7duVsRYwojn5L/NgakRCqy53c1iO5rfjBQpJJLy/LxeRE/CzlAgy2athDBvEyVBOUeY4hZi39gTz8anSS/Ff7x4YlLOxCgStlFmWPhZkRpy2zKdrEXSxKLlRd00ySL7eWdMrPOu5OB1kU9ekTisPMywKmWRXeXaFAosK+iwezhCO1TpKaYwVfOybbYySxCKWR5dTizrWxYoC5vVdZ+889yyfDbG2Vkf37mxvbAhwpgGqwffvvt7r1TeGz+fnZ28eLF+Cvnv7L18c+/g+eHhhy9+Xt9ZDXp7XO0kKOYPil1capoNBqSY+Kv6TKWXuwwc6tpMAUdhMwHaPMoJserbGM+DbNz7kTcCjgUe/AIr1qQMN8WGs45R4V1hxdezqyGRC340Vjt3+g8371f//IMP+63+3q7kC/GeG0jTbcrjIhfym8xfe/A6H0Pt8dPhfNba6guDnp2pCnAlDgLHupDje7bp8lF0t9oJoqh0b/X2vjTY7be//4vGxSSZJFz+M45LcV5t6UiL7kbNIR66aIPcUtnAdbWzaV9NdMS5umAxO35+9my1IWX0uluCJfdqs/758PFnk9KUTXvF8McKIw1sLskcoaqRckwyeGL21zw5JBXahaja/Wh8RZjACAyzu0T979ytvPNq//Vmvd+6IeGqEm2mq++ByihyDNy3NTldPft4+uFHH2mT0tnpaUsq7cj9VUmrNt7/4q+81t++sdu68fu/8Vc/efL+Dz7880rThs2RW8wH00xqepYe5URFA2kBsUCrcdqPJc+qwWbLIJeBYtWB4aQrQKKRaGZicRIjA7dsDNLsk/FC2AjzL3POXTP7AOL1KgTDyyHPYaZZ0tbE21dWzQs5VmGIEf9EGLHngjg1cTh6EgITZMRcBb4YkHFBoAhGeDZ9Ikjnmeip2E1SBQ5WKJemVzziVpnBjKKQ+bo5SmMypP6cL1pDBIo4ySAkq1MCM0Ctzl+zRWM+FwegpXUVqVZRsiftd/vWVnUgQ8P1ArvBvupCiIZbWwWieXyEgtiSCVwyqIvRisXXTE3BsEUppq5ES8A1ZUC7zc1kMs1aRJG96nT1xmp2hZEIHMT6MBtELvHhLD8xbjFDwMcIisirlYCiNILeYGd3f5E7oZdz3yKWch277CQ1QgORM+lN6EAkDbQkQHBNI/JcFBV5go0pTpA9CDoGNGDs9Z9gbXYSigcashd5hezaj2zl9f5mU8rx/MqZ1/dx1B1zcq7Bs7zN4MttbXOE+gRew5EsUnY3pzoasmOAOTkaFpc2Ux98ARwxC7kTQGBBEkSlakdUAS9jdEejyiQCvwWKC63G2dmMKMAm5h4T+LDQRhEQ5EUYclE8rWFSyVl3sbXxyvE4NmKgNBZX+BPmnKmxfaEmZa0y/MyyHC/vAnMmXPCqYFO5yD44K4uVjcCmyZ18qS1Fq7eWWkqbBWCHme7nlT0sS585BUOun3F9D8vss/fXH3PXQEf5Y/wprh7CrPjBve5bD7ffnI/XL4aHp6tDVPLW3r2XHrzZaHUmvUdHvdGkvvXa/h3TjZ4p8kC4AWN6K9qVypnz0UXkZU0BJxezsU6sp2ezY80Wp3qjIGCigOxXjZkEPVGBBf1MJJiRUKrNuozIKI0/M7CzyTbFyePuYEuv9PY6r9958MZbX+of7i1/OLo8Zr9UnbsphmXR15gBHCvkDE9VMBWnLk/g8u6de5fLrc4Rp0vye6dTZXs3TV169LZjjWrJ/qhcHTR39rTd5C1siCxcbz0YXSxmT6+ejp5NVkMlvLUGTDat+piLK7GfkUCFdbOIGSha4TiCpPci5byi1tWkLdJ6WD374Py1b73avLf9weMfn6e1AD+wYNAJR4/WCMQ9ww3vzn6VV4GJCANZjpDO0kfMebXmMuRILh3zztam37+6Oajc3q7sbaHn9erg7nZ3Z9PeLuImZVdHiuF6Nrr45NGzn378y8dHH46Hp9TWZu8Grr2zt007ODoaP38yafTP9ve7rzx489d/7TuK101WL3RZFr1FUcPiGFO5GijS8e2AsoAV1ENnIo2HkceeEZQMl7JhKfAL6YSSsYji38hi+AICaioR1KSGMFustzbzcPeSFxk4LYCZv9frEECFuRy4gJnRYKVfH7lcZZxVSvpo0y4M2kZj7QmKMCc15xJZoFC0duvIILLGA2DMoRzWI3TAPRNOFsQNCwqBwbWgXQQtdJJYbiCsIE6ItwBMwuLQLtPBt1RHVU6OWNBsWwfhITWupY2guzi2DKTO/qMHxnZnV6s06b5NwbF6gKKmvAVCZNUSDilW+L1HRIkiZ2imNk9E0Gg8UrXO6tl2VU31bsMAhLh6tlASFI5Ea9lQYXjeZuev658tLFyMmzbE9oZWhpQnDEjxCZQqB5EVaa+ti25/e3t5g26UgKQUPB3VNVavXaRDqQL46m8Sia2ATgWCivqD9k6v0xS4YfaW/4I8rPTdmmFNYxa1LQX3Wb1COz0imxWlFdaaUhbvehOvqXehQ9fb6hQvF0D4iBDODCX8//9XaJdLyoRAE3pb7u7cKJmMeoaU/2FKEQ9tYrknoTk8TSlmFt24h2SDCsEKH5H/L+lRj3WMgYF4tuJ7z2YES8I/7ILmAFVrLhbIs2P/Yg8Cb2C4DLSwIlECIeAIbpH+s3c0NzXgADgW7Xhm9TkJtu65HNTbr2JENeAE9NBKzM6Q4YOJmyju5L9LgybMeGXfrnnTtVujcDxX+CaSiFAcDNKTne6hBuXHBli6suI+5d/1kudQvneGrQkOEM/y+OyBP4ms+nw/DGFT39u6/fb+ryh9+NmLZ8/WRxrY3N27+fD+m/V6bzg6PZx+Mqud0K23G2oOvKzmdXu73+51DEjMA8qo3v/ifKU7r5B8UQeKFZ8tjp6PHz0Zfni2OYKahhNGRPM1Xrm2aKc9LCO3PlYgGlaxcVhOaxFKmCKDxLrK3t7e17/whX/jb/32F998YzSs/8P/7XcnQ/5FZboQxvpGsT3BiFxzOqxNForz1DtXgGF1tsJpBu3d6k7CqInTMfZMWRQqmBYZLaYl2MVmsJyrZptwiKbYuKube827ixsqSza1uMaC0HaBQfM5SEJiFCElYOtARRzie1PpFYpPToezybkyQag3ETMa+HxxOVu9+6tfrt7e+m///I9ODh/xiSw3IhCONZtBQ+12DLFFUggsBi/oQBGQwxwjaIZFtta9nfVe51JrFrVWga3CSzcPKjf2e/29e90br2839kQ4CtkUR3ypYPlmqLbXWhuUTx/94tHhj05Xn04vzqZzdov9RnP3vLrbU+SsVzs9mzcfnVXXtZ3W4Ctv/erzpx9+7yf/ZJV4xQAHsph6m8mKNRJwixIigSRQPTG4VOwjc0ZIe4AYN6DDhmCHrDPX2UladEw/2DpshetZ6rrOWUzaHlDQMxP1LJ8DGyZbyEes7uVoCAr8XK3TS2glD2CdiFNVnZU8Y9UBUjEOEtehJU5IzFKhiINOMH3EMLdLgHHuDMGCCrhKDM6F90AoZ+Btlt0UwBoQhOFxeYeiZXu4xUIKRISinExMG6H9tfrUPLlJpJESTyC12YNSnq325WWbXtmpd7st/cS3iUj1OC8NBqhYPS4SUYo9xJohCkXTcrA2GhlDrERwaD7zXE+PPhGCnuon4B+5DwcOiFjrMJsEGCY2NoXsDUzoO1Z7bTJqkshIu0lfqMhJxQzpwxExSfUlq30yOaxcTKU5o01IF+gzH97gumDIGzd2bt/evX1jRw4aTQTrl9EzmS1OjsYn57PmyVgxYzmN9IWQDjcI0ctbQ0OYcyQLXki7Bc4X11uZjc7pzrZ4AfWclj3JL1f7XYhBTgdS4Kp8kduFKuJzaJ/6d6LhgSakpaTmlkmOjw3LebGM0QTlgcNP7ljhTlzyIrOwZqHNajSSaRRzSB/FbHvhwRkymIjFwmbSGZlx0i8ApYjxrKa6vIwXtR1iMrhQzpOXlr5RRmvXYWNhI8ZrivllomVmNCi3C9sqfwu1NS/jzITdAm0rYAktbJ5huCyacr530yBUuA3yULh2hGFAIu+rJIyA8OBdiTS6Fmbc1c5kIcuql7/Xy19WNyueb1B9G2UfIhN5z3ACk1KaoH1vc/OVrdunJ1I5D+e18cGdg3dfene3vY+OnU1Onh99tL48f/Xg3fv1lzsC3Lf7tHJBHur8KnjBFH41bdYW1ZSDUVVyffrZ6MPH4/efzj49uXxCGlYeIRYi84a5foM6w7V+sXWQ2nyjDl+YFDnHSlS1/ln3KqvWvdt3fufXvvXlr76xN7g8GT36P/0f/+NnH9Z7Tx+01retCTmsxZQb5S6CZrxr7S0x0M0uZRbQDBQovpiJP+4iCFQ0tFyncNpEU15IAguQK44ggXYIX4ddS7OH/p3OS1f78PHybFZPzLqm01swYSHJt1WX39vSrC8ScLImaht9BTQlZ+8azi8nielLmAltQ+zT9smHJ9+vPH3pW3d+be/X/+k/u3zyyRNVGXCM5ZUKx6oVZsdtBnnQxO0c1AndslPF3g5MxB8MNju7lzfalR5Naa7OXEULot3X77x09/W7L3/pTv+uZ206vdiChacIVh6dzs9PR+9/8OOffvwnH09+Md56FizZsVsKFZ9MRrXOQtrUQpnOFCf1zMvK/u073/jiX3l6+Nnz8c+EOsoKg3EM4yoQW9kgriIGEEwbNi0nO1eaB9NFY+su5n2oghem8k7wW8cOoBs0Uj7aZBB/E4pBcyP3pXZ6bLZMRL5K4AloDOQGPkPwgUdQM5iS1Sijy5cMUgYEUbLNERYKhebBxVElqqBKlSQAT5MYA899nRuTBhMTGL0hph/bG9ZAoYFZMeHFN0QujErgsXgUas7MnrrThIQUkDZCEJmCz6tYI9l8mGWgDrqcbAS2/LbQJuQBUKdxKGN1h1DeIJ3vitFnVc6jiyJBAEkwi0zdiAchd1sKiXJDj0ZZIYOyzMLWccuSmyu4is6CNkvsCF/AQwwrxhlQQ/ERvtDBKXyQB2ECTEPsmERgB+JlKCtLmWiuefEcwXX83jqtaY94qruRPk6lGKhZmpEZXF3BXeLL6HycoESFT4lkuOoyCq7i14r/ZQghIwGb0BUSuc3JVmXDkBO/C6EJcbaV5UA5MW9dlX3J9dbMZuaAdSi3MIqYA3KWqZaj5UzwLmqnKXBV7UO93zFRcEMH14QijIjeKyhWynUyOHTmQuazYYize6gOyFJp1rznlwxgCgNzCXqMcdhDjyQEQAL9F6hBOa2IMeG0W1qPXTZjyaPaKaRR5625ouaDBUPN4hIcSGuZUnHpmXB+fOdPOF1InKUNDvgQswewLHMkv5u6j1bYxmFLpkpxAxIhguU2WSmQE0ygLQJHiQLJA6QnhmeUhS7DsPbBGXco6JT1K3tQhnM9psBXWJPBlYXNiJ0XsSLvrEKjsdh7Y/AW+8TzydPTq+ObO7devfuKxKHVWLc1/unhqjYT9nSzc/ege7+67iCs+rOksj7swU+LeYQjhbxwPnn+ZPThJ+c/fjz/xenF4fjq1JcQKmaCjAD4R4UyA5ONU6YsFP5Koszv4NNWe9V/afv1X3nnV7/85huL1cmf/YM//MXz9z8dfQaub2x9+dVZk8EGTxTy3d7qDNoXwiaiVltR03cHneDE1/aqe3cGkGLGxa+vxRIdJxSmGHeC0pjhU9ISkHAJyF6QYLxWCrTVb+23lToQlttsXrZElbDcUoqjtRUUvVwxCCcIF4iR0gXzTeR8SiuUoK/RqWmlEtVSIfXNcPrn3/3Tv/ezT9740ju//Y1v/2jx/k+f/3K9NdV1JqIKjcwNsaBYg9QfiByQVF3VLtnl6CwpJCfdud+qDKwWKmQIaJrKAy89vPX61+637wiGn/e2mQYRBlmIW8vT1eh48vTxo1988N1n4x/PWi+W9XNzJhrEWgQVdEqWvyw06GKlcMPZ8Rurxbv1xv1+441+7WF1/fiitRY9ErIV8C2QYrJWTF3JttZrm90btc72Rb9/0elRyNNTMXQTLF3WhD0KdyJVJuDOZHRfoAdAE2QTudcnZ5QhrOeVyRCKxpAE2o0M+AYrC5xeo9E1JbE6DpKVBDeygrX4YNWYVclGlAtLlWbN88VMrSEVkVM1LnEeZHksLZd4ZPNqMKh2uhpGUx3wMDiSEi9kDI8HecQ5BYGEmBgr2Fvq8ZJoaI9VAN+eiBXBcjYixVS7bqUAM0EQ5ru1hn8XgstAnTAoMUK9brXbUxq0vrMTr1JysFIkRuQVfKYAxevgFQQP5qnMEP2B6Z0ERDCJp4ANmbixwYcSpASKYQYOLOsQb+OkpPrXUUC1HFqKksvWvGC+EfegtW1igkJ4jMciFiMrodwr/mbxXkwV8d2jP+BWQRCl/8S7KAaKWHJFG5taCFzrG31F6UGRyEKbiE1BcHeMlbsQx8w/xKQQumxdsNrLVjroo33MtgZXQn5iHyxfhK6VU/3xPDeBRV4+hlwW/uehxThinPkmTycdYp3qmUr8kKIY7hr9WMQa9MlWkkBjEfKTIBJziAxwyRYY+hrRYaUfcMJDJVyHeGdZDD4zQoYMBT0lnI5WQjNxz7QIyjLJXrUCVNncQiiyxI0YAhKcQpbxMNBtIwsL8ORMztIXRu1veeVoQTwPCvU1SQBgqYqrLDEeaHmxEfmNJiZIGGhkSfLRWtpOixuocakBk8gY24vlxBqHmnuW/xYQp8iKeY5H5FKvsuSf/y2fyreFwPpYMBQ+xDbauVG7v1u7q3b6+WamDdAbt+7f795ajq7mU0nR47PFyWVzs9PaeeXuG936rvy5Hvt5R1CFOgcK3ii+vaUizNno5OnJxx+c/vyT2U8/G/98WHm22JrBL8tiLLgNrDPFiKqBq/DD6F/YB825KSiHMCV6sXpz7/Zv/8pvPzx4RaXaf/iP/y+fTj871YlE26StzV69uUzLj6o0ClXZ++1dfQ5xo40iPcowr1dbexVuuTkDD92NGXpA7qo1dsluldVCMhmhvyWKx0gEZQMBpsNU5pG5tlQQbtnfITPFoNy/07szuT06vBhe8B9s7XYGweCVinhSUa6IzwRSaSY4iiQF2GUuqB87t/VW80dHIBYCyZnnjc0v548+/cGHH3z041+58c237337L57/5MejXybZpKlVISWC8M8pwSgmzCM4x0YWjfey1b3sDzaMXI3S3J7TomOowhGVZrv35v2uKEvZ/AdbjX4RPze19fBy8nR1+MnpJ+9/9Hz40aR2tG6OVbiDRLxiBRMBIcleL7HDw7P66ekzYN3uDODlrTsHrz740sn0Z89Gzxq6o/XqQSMwB/pcyRPSotRs7WgKP7js713t7BBAL1OhgBGmBJFn9qEVKfwuiC5NtgEvzEw8BWvItsIZE8KuIpSnldl5ajKTcABiIB6nKXKAryOVFDkJ0uSVNMFC0OWRNvFk34eQsDWJr0cxQjRUVPcg+lJ861lEDEL18G6/srtbVc0fGxAXgKhCmxTSIpBALZRvAa/CBrT+Se2i2uVUSW8lAWO4Kg5V1h62cpNAXaQDqPCZPBA2eJ8QYtwIiW30G2oNtGRF7G53bgzqCi10unZ2TUkEZNAckuYy8G4jUJdmgtpJsQjLir9spu7+GekU67IaCelJFIXyVpvZfCIzaTgSfjtOnhqYhj8QB3+6WEnAFhCUvOTEJ8YH0E8EkZ7HhBbGktAhu8f3kCVMxAE9AtOponYCl7ga5rj2mlrJuKJrvVJNoR+GWRYe0oYDl9gM1r0S4htGbDqhLdccG7j7aIoxX9ob22bSCBhEt1G+g+2hTMX8YHrZ73z0y/tcQsnyUbCNG9Pi+bTpBwAjkeHuwNGSdYSojPvrS80Zeczx6ITjMg5GE6gqFY6WGBEqE6JbXKbFEU9ujVIQ+oDwZMwoL0+RP8w+xksgtd90M0tmc42LBb9ItW4TuYX6mWhfikZiHDwh25k/wKjArecGaPPYMq1MzRvPA5VxUEeWz8eQ5nIQQXdR+Hz5S4ayL7zPkQUtWWR8VAUUJoLBiN3MoLLQcdjmlLAT9yyrek3ybYvvs7rlVb70q8jaWfHgU2RMy5OVCO8xGvh22d/q3e28UrvqH09Hnb3bb75y/8H2QWPZmhKuGEg201ltgmmB7b3dfSEFnRstqOVafSykZiyHlenJ5ux0+Ozks0+Of/7x2Q8ezX8+bZzOr8YBHwCYUYHc8DdH7GU2PimB1HP6HFyySZX2uiZd9Btf+ea7X/ri6YuTf/hn/+CpqP6r6eRiutFuRdgayrjekW2pEs861vaG1PrLdkcZDNQ5tqxBCoRKApU5SusgS6lsz/urAPvlVK0ADvTmZqIXvLYEOrMQm8jyqfwsReEymXncchfyYtBzGkB/v/Py63dH/W1iJtttEHnFAL0yVElWtUZy/Zdj7EYPcthsWQEzRGD4oGFQMMhss0n1TAm50Wao7sv65ORB++6N3Ve/fvvXnp49e7b8ZNk82TQmem0xxoi7jCBWuWy6PdFwvemtibwqfzDycBsOmpWBzhS3d3dfef2Vjm6X/a3OjWatF3P4Zo36VxbH66NPz59+9PTwxZNh5XzVYvOKl1OGpDtHPeKFRzoVFLg8lC/VWHUowAKZhofHjeqvPjh4+PTw3vnqw4SRMKGRZgqgR4TDmePoTGM2UdGRxlSUxGHRvxbi0lYYiVWIsBmwthICeFCwZWxCBI6W6ifNnct1Y9rlUV0uz49OD09OqwsgYb0AJojMyyOdnhsElxz/HNKN3Scey1a10ckDhP/kpIJMrCxdPsuGWEwGNvBKmcuaNLmzBlV9ovd2VetX9xJOEXe541PnDjxBLt1MQ7/QmRURodpVGHm4NZlIoQiaOAvkYoAEBZgEQOgXZGP9viqp+n1dNZWVKRECCigX6yyE0C9oEQ9PDYsLtCcOGY5qLclRI8LHPIVxhMSrBD0cnr84On4+HA6xUvVXI4KygCbkFfJGMcEYmOJnc3UlJBaRQPkAhfzPaIfIOgE5zAX1EmPUaG13lR7tdTYDn1SJyLrYvMiQ4kcbXYmLgx0G7olAplgA51pMKolIsKzHRUyyJR2DY+S3kG78sQzCagSTs2H2KysfQlLOKeeFWmcHA2Yxd2THQl9CCe1rtjNjCHsrJ/mVtc1FIZQeuiV0Fuds9gbIcMRw2yM4Sm8HKW4mjDJjgNaSDAyuEU+hiMiXp63mmAB5PwX3seOI26xorcb+zkB8YFdBk+XqdDQ6k9VKQfC0Qoc5WdSUpAjbIuMQROcSAo25F91BQZ7wwlaDnsExQFegkRuVLTHvcLaQ0BC00KZMsswuQOl9HlFmHVE3n8IiYWOAF8WjMzsni5U1QCBjCSEaiDiRxR1fNqCBounx40Kst5AWT0E30dIoJ8aBpwZNcm/jcLeCfWXlvS0fLXD5yuLbFkwwvNbLjrpHwgDW7cFk90b3nmIm253eg7sP73Zvw2bUOXu1dbGsyQge2uFb2/d3tuWENVvb8QJerjvpCzK9Gp7Oz07Pnh89+sWLH/zs5C+ezN8fVV/EDxOpI7oL9h3kBgZlWcw4lrQiaiSsMZhS6192vvbWVxWqnJxO//iP/vSz4UceOrmSxKv0+loPLisQjxbB7sKWmBPdYXUJLyrDHgEfJKyb9SUtUSyo4pD4vlhTdbk9OZX9CcvC+iuzxrya4C7tObkuSD0EQxK95km1Is7H+b9cd2Wyyt/d3zp42OgMWsz78xnrgDONVjdtPkCyA0ENtd+aLuejc5i8pgwJdqQmGBhRY1RR9mt42RB0kaKjcxTm8vEv1y86xy8GzTdfb731auvd4eyTz85/cdh8qnQjdlRjUoOF6Cu8nVbYoHTWMod2ZadZOahW+ruV/hu3b710944stu7NZn3A05ErRD0gr/pcPn/84uj88GhxspBUTicpZdELea2XuM5AbdBxS7L2qNq6PF89vjgEqVcHj+/ffTC40X84GP9MxVNeMMQ7MMrA4cey6rEcwldyEXgV6MGK/tT7guMb1QHaJYc8MZ8wmTWOOEbtTpsS5nl9tQbNWl/H0LbC1L2zve3LnZ3VybkeiKmOkZ1F+YvwEkQAMZFVrxE1Yh1sSQ6xis3x3gT1AHIQi2jEVi2bVyAQ20BzCx8sOWCgu1rvVloKf6jO17/q7VY8G/HgfA4Zj7GApBh9BbVJIbdGqriQRsQCbKthqo6maHrIFzA1HFygcCAFuSKmgueo8XTI6PwKuGh1s5R6xAHJLUH8v6REmZWAE1knG6FhHiacVGxQt4cyBwXUoFIOaDQ+OlXEX7HUqcTd1nYrnY3VrmTqoe/EpwSOUQ6BFioLTSiLGstuLufKvZH+kX/2DwNioiP3E872d/d3B9vbqx2ey+XKrcxKhbG6yxI5G4c8I7o2M9vgbEmBlzuStrlqHRVZNYwpxDTk3lPd2y/EzIRNoFAVFKzwg6Bkoed2rKj2gMOhEHo4Z9T5AOVdhWSG6FgyH1xjTvmVryxwttx5uGNv0Nq/qcOO6iLipdd0dgq+nhCp66vESG5i0CKT9KHeiDvMHRBH2xGZckv/OZkRQIdupSX8/qB/a18Thu5K7wZ2Vc4Ms4lmi/AldDZmY6V5s5XyFUNXYzlOamMGmqIOYaxCfZf9Xov8b2vVcU0/7cj+DNYhbZYLOcvjja7MzozMMVMzlHwIgnkYFQdy8MRkBQLx4QeudQPkP6n0VTHeW+LQVf2UMzkd1YVuczZxw7BCRXH12LDMDC9PyO0t4DUTyMN95SY40/WrHIHGNEvnlNM9MqpYVtIgTLK26d3Qt2R6o9258dLt/Zdu7qsbiE8qJkUeDtitzlSbb7W6dwevbHf6qDWdlx2huqxtzRvL4WJ+vjwbnT4ZfvTR+Q+fLH4+qp2sa4kAh162JhjEoJZVj0ITkcqzkQgyJeo/q3Sq2w+2H/7+t//g7v7NH//4e3/+0++dNiejq6P55RREBfxiK4qGH7VBXQ/W3aqyGe4nkkH5mZYsV+F1NitV9mSKpt2WqIxizCVIQVp2debYwGdDtGij21RQa3I8xtcV0YrzbKPRekJbKqN4Y6Olt1PStbmDBUrKrNTPt3SblZqmYbDVkR9g792PYfH8cHh0ds4QbSuYKHyBWAkR83Oh9gfrMT6YnnOruUiYuvyyT4e8cMOzVxr3X9l/+ZXtB59dPPt48tnJ9MVV+/Ciw2Ij0FKEx43qotesxAEQsyvzZ6V+787B/ZdvU026+zWZX4qupXrBWkDM1uLs4vTR6dkzFYaPLmpzK0RsisBvx6/RM9lPZhcUDx+rXQn0WmFrleZwefjRo1+2e1/o2eLBS4ejZ7y0Uuydw4AWz2Wq2Cq4YCdZCmingsctV7/ZuNWu3+i1DhS757iJB7VIt37DIea8Wkoq25NefUv1UNctBp1nve6yPxg1m+PqNOZBkBwKG8Es1MI/+wBqopyCF+AKtUIyijbJHONtfOcEIMJ07Nz4QMg04C++63hRcKQukkI2jpcCkVgSZC7qY2Vdx2lwH+MuZSaFBjhSmf0QXQm4tmtr2p1tTdZbpEXx+wVVrCJUjtkgIbBiRuh8og7YPg0bs7JOygLxgG0tyCrrTXsxbo2b4F2qWWqCpixoGB3Sq4ahiomkT2YPWRfnw+n56QStQ6ezEnRPk0ruBKrtDmph92ru1enUJiT9igx7+QPEd2JFmBNzRWJ48CEeZiJse1+a/kC9y71+d3t7d7fTwQOkHRBzBGjFYr7iNKHrlowzDlbqrCYFJDQgAaSLvGlpGapinQh18R8HNrbQWS/M4Zqw2WBLHwYV7Cpn5uu8ytBCrKBCkZOviU+5RZbMK6TLr/CakMn031H+ghOarXezkLlMG5DgU60P4pzZKL5o3KnIpg6ey7EmNmCsyC4SM+kM+9uDh+re7u5Y97PTc1RbG56dnW0R63PgOEp2tQ0QRGyAGXWey6rIN9JUSUOEUGYPaX3WHY6NgKdI4V/YzgSaEn0xzJknmIuqRCQAB1w5hHRuCae6Q2gsPmWAhSFk2awf8uuuAtZrIoA7KdcRZz02w6rgeu4dxdStk8qG4FFPKbCn5szdnV69sU0BHAlHP10SM7m4CSBuTrxCGkNTAShoB/oGlaCBPLGQV0uTrTAgR3B7511vp78gAMQ4age7lb2bzVd7yxt9Req2D8wy5+K74sDX8+HidHxxrMLVdvXO7d7LwuG5vypdQs9VZdFZnW8NT5bHx2cfHj/6y/OffzD/5fnWC9SHdEVRBhtWzIMsRh5qRFFDuNckKPKSVsTJ3Ore/fJrX//Sgy88f/z0v/7jPz9aHk3q+opP2JYiXpnCtUKXNQyCY9AMGuaETBfeGhhgcR6Pxj1l73En2yFiYbhF+gukipwnWsaUtVmN15fDOUI5PVtPhyttNUq4l64gyDq0Igt1IjRTCBbSqSQIeLjK6rUuuGGA5vqeVtccvuNlDBx8ZsuNyM/TM90CJDrEbBqPCDJVmD7KZZCWEcLa/dAqcCDqg+24zWx2+dGVAi2LvfpL9268/dWHv3t2fvrx6Iefjd4/aawm7FnLQYeJIg2QNZEXUjnaVrthVz8GzYkv6wMxpSwuyd5EIedHldGTi7PP5ucnapNLwObsLbEvgNhC2QCoVhYzaB62EOHGsrBVLa9Gk8XxJx9/pKXB17/9+m79wXDrJ7PNCEFikJBgxMYjoFD7BYEYqWVLPK1ziYs82a5c7jXrd9qN20pSq/VlxWjnRB3mjcBcRUgMSYsPRTPJFlGm2gbYm1ZHsW4GaywKjkUQDAPg/gpsh/zbs2sSYknDq8hP0SZ9ZbqEAveORBg98kKBfotLPUhgLunVBOECrYV4rIALeQGuLGbytq5GWlpPt2YTZpRY2qCoQpvMR7VumyZAqoCUjAxqfOKKCH2NM8CiIWGUcO8io4X156B1JZzGVpL0AuZaTcg3i6F2kxeVcWNFijQZrNlu4L9RaOyAcLJVpblao9RMyxVdfMf4g5My6k7IKSApFY2z7vIGyDQXm167LzmAXUfH4BC9CrfcHGJ4m34HAKBsLqZrTYejw74Y7VPB/P3dnb0+uSZy0UCIQ+TWEEz6ypwgDCaghQMmkcJCSCL1wNxkL8doS5mNlEpkcCyoZHcLIvsYx3A5iBbHfoumJy4+Iwnpu0Z5mJBL7Z6Njvkokytfh0uEMVhOlBOcOMPebi4V8VZisduraUI0uGjTs0PL7B9SpI7I6pJVNc1S6LuMdImJyN3dl7708oMHX/nSl+7fugkInj5/9vzkGEGfkWSUTxqO6ejhwgTb6CeeH2OOKcB8Ajk0ortZU2G3jbU4PZsvyJdBMdoQ2LCyoABw4xFEIIQj2+sQ0IBQljCrIBA99NakeGOY/CJxwb6slDpW4jmutvvV/d3Gtn0RJVgzL6UoFufSpqYBsD79Ux2utYbME3Jne1BhwmLNag/dhsWjOZtmpcAGxRwBmkqGZ01SnxJZMa8QyDK3KNLZLL893pAc9z6DcU65h+9AwlZje3fr1d3Kvd367s7+Qbu3k8KnKQPJR0UOWIkOQ1Blme63b/XreyKOu9vti+rEquu/tR5fjc6mh6eHnx7+/NH4J5PKiU4w5uu0ojiGHQX+2ULBj4VmtEtjV4nqg37r5hsHX/jiy1+pjsbf/eM/VB59tqV/XYoMxTLP2ECsczo6gteaTkZOcLuWAKkSuiyws0OeDSsJVFZ/9Go4k2OZuBSIgXHz1GLkQI2XCCmpiunAqMV1GArSAVJK0S5VxtbceWVjwWIzVIfgJRvGUgfhxsQTj74kmVlLOCfWxeJP9d2baC0O57PSRkgDADrIF1W9JIXN+G/NXsAL4u8w6qThsBAOyE6H1/3paDmdPvvo2bNP77Xuf+3O13/r1W/+eLb62ez5/OoIB1NDDGNpV/oHze47X7j/zlfe7d9t13fGW40ZDVnj8lq7qeDmcriaH66HL6Ty0n4Uzu+3NoPaxblWCNYfYmfzhfUha5GWk95qiNJJNQipVzrkWdWbZTHPx1eD+p1e84aiGQoQWLyczVWit1dT6TQV5OmwibjbumhfLoQ9NQXZNrZ6Let12QqCIYxp022uTGaJzEPRrrTLq8jVxhCBhtxrbKRFxgKiVstmXPfjtYrXMqJVskFWKqII1hDCKMjSqtO5YpZGB603XQYj1owJiGi6kTAK16BooTThFuF76bqeUtLiAUeT6nBU3aj0WsqJApVAGuvSWqBCqIKnYV08BEENcawltMZAQgcSjhn6BS6RHZUgWA3wHLDlCzm7ZsENLyHQ5VQP50a8S/kJ90It+HWCWajq7JIDPIRPYsFkdTlZkkrF3HMlXHDnI8okSVey7aOKid9M1H8qHDMOJxKdcS44TFKLRRwVgt4Gbc7CISWvuOV0caL+z3goLWygUCP/gNSYoOTlZSrOhwiaOrQyenRbjMxSeJMbmWOIBViFDjDEJgBnO4XOYcChJYg/4MWRUZNi2YBOoCuoHgN5MC0fyUFODSHNJiOIxUAf1IMnNgcwOp28mVBkn+PyRCxCpDX3u5RmsVqdeba74pDxKCVOI41GwAIDcynMC70Nw2QG/ea9uzdffuXh/Zv30lr5qnI8PD85PpthwCLUE5s4c1gckEfFIAI+ECZt3biETCMxNoXD8a/oDs8vgkPFChrDHzubejHXFNNYSxByQNdNTIrT3b1snFuam3taZvON3BOoAJ3GzEMPLg28MlxOJ6dMeLqQ2Q6bDSwut/epBWSrWADdZab+61zWNoifSGTb27UnjW5LTcFoZuQBQtxyul4fdGfTi/Mz9mkQYbD4z7XBPzPyzkHTKgw2Rqtwqxy83q0NUaq+7NxqPLhr8Tr7zUFX2qeJ0j5dH2MZZLkQZj1p1jp3b77Ejs70bF/VICnSR309mx6fHX5y8uGjxJsf63Ad9s/mEVAJEAdGyEfovvvFqZZgA6H2u+0HL++8yVD03e/+0WY5BCnCewW5sbMlAk+maIsTNxG70ZMi1hmsRSatFLa6jtyISnOQistIqWxBOWLAlmvxfqkBjPlJPEA4ItSE2ZvNxUyoJujIVgNHIjBwS6NzLSBTZmgC06uLq05C7ZpSHGp9lmXrBdcRsOrsmdwQKwhE0xBAHLKCjxRKjCaAHpgnAgQisYxl8oTYA5SNw7qjpWJkcCTjT2hcu7bZvrrsCHnSxUQzy5W4mOWzTz9tv3Gy/Stf+Ct/9YvvVhanJ+dPfvrzzz48ORxWjjX5bT1vi2i5d/kKPrxzsN2S31ORbnfRXHIS9CfDZ4r+zi/kIsQnJvoyllO7YVxOBBoBigSRM/nGrn651at2a7PtW3tv3+y/3N26uTyrXJxuHJMkIOify1dzzYQ3xcwS6mfB2ESlubZaA5U0K9Xe5rLNHa/3CucotwHkYmIQW6HsP/0oFiROxtVy0BN3hROk7x44RN5RqxJ3grJ4G8qaJbRAGWsoQpbT3zCIxK9G0ubqYH8rJMXUAHSAmRwo74dfBk2lUih+ho6FkgTdJrNL9T7jL7IltoGG5rFoKW38SgwMj4WLkvyDIHP6ciNTjku2T6EGFix6fmxQuGBwP0UjtCPWMTjpwahLTEkeLzscH2iQI5Pu3I4SFtGZ9KoYaCGkqEAi6ddi969JARlhfjWdVccTcoCoX5U/Z53FsDNl25fRYubClUF1yTa+4n9kIWCW0K4VuBmZeKYkTKaXDKO0tSL3gPStlAIS88IucXmhj/cpr6IsKYCInxL12fP6MtVSBCIhIdHVCuGws54ZZSZ74dfnKGtF4guIGh97jtmiMVQa0Gy/HCpgVTAgyB+u4lB20uIi0GRn96dgxOaeYKWwANuDOlhtHhscggB3bbVGnkX4IXtUG9KuSWLJEdWxUcJb3qDIFtb5ScK4fnbsAkXy1aVptdY353K6vFJ58PnR6UjuSwK/NvM5ZcJICuTZGDQgJNztPcWKXo8BQU4Kuwkbv7oScaDgnTRJIoCD9rasjkshPrXJnGLZj1TqQMCBKybLlJpNVhM00nDQGwbv1KEXdFigNoXtlW00a0QNUNfXGn7ydFeBiG1mgRZLPVVmsLWskU5btd62TRZ4oLVbe6dPT1DqYGCdh+fLFyetk3OQlFwNsbxJZQ4mYUPBepthimG7WG5mHDKEbIUfX3Z2l3fvtR5uVw96dE0dx1NVJIHoPOOCpNi8lcXWEV0PwP3tA2iUeDsc8IKzq7acLs+Hp09PPv1s9PMXq0fj+jFbhY2OruiZNsmmZGmjvFgxJhRdlZiBpZxX5pfPJu/LngIbXGIWT8ye8jXR3SFdMdpC+gAoFYciBd4MzuDtJjyNDsHMBNhQQVClzowz4a5kdXGe2qHH8qTgN9m3oXwbOpM6hKbuXObreHM7/X4Gy9zj7raxraOSCHemwsTTIRJyiblztRcUfxqxCR6R3i/rzXlDWSLWJo49MieSBpgMNXgT9QG0zsWjoM75UfoiveqgX5S8IBhhutLfrt1orPpZpsDiWnTSrG6Ml8/mR9//00/e+sHO6y/dvv+lN7/14FtvpMvl848+ffSHz/7RHz773ms/f+v1l+698d6dV7/0QMtfMVkqUV/qIXfybDF9ptJPsz4bTZ5NW8836hOxZ7H+ohOmbrkyzhBXIm2P2D7qvTL40nuvfOetV9+bzRZjNU2rDfxj0Lixqh9e1efCkZD9LL0JpNdIjQlbAnK7tSvFPsE/GzVgt0Sp6NXAbC3+k2lslph1bICR4VIWDaZAbUh7+EjqJE6dGhcyeYh2lsrlgBRketkIYyQ1Fbkh8kKhMi4DRxHN6RZwwx4WvpAvrR+GHGwGN/A7PuVss3SBlRyOpQL6Vz2BHUH+yzZejfxibarGVAV2IdIFNdw0Yn3EVzXMheFKq0gSnLygJFsSQYmDhZrxfBCcZINjJ5tEkVJJPVwYkIZMcI31SW4vnytrUrh++AewifhCbjdeSYSKEiSXCQ2UOD+rLqYWMIIyy6jM91wh5XQx6kkriLqpPvxwvRwBVCsGYokujF10D2MmB1ualBRBytYXYoQxIpKocywYcZmZKp3IsGGh0iQsKQtKRqWBjMjRCO7QBnM3RBqAbQgcG6e7xmFphS8JYAnfLsJjOQRnYksC1Y7BiLhAzQU9IdyZVcQ0t0M6qYah9TlZhAWYcxue5XBSmLEkbboYe8nSe+9En8LfkEL4fM16UF7cxZYS5YwIdLCwit72OcQ4/6wAXByOxmdnL3rtDiL49Pnzw+MzggmRKMjvlrhF8a1ENjfx0EUDE8gc8gJwwKiRUd8yoxStoxtv7QxaO9sUL/YCy5qWuVGGSN9rTcclkIY5+ZjFIb/Qx4kYgfLMIGgXxZDRAIGvdQf8MaLMCJVpiU4OVblXbIntJy7NU6VrzXMZvYFWijkutZa8qu4x0Td12rrRqC9uXpyf4Gh6T1S299u3b9/oNdpnx6Pu49N+fzPW4naydT66mozFNVc78TJlZxIyBkPAMeUTQtsJdrt4DK66m517F2/cr786qO8ZOc8EjIheZMeDlLbSMNa1ZWd/795u94byU+0eyXt9wU5/uo7p/+lHH5784unqk+nWmZbolKWygS6MqSEMiHqtUk9FwfLbb+y8c6t1cDx+dnj+bFyZzHn3O2GoYqGRX+Lhn3MAAQAASURBVC5VeTY2ySj0qr5E2QOGxbVht2xaMnI4WwJRKcYIKoEiZgP2IyX6MTabxx+3UYfaTQGVdWaxNiff0qU5aLYG6jsKaa8vzyFxMkYQcDuU+TNzFMlHKB/gMAq9kmgOydtBdHq5OZWj1+2oHzJH/KNxx67ih4iC+kQgStUql0M3Bp4FMABarAIB+iypBtztzuWgfSl5KLaryBINuWXLVYvjdaEVgWTSH82Pv/uJ0tfPvvPbf/D7f+tXv95ef/z4049++dH06Wp2cvSTxx/95Fmt9c8P9nt7X/n6e+y7w2fDs83wtPLhtDGcNsfT9clk63STOEvjsdXBkwhnKKnFS6FgaRfdu/UHX7r1la88+Pqr918frs6mNzcnnx5O1sMbrXvL2uGkcqjYU9IToeiK/8qA5WJ2tDju1NTN4ILo8KrFBoJq2nii5yWT5khT5aGGpRx6lU2/3b+xf7tZ6epajAkIfBTRyGfDZIHaIBoRTqjSxoRRfW5KLaNFDKFVHEEh7tldsKARLzHMOwwZfuq0yJBgiQMHpgaDRbxe8YZi8oRNvdR7Df6HKpv7uobAXkxjONb4jeHLb0FFWyhhAgGUtLJzKR1vx3FNpJ8XShwrF64MAaFown0pCbLGmPbBX4DboBAfwxQyZAaGaJdDNrPcMC4gaVBeUJAIiRzKTmAyUF6UGQVXyFGSvJc008uqZsqCwWfz8/50KCiI65FUY9GmmjpwMzNXRVfC6ZhnIEAcYWhiCBkyjSsm1vNzqTyiWDGVKXZvGmlhyqCjBOqquWou6zPCeW5lDKaFlkZbzkfGu9iUqLHXUwtiBXjIAd5lm0IbihcxsUcgOIf8BiSRZ/LyBVhjlfIIooBp+tYrK2F4gchIdHmE+fqMQ+Yy/22B/S3PMhocIxS2jIG2EAoGQUOwy3ZbWu4mktXli9Wo3X6xt/sJE7Ps0M8++/jk7IS67/xwD2H+fFlhUVVxIiAH+/Nw02XUpe+rv0o0Bed8BkrZj+kLaxFSV92mxkOrRBJuYdpVxW/aurxqfCU5dTQXRcF0z+sYF5WVMC/YkAW0EHEMiDxTmYNxA1ubjOcgtyePROXJeoOZREjwqGFSqtmIYI8mC0pW8vBQbrbNiyXXY1UeD6fA5XJ31yha1S7xYc1ZddVrx1VFy2xt9m9udbZriXFa188nlaMnV5OFm3uoEBnRQzFq4r/2DEgTZoRArAjPF53d+p2H3bduNG9sbXCltmixbP+FjXMND8h6ZNCLea/ZvzG4k5STfswsquVBy/Fwenz67NnpR+cXTxfVM6U6YWDgKXvL5kn3se94Jjds/Yu3vvlvffPffzj40vt/8cd/fPj3aVjL2owWgYhTJZEWhb0Kf68KdMDZLy7adk1wXqg8Mwa2WEluC4LcvuoBVuCe+SCdmJWnRh/F56rCe2KjjokDNucehgP2oBltHwOg0QjkT7HFZr30wVXBJaDAoMCvzBQKDLaUhLAf8yscAummuoreizQPi5hslZmaXK4FbgwF6S5Q+fjUC8X3GxBADtZKJT81kdeIFefYbu0oV8E5GhOTWPaLQWuz3d7qMVVF7FHSprGotRiLz616S0ChnlGB1IN3v/5W617nTz743vr8k4cvvfHtv/LNm73brD1qzaNTjz4Zf/Kjj//xP/6nx6efqBPBfTRtnvFJjxbD6dapUALgDgctTxY1y2SHoEKMGEK/9msPXt9770Hvtdq4fcVnXu2hRts3Xz1dteYXR09mn9S6M/VULE2km+BK/FDoMUSMyJnCx7iiG4IKyXFksKvlYqy9pqaHZ0fiGmfUfe4pse391vSqtRBpAhFYzZhoia4RK606UhNxIcw/KPQ5mcgjiRPMGp4cGEjxBwiU0BfToHiruaMwfux5nhwJFaigyrpUSEngaNC+eO/O7o17B9t90fBmvEoxzFFNFyw8X7hQ6ikLuujK4IL+qaGPZzDskFETaV78t+gAr6Q+sVPGfTOKs5AliosJtCVbO/THEAKmsUll1AkGMDMLk7k4EPpFmjWdyKI0jEgW3EmmgbahjqhnEbMrmCetdY7VtucjLAowYl3ShNfpVEsUjnZAEAapK3afiBSUs/SCcHuDt8kYpGezVVlhonISY/G9i2rKuEUXvRJZOY+m7ktPtZyEsBiPpCaHh0SqTlmlcIagsw8OZQr5G2xC28qDI3cz4mBCZllYgzcZoa9D720K1R8AWE7b46Pj/mWv3dlofcr93A3PcYf8L7cr1nQAkVvj3pahIsuEcAyFAi5oE6obAPK4mPMT5jWazR4/e3J+diZl99nR8XA8YdELc8PpQppZk/NQyhE3CCNYFoCdTPpTu7uzM+h1dLTSDXh2Pp7JdVOBFdVk41W7VxU88hzzBKm/C+VxNc0kZzq3xE9M7CH6xrqIh5oCoRvwMPzw4mbp0n4wRovKxXx8ITuq1R1FM4ieK/L/koFifw97oj4xXmcpQ/7JUVNNo5W7uDw7mY3nm+F4RU7BZENbeRQFtFzMZN7wvjd3r/bSUYxLoTqdbD7rXhyPAjsWjwtSl0nWLJ89TWoDiXg1W69mrdWz269WvvDq4K32QsvkVHUJESRf0z6sLn2HNszSU1loMaqEJD3Y19VVU8w8LeT09PzJ8JPP5h89mXw2bJxfNHENc8w+s6C4A6V6M5vuVHvf+eJf+5/+5v/m9vzhB+//YvrsmG9j0w6ukEZRnOjJIINofa1IsZZcbfUve+3LnjHQxyC9JHyCZ+uSZYevO1YUMBguFO9rZO3Agc/us9y05WwweC4rqgBm6xMSSDKCIdH2Sa5VMbUawxEVu7aMa46RnihS7DiQWUWQBYWjiKUyhx3RpSft8lQvWK5PFuuxSiqb8fF6dK5EGA8TGBO8X/hDZCxlypYqHUwkf1VUB5oCvLQTr5KXI4xsKVqx3m9f7dfT3kql48VsazqpjDh75ldD01IByXiaje3f+bU/+L2/9lc/e/T+f/p3/6vDZx882H35N7/927/2rW/ffbV//8ENHqO33mttfv0rP//jd/6f/+//9J8/+tPx8sWgezW8OEWf0fkAPMsrdhTkQD0jN0N3Oqmqmr2rW3utN/drr/avDjTPOX58vNxS0O/y/vaNQfPu3uVb+1fPXmwmOAH6KrgHqsIcVDdFEVDvi2W3t9Txx+4QGkhd5AIhG4vFeKYj4tlkqdWtQDGShCIbzJJwSZ4zvgGgwXfIP7QPKUACwpcKoQEV5Sf0pBAfyF14F3G6HLJNCCJGzgyE8kUQ5idHhsCdcdG5UfSt2qA3uHNw9/5L916+d+/+jQM5UbBBRu2wdd7bOlWpkGbLeJtuugLH+33qUEvrYmaRsISOcRFfkH7JVmqbTBS2nZIJx63ayDvGq2zztU0jgIfLJoAFzQuVKQQuhoGQz9BBNNEsfBkEjwWaIx33ooNiZ6hkRXuSxeSSubekPCHuV/VpZid206Sj64BbYC8EMUwj0tXnT7JwMVphnzGdReSJXB1ZnP4SYbS4CTIuU8o1Id3RRWLnSHHGDAvMsQKhjhFbsykRso34c7qeQ3lrYtDMu8wsfzMvz3Dw+gwX2UdfOcDVA0bcx+ayvhmnk/yU/QWE2fByYaDUF44HwtzIWztuK2OlyY+B2NGENXTYaAPBGLjlTSpwJpm75rahfcvPHh/FFUXcnum4HpHEsrskmKcvtQxi1u1Ndd5uCJ8p68UDwSCw6s/0LZRsSrRB/GxBVlQzbwXlzqUhxd5nJJfNyVQcabFRhtPGjVEMBAZtczk5yFyhsOXRJAGhSmkOis/ERJ2x+2+FKDzWm96pUIFomL5a7n1ktrMNBtV0rHMutSbz3uHxaHyO/JTRX64mY2UHUL/65NzMFi11K3canbQoarCi9xUQZG9hYdyVo8o+SLy8qK8v2+sLuSf1Ti9OXTmQsVtXVsed5eTtNxZf3q/dT6ejhEGT46InBFCypoZ4ubiYiehv45CDGjtYr98GMXSU4XD++OjZp+cfPl99Mto6UgufV97K274IEeaIvenUUan+wTu//7/4a/+rO+dv/+zPfvzBx39xMnqMIkXkEaQXku9BSTu3kQmbsYKKvgjN14CPHC43gwJ21dKfnWMChk0qHLXDC6DKkUlsjHE4QGW/roEI8Cv5SkZtNnZDbOM+4CQIoMTry/7b3roacHTT4QEZBZ7XTtEGqkLsuBgM+wtwiWBiCRZbIrZtl2gNi7ceVzbn+t6yI3D6/UtgTn0enE/cYGoT0EukKLPGTatns9q54s9WTM4lIzMzCH2ydbHdqtzsXu2lE4lEtvrWSttpHEv1uxg9uB527my//Lt/8Adf+co3jt5/9v5f/KA6Wg4uB9OnY8UdRncXePGowcM6rsya1UnlnZff/Hf/tb/z5P/x7HvPPh5ezSf1c5ZOqBTae10sEFWw3kXLDjJuOLT7/csbO1d36pvt2YKqMzwfH3N0TJZbw8bx3q2bjf6D3ur12vKT6dWn6+a8ux18W89nG4luxdOuml0c9dEyUypYYg79CGnQSpUvXc/aGFAUBQL2qbAy73cmcO6qLQA/Gqj4GM6G1CqQwFcYAIizk0ULAH2hUyEKBGaUCv1g6Cg0qVAD+gv3KAd+/FFYa9S8iOG5AiXf7XUf3H7w8OXXX3rlpZfuPjjYPpB5xao6GZ1JNFJPpl45UwADpeyKrUT9VQtOkeZtyVFimbYaPcMQ7al2jFaB/BnN2ln9km2GHEKDrGJyJkp2w3eWMhHpdkzGVILQTz+mEUppMPkQbEKyI43ZBSYaLsK2gFpWoDZ/AKAmXqCjwo6VngCONFrXWzp3DCmC8YR1Kb0IpYyGWMlAkwgdp5RXocdAF4mLQB+JKFgQXQQqukGxlqaRgcUM0c4wo6uEd0TmcxYSR1fP0LMNGbifsItCrxwrm5M/5WXLnJnfHuWIkzPdXOwWUKc8A221a8zZbnNNpwuHyKML2gYzLI/nhckXEL2+Qe7saFnFbLyXS0LNQ0lLm2osP0hdbFf50kMvEH3943Jz80/4lbv5Do8IY8QzrKhP2DclMI+MsmIB1CGotccJCXOqjcJ7bZSljOUF3dZnOLoG1UTMDLF4IcKXLuIF3t2xoFb0V7dE/YG4p3IwsZkg1rEAZjrhgkZVrpCSLtJGeivzHemRd3u9mW9Nx5PzNh7PeYI2xo6ps0kUvni4ebZJlVR/oXBwipOIT3vTm18Ndq+63cvWbDOMaBZRjD2jd6N9ndhgPmwi2zusnW3mnEb36sagXxV6fNbf2rxyv/rqVvQKCdFKDcNZS54gQuPC2lIDUCk49HhXBcwORTNrIG18fPnZ4dlHx0+ejD89vnimoM3lFquQ5Y4YwmjD/Ufm7F3U/sqXfvt/8J3/2a35rY9++uHz0xfPVsdHrBxNlkHGJN4IvFh0oJUmn4bCIIg1JrIkb+7119u9ynZTk6ukwjZE1IxrI3l8y1B/wotwELEztNcCsEh2ZCvCEuPAldxdgr94YWzcSd3d5N+HGJEceI9R/eCjshIEH9Yltn4ElYsOKiD+dlK66oJUqLTwXNi2b+cicy+YjFLRPlUSXANyBSTCIJOlBAT7qSOaASwqozFfTH04qU0EFcWsbU9JrnLNVoP+xX6ncq9T2UHLtBHbsD4S8FiGLzlJ6bbNV/Zf+dd/929+6Wtfmg/l6tZ32vdeO6id10/bV/Wb/ds9rlfJzC+4UbcWp6vJ0/kHx0evvHT3t9/97V+8+NPRxSlfHjSIxyKTLMZc+kxBr0Smkz0YQa/6vavtq8XWUXU4WXx02eSN4/QAXdWjZePW+K29O2/eaL18PN5X0GDBs6tFgIgINctYwhabTr862Ft2OxPqNDYzZCMhF5eijahmJK8V8lmIWEUoh5Dz81rlBQVg0JvjxwiSbL1eWvc0TgBcLCYgAFWDgIU2haTE4BPpMl9+LnqCPZ5V38HTgr9xB9EqRGolLjK5wuLTWjf2D15+8NLrLyP/D2/dvNfN9je4Va+RSIwSu12M/C6N+y4yeDFB0d+xYDnYJSAYn4jRsMX2hHRG0Zf5daUKoIxZ4a0wWWZ1al1QZiA1coRIGBpKAQ5DjgvhKvCZRishkih0PoccONUPksOvocxcXCsJRGVQykTQjSxEoRwRdXlYo9yAzFznbhgexgFjsb2E0SO5UipyZ8ymiDvxl8TuZ3ZxMyQcLVw8NDujcGLODu6VRWCbNH/ScFRFv8KCyyuA7sR8CmvKsevfmUc2o8iL19K/uZXZOcO9sOm4OUKVAgzYIEc3imxM4Y4ZXVai3C+39D9sIN+UxXFrQ8sxvFBqqtrZTgmNsx5mE+ZmoBG9r/UA43EcCJL0osWACTPNkuf2mUTZAUQg254D10fChIT05fmOeSIyFB7gwRbPLulGmS0L3Plo8eG0QbhRIDIg7RlhTdMkibpNof6S+bMOxkgXSkBeYU2Ch60KTbPJZJuYF7aPteZJMkmjkZAV8c9QKB2oeYDMBC8hNwo7I1KRYtSciQLNjGmsIJlzSrvqWk1iyBJfSUcEoLCaJg5Q4hnrGU+WmJQEozOzaKy+aDAwj27eab7dW5BDxSyFCAMhk+accH/DnvGfxxWiZ0h9f/fOdmf/6oztMET6/OT82YunT48fHU2fj6pnm1ZKiPAyIOJxYjBiKBqw3Ho4eO3f+da/f7/25cc/ePr002dPzz5+sfhkWDlcVRETZcS69o5FCm1ZMdzUObhgCNCIXF6dK+e8vVPhAe8jWVO+DO0GGDfqotwFF+q8GigAwMyMJcvLBB2L4y8VanTnpWYLQWDLVzkgfCsgJ/yj6IIqvVDTwAG9nbFH6CYHLzEM4wt4QknmQd5BIfiCshSNQLwY/VVOJD6IdBUYVQKK2X9C912nKh5+QGbApheVs0XtfFUdqcJWfAsCkUgX1LJu72J7t7Lfr9zww1C1Xb/cRV4uJRJIal8K9t6/e/+LX37r1TdeIl5c9bdu3XuZeXL/1nh0fi427vb+Xu2yfTXGZ9Uk4Q+9SvrIqP7058u99auvd9/+2cWZmlVoPDyL2QBg+htqmcyemlayfIQXCsX0kzi1xat4PtwcM3Rsqro7rtT16IsdHM1VK7jZahxf7V3MmtO1mDqGR0ZEXvJ1q41aYVurNs2qqt/hpfBqFUFgnFh4ZAmViY80qv3n1qcZx6sFnF8c7IkHHRiDjP3tbi/OOJkZBhd0tP1+W02DLxTimgTlLlDH8WCnMOV1TY3eZFtCAPupNSlEJD2DH9uHAXRkqnT7u93BXmewrRuudqQJ3KhuWutaQymFulpBMBWlMC9VHpsqJuHhItg2V4IScMOEiVizKFFsXYLvKC28Ovo7WHDlEWO2m81qM82iSihTdNGCQAEF2GugISoRKCONZm55j3gI/KuLlzL0EK1LzResWICYY0BYlaRdEWI6nFGPeDlih0HTKAeRosPTWSISqhr5NzEGeBlymGB1D8RYncXuEiRy90KMHQzdxwZ84zRLEcAIXSn8IKueU8Fx4pIc98HI8if3DAH11o/3fuXgv/zvgKmi2Rlopphh5MtyKmyOmc/ZYYZ5rFPK1bnBNaE1Cue6LhdG58bKQGv4RI6Vp8awa4oRtUPPneebzwcTxQoPjKchkcRAnZk3OO6RvorQXdaw3MzVeVyQA5u5nmGGYpHj3oP2LAbxQBQmFQpfLIo4DA6SK7xQVVNxc9gUG5dAQ0/0dbyn4RBcFoTRhI3ABR+jxGXnC0hnwWhzSBKZxU8qgtTr87hoKNSCwKwB9h2BByCkCo7SJvULGXHrzsI4SZ+oOIeUDPXi3hAoVNW9KxRQcdSavYeEa+mMzDUJn58gXrNBkwmXIDdeLadcXfzfkxft3cnDxnyPPxrDp8gSZsjPwmwsXPR21LGyHM3PR/PhzcHeTvOGJLZY2i+vRtPp0ejF87PHzyZPJlsjxfDtlXQs8ZPC6+5Jxrt9p6d+2aTzrQe//nbli8MPZmcvxs/Onj5dfHpaeTHbGlsPVeXRdylI4UtbC1LztDYUskIULnlWJDuSHsFfuBTnMpvT+LjyfLh1PNmawDWhqmQucptlkMeqX1GT54zoL3xIzRUFeOekdiq2ov8qYc6QX3ym1ekg+XDbBDls4rAFScVMAv2b23puBJjADjcdkhBqjjvNibodeJqVEdfA9YZszCTbyM+69kDY3jAA4n/CfoT/N6apJCA9SX3PXIcOgmB7ZE/o/YO+GFAWu60+LgM5bX8HH1Jpude891BtiN36zhYPiPoTSeEXAXZzezm9ycetEprIS8G+hoO1s9mLu5Ct+un7j5db4/e6X3129MGoMrYM4g8E4AN1wAr7aJTEGN1t5Uy0N92mFMvKxfDyaDI6XTUXk81wXh2XFNZqt9qezhb1k5v7O+9tN16pL/c26+czumvciiIY9d1hDF2oHayjGqYAcwLg6AguB+UiNgFj0mQhMWjo1XIyVe1ENKyzxdnKZiotvJQ4YIFnUYVVheAbpw0BYyDqeujw1hvyGn4MDaEJ2z0XD5jb1peBF7glItdFir4Lq6bIJSErrt1gqfGQIDlE8HD+PHXXaCMJCzyXhzMeMaJB2M5Cj59uLyWLVhNZLhqEKvSatLTQBQZeqZrTiZ7To9F4wrjFQTiaOll5wFgLAyZEp4w/ZCSvGPxjF4Hytik4Y+PREhzCMVFGqE3IsbmoDZILcWevxCI1O+o3dNvbmgnQynHcEgkZ43FIaZ6BAaTpjecbr9CgkUhC2vECMwhltJRsFJ6b0ftcaFKisHGiKBssDpFxULSQXBLyNZfNqShWOT9fgFrXYzfZjbwyyus3gWgjNuPQU8tkwnnr63yFiGecuR8tyUGksyig+bIMKZyxnF32u6xOrnFR/gfRypllkPQX4rBSfLn2c1Jd9IZCo8sx/CMQEz7qkZ6VR4cxuV+EiqyDm3o8Ng0FYuJA3I0zowHTJpANckYyJeJDsRnu7/zc12oZf7gU0o+7uD/qTguImIxUMrSabjhglrxcCuhiCBKuU+6bVfXYQHBO87BwkdT7kB9Jl9FnYJt2x+upeMtG42wyPvGKC8gwWI4v97kHthWnj1v/vD0/r6+mEykCCXECNRwGnEYMQlCHNMv2h6ZrYC+slXRjLZdsF6ojN1eixW42WmvNcU/uNk/u7zdvxn4J8mRCRZoLIjLhi0md6f+2OR8vTlC0lgKC1R4LPwf8bLY8n5yWPl8fnW8er9pS1RJYwAdRX3fv3Hjzb/6Nf++3vvkbzfOL0c9ODi72Fp+szx6fHR2dHE+fHF08GdbOdFGNPfOKVXmvW93B7on//KXyueZbQxEKDRaXWGlF06MY5LKFb48rR6e10/PWGW7BQ5LA5Susy9Ukrmyx9YxIYT9k2W/VMTsxnRIVfCe/QkEAEM8xE8PgIropdODy4SWOpYJMpWZOkCwhGelhkoBg5b+TXK0+lfc2jQtB+Jbwf8ucDQ1YxX4AjEAJfMAAlJRmmJnXZ9iAPKGgD5pGoAFt7irX7WrQquy1K/t+KzAE1iB5kkaRzG6lsVft7ipbMh1IElRQXqUfQslyU9vtLhetixn3A72T0yJKWnJGZqJaK+kwNp2u56PtncHe5Y3nV09ZyehGFgWoU+oi/ZIfL3C4nVrFnAXBtpFnvoqR4gibkzllBRTGpVWZi9Rcj2tnN3cP79R27uxcvvZi9XhZHZnmRWkSGXNKTO66QCeI1g4UTGNsgxFBXiw2One+sD4JJRAp0ahOBo3Wfn++3l4i29ar25B3KACnO1lOXQg3o6nAaYsGp+lHhl/C80NrCGFUWeECnqac0lZj0Onf2r7RrQ/I1N0WWenwdDjEAFJnpyusD7KpGjClES4wzJSlW56PFMl7IaPihcQ6juDJDEa3p63Y/1uTVvNMGBylO51OTZK8bXLCWlUmmHEBzyazhDed4gOzxVQcq0jWxHoUUlOIaiFBIStEQMTAEkRuNCGwGU4WEuHs6DPLqgwLIozsYOYiV4dpgcj+zu72jX5ne7u3J3hV7JmrIq8kXDYWGnKE+PPFQjFDoS6n09aoXZ+ds4ySBRJdJHzOEyJrhHaBSdiJHJAMCxQaVVY5EJvRhVwbLmAuL+QqJNUehqSVQZdP4eQ5GCKcN7lz3pX31xQ/7CWH7Xlk8vKA65u6VQ5kLfLQ6+v8yXLklvld3jrmFUhwkzytPMCUXBLvSrhRnmE0RX/5/ATjiHxeiCwq4JRQBTNKncvc51o/8ggXB2sp6oQS4BUlLwwmAwxh9qjY/bNdLscNEsJkxRJEH9+uUzJ6zy3j9d6DC20InqO9qYYk3SGLbTjqeKqunUWDJC4uoIxYZ4gR8gXooBYh9tiQUARmh2x0jCjo1PqS0aZOQeA3cIXZJLKNUW3V2KhZz18jeBFqgxm16hLtG6cDv0SHiDpVWpDrSvmgMa8qEb0hMq/WVn5ns7VXr846e+cPBpcPVJYnEaS0rw7mAc4wKAZcE0dmxsuz2cUJBr/dOdhtHoihxRfOJpMnp8ePTh+/WD6ZaA/ZmKsYkeqpY1GIg9/66m99+1d+587O/tZwqXPx/Pnl+Ozi6JS0dT7anE/r5/P6CDmurXv1C1WOd/fqB9wdc2bvS/RFwbHuZmtKbm1f9QV94gGWSbVvsTTD5vmkNlzFA5Mqm3HLFlk9ls9Al+Un+CRvWK8uuwl/4QjjnHZurQ7qGtu/k5P8SDIWyWj3gYfgMRuGgbY5DNJGGHi5KCZsM8eEU3MpkuPWuqETF7N7zMcIe6xK4Rh5em5D7nVE0drlTLUOlv2YgyIxgAzMXzQMLmlG7apqIALTZRhvp5SjCkOQXIVT7voblebdreXeat2XUsPhmJ5MXacnFQvUCa5qbhqXSj6ADpaQGqOlDJKlXpZqjs6GsqtONve6D4/Wz48vnwv0hTKsk1ibu8fueCULr9+85NRmqVFFQ7uC2bhyKl1gXZ9dNLgB0A0Gmc3k8ur5/MMnR6897H7tZuOVR6uBtrGbFECL1UUULfg2N45vs476G7woFO76TSyfwRMvoEsnpV5L+ONCTnK/ED1ueYl3qXaWmFuxzu4XqwQSV/AvKjdHNjdxSq6QWjml4mJij8H4oCLz0e392y8f3Nnp7Em16LXO5PMzdWuSeLC9vdPtOkeGzbIjvErannQw4DA9OVFi/MWzw2efPX0ymqngkaz1oi5jwcl6wrOQ/lI7IXazIuVm6a13MoroDmsx4pBWNXqGS4eD+qYPAxOQUOhqVsU6EDczjfJtZhOKB529NSHA5fTQTmdgCA4aJlNujatXger+QFq+MqusBClrT7UNcnsO9WehQfJspBbTdEtEhswRRb8nKyokWOaT0f0xBmfPjxuGToojmJcRlKGCUisfWle4LZU0xDUNNsmaBhs6aeaZQjYjcwntjXCb3c7MfPTJh0I6y3k+FIbhvHJi5uXM8icUD1ktVBPeWK9C8v25FqAsUjmTVB1OmTPRXBjtrQ+ADVMpnDNQVW5bnhYxIRfy1pt4GWB0z9D/0HO3dZN/OZk8MuCYK31r+VP6NwKGU4NemVQx7+C13uZywzAAw88zjQMAZjuByfV1YQ6R+DOnz6eIMFAh4prJlwlBiWSTUzJwfCeGxlh9bOTWZGzCbE7imqqKE1NOgLd9E2zC8mCMjkUwr6yH08XenhwyAKeg8HIyWs6m4g4q7Z6JMAulmEu/fnWz397e7xvebNx8cnj5/HSpsI5tFXy8HrEyh1WOLzbdWef25u7WxSDentjLI3uZoaUhqZkbpqgI92h5Mq+cdzsH1a1OAvqNUs1AtTQWs/nlcFFnsZnN1lO3X4zXe5X+V976wh/8xnfu9LdXJ4vFx6frJ4vl8db8XBtF9FMU61h33ThvqT5X6mwqLyaPeaeusYq4SDJcrT3anKkp4ITuZa+/tav4mIVfJJ7ybHT1Yl4dov7ZGfYh3SMRYMw9Frj4YP0G7TmcqOyWpVQ3I0bUEkYO2gMJZObwhDAKYGX/Xcqaap/RWvCBBqSGCOyAumHnEgWWUfIuxIwyuSfsVBcyD42VW0BVkXDBCAwCzIi+mE5ptJA0O10Yt32MgYQNJhGnMX4oqMMQJy693YPFQl6RukptUN06qNb2L2v7lbrKypKwpbESlE1YOU3BJuAVSMV5wtqIncDY+F2kxgq8wSg9d1lZ7F/dean+6mprPqwOQaUNVsGTBSWFNrDVi26ym0u1omBKTBFSRxbK5BRnF9EUUCh+x9SoNuGhMd7pvd6bH5ysH11qaM/4o3SsxyGVGG4ZXVY2iFUIflCPFFVUgRxJ9IuwCAlXCJwsrMV0NRlN65TU9G0NH9P8nPYa0Sc3KJjrFsmXT5a9QcdIxOQf8prwDT949PZg+9bBzfu3728397WZbG31aNyCfsV13jq4td/b31YBrdmkh8/V8V6umG/OR8OTs9NDxffELw9VHOPWB40K2q5rM3QwkrGp4DjN1shWhZQkfgOwARZkN0nIDD5i+oqULQHQSGIWLaGJQDWCKzQPIysQ5IOAFYIfUkShALnFqp8FjjbJnAfgiLt6zNTSzLw38IuAgt8ZDoU7hQgCjKJvWwqwBBqsrAEylIbD0OuXagRcKFPc76zFBKrwQeVDuICjYsmKfk7YMpUOImRixSaIrqFvhcGGvNov/4CmuAgmIHQAjIVYhdJlR8DI9Xllat76Mq9ci4eFMlq0sBYHQyQCzjnoQdeXFsoShpLdzTFfOi80t8BMsCRPLU/0rY+RrjKGnBqWYB1D1f3Nbco51987lLtZRZvldhmVF4bnqD/5GEqem0YzCnD7Db7YbpJbEA8tzC1b52LTcPsMpRB793CCwVjQnFce73HX05BkwU6Yc/KLJOBPhMyMGQ7AVldjXFYWnIAUt46rhf1IUEHcjGC8mDXR8pReAktxQeRmLjcl0G43g4vjymI0Y7yJQTCP2NK5goGiMb50UIQ8DGg3KA7IT1U6AxG12+7evrnb1Xmcp3ApIn2qbKSG2rVVv7u43feztbeVXBDMyGoE57ISqr6h2JvJ2ebk7OLFsjkf8NXtyEHW+hyBWY51PZ+dPDn/7KxyPFO1VePASqPT6Lz+0rt/7b/zN9/+8sPpeLh5sZ48G1+ebXQTG59OFCUI16ggMWGl/BRS4ESoBq7JK7UeHtcE/1XdG/ti4bnmmsrzXA4a2tvy/ZJOXCs9MvZ0pfqAauTqxLYxiaG5xYEnIdePa60a0s6bkur/vAGKW0AWPIeYaX6pFyM9O41F7RwCIWooOMbShuLHXi1K+PMtxhssEFMHf4LYovjwwRSvMKUKYwA79rpIrNeU1ArNazH+CE8y2gIQdjPmQc6VzrrXu9xR2lPHcFHsadytOrJIcDUHtLDfrdd3NkxA7R0RaTIT+QBDAQI4gIvCKnxRAUv2lA4AQlJADBkvJAFBIUnMK3yTk8G6tde+N6i+UE6FOoKKIqEAktuF2aeV6tHUHJwV4UkBjCv1DoAhII7AiuzRMZPCqUtKvDTxpr90a/3m87MPJFHBDxBo3YrVzWpKGYRPwf4IQwV5fIyokKiVGGN9IoxlkKS6tSKWS1WSEVGuHXktU0K6QkJWMVQo6BIkN44EI+Q3AhhbTDHZQZ3oz2iFQRbIVZBqZ2enumlg/uPpvm3d3t27efPOdnunQ4xu1PimJdofnRwdHjNDnpycxZQfyR/vMTa7GdE07DRV9zOG1JHfTKaRkEMrQjdCQMwnqEfWCi0KitOrTDlJv6TV3CtTUNQk0rqDDAyhhDg+4oJom5uQQJuOoUC4hta2WlZQ8SySnkWCnfnt2vDhQua5DhuqflqU5LKr/aJLkUeKFEqTIQOQERa1VReK5CgrblVZ62mBz4R1GAEfo4qMqyvtkVuN6fm5KqiU0GI9c9MscgA5ww5lDLSHpsWf8/nrekPy26ScXuDcmS7MGYH6cujzt9c3Lacjt2Uhsps5Lxddf+0AMC38odzAR4cKHyi39DF/s6gwxk2cdf3c3KD8D4vOPfP589MDwuWSHAiqxdpabluoeqxJuSJ7A27jF0Z4gIbfsbArqo3qggCU1047047md5bDnbECvzOQgF1e5WEBnTJA256xuLnLg4jX040/Oawsqxq2iLg7q0y7QJJrcRjFkMtY88zQ9TIlGq/T7Y87Z5ewBgUWNheq44t3jkRCQHVSQoP5DyP0EkT4lU6vrl4czfVDUYAIZVU4UK6xSVBuDUd5jP4givTyaLc3e2mvdkcvv7gO+Fkj35ie/iAspfILJ4vLk+Hqs+HFs2VjcasrT2YXPibeYD2T/jW9Olw0joRRoD0cz5qN7rT3/+D3/50vfvObqS23upifMkkwnVZmo9V8pJblRCw8+3ieQajH+GRCKd+WmhlhgXJ5uD/JQwiO/Kl4dDnzKlLeoFv6/siaLOsHI/FNMT2RBwF93Af84kS0kBknIz0EwVXvSuEO90XWyuaxzgXCrVmkOdsb3LbgBcndmesNTSv9rlPCD3bAL3im4DWPAgs2egdEeNIQAIVukkpHCg7K51Xg1H31GxYVMuHEkRJhawEx4odqeCP8v7fe7V+Kpd3F8yTttRRck2/Ur150L3ceDho7lWp72exXGwP8gLgOOjMSQV4eA/GVLDCneIy1QyC0oxJpcxfPK2K4ZmZP+Tk9KOWR9TtbOxVlWYurC0NkdUM9UJNSqI42wGWNP0Vf0dgmACpbWBwZK9yW6tPbg4udu+37d7Yf9KrCUnbubb/78ezPF5dnemGYbyFagCbLaDRBvCAKgIUJmXfkL0dArwUyh+hAOgNfURjPh3P7Oe24T3WyuCgtuoMdNio8PVMNmbBoYetMQjJg2HLdKwElVOMiG9WrTPAnZ5PhzmxvW8hfKo0K/N2pbu/v3Lizd3vQ5V+hVWlqMybQMLNyD7w4VhlyyI5fUpTidfUUI0/aLBQMRb/eSw8yjcwuWk74UcaF7js/CJ+f7Pw11pOcvCngFHFGhcd+T5FHV0coBER8gcFwKMSe5XAEcKlR6q6ktGrsOpGGbI8gBWxAYPGYIDOerGc1/CEljyInNfvd3o6qSmQJWMctPZ4pc3k+mZ9pw6rOGcO29BkF5Lv8H6U6NrpGB04ZH0G4olglu+A22HfZG7Qlhg/DKRKvnSRaYCGZVXhEJphfAWO/y2yvD+YM5wTs86/sfPbbfWN3KVYYf0jduUc5ryxsbhFK6ZKAjG8KL//83r68VgKzvK4tF+ZdId65j1eAJMPLxblZublzsjMh0GHh1w/1u4webc8DwqvLEdBkDyDXtvgDljDGgDU1it1bcHOeWpzzOTVXlAm6pRGXT9f3yHPLzDMDMwmPCQjxH18fR6Yzl+tpgpky2TLrctRwyhUGe22oK0gDLAwOpcrqB6/ylDwo6mS0RPQNHWATzOKzjQp58RZAAolQPkZebIy653sTbKceiNpU62pzwb6KFkC//mV7d/HwTvv1xoLfID1xVsKNYCfsWgGOmEamm/nx+vjw6sVIAxRFbgkucqU3Nanow8V4fHV+cnF0cnW0rky0X2msdg/6D3//d3//9/7gd3d3utrBr0WpDsUTbs1H6+m51niMpYTiGXGVLqz2HGdnSm/Uw4XBGdmGmZPGT2aiFivi0qkTQZneay5ey2KuyzuWumZJr7c+FjMqVqpgpYaQyPxYg0AGhGfFNgnpO5wqCHvgAVhwhSXik01duTeqBKzEKaKD8PYJBWGyKwF3rGmRAyEdvcFaes89HAMwHS0tn67mY9mt18ieG3t0tijGH3Sa+1fkz+xCJXlSHvZdoCQW6w1upn3yQOw/v7N6ODF+dzn5KvXtraq+LrcN1tbNGb1ZAiyMQWP2GWekAOBHvyNTR+z04jaIE6h+QavxpPl06DRknlXKme0ll+atq9VTMYaCgUBEJ6hv8XMNjRAAAVg8gP+ciG8+zU0XU+nVVQO//erNhy/tPbjROpAk3E0jmsb9xhs3aw+GlU+WMsZii8n1CChkiaEkaO3XNcgH1TLxgGmAGIbEq3UpeepyBJOIPes14cS6ybBJOv1S+UKQm51y2+AGHxTDaKxRaRtHxC3lQSBVHpiRC8tdaJTc3tU9igJ71eASHS0m4KujldRgZ9ClRjViIiFiTEZAR+g/0j+Lzy2BADQ9gIJExkxfBgoo8myvyCngr0QcQY2CkLATGl7PFmFDhSBeZmW0sXfhWyWQuNO4edDf3yVukSOSLe2REznRckksAyGRz14RQm7fOPGDlQz2NVI/xsAj11jqOMENr57rbDXS5gBVEl9INO+0+4PebldjMzEdQHY1G8u8mA3VCpjMJmpUYLIdNS3Q/g7Xeo/okcpz1Md1iwuclsWSGWofmSTOL+lGGEDZLdLOFnhXZw40XVPtwsFNLpCXV2aYTc3H6z8BykKkApC2Jb+wNScgYQijRcplkWH8jsAFoIFzkK9cGmy+vtW/ApfP7wOWAkw5C1kLVITt5rllqwJt13fwOVQzFDZg4/JwoYyxnJznuDyrYKbGVu5vb33PcMdtUJdc52pBRh4lrCFqfQh2RlTWJlP4/HaB5ww433pQRuNlZHmXk5CBvEOE/Im1wRt3C5HO2AI0lsrLE8pdcw83svW+8sraZ4wuyw19m9kIKAISrgWRYjQQHMcIF84Mm8igfIBPIC4Sk7jsQJaVj8QUspdcpSLZK7K6ad+t3O5V7zavuihczIXEJ9t1fYp6Ltq6r8XHHQ4vDhliBu2ddo0pRqLq1QyuXswnV8Ph5oQAurWuNyfNW503/ubv/p3f+evfvrnbFxa3Oq/4qS3q8xPVtzUrYGUVjcSdbQ7sAAzt1oSpRf9YgMEYFH8A3xf1F1bIhGxKsTH+pBNj6paEg4zhPZgPExyj/hegyNTLmiP9ZNi4ZbNnAUEzL2zXJWVV0RP03Yp6ZYuC4YVJp1wff2gjadtpShIY4bBRYHoGPIwVc2rUoCMbrLAbZgLjNXpakhVzRxuDjGADRO85adp1hfrnGRAtMpCzMqo4vWVBsf/UtjnqU3rMjPl3hevU1+2d3tZ2vXmBMCLQEumu14O1PeiCToErlgWinNvqaSFjmk+AzE5o26zSNBUDCD0BBlnU1s3K/XHl/PjqmTw2jE9OYYwJRM1UVQ45jXbFGKcH1uWgf7nbvBjc6j+4vfPae69/8fV7t2/vizqVP9efvTCL9u3mvdvN1z/dfO+qcl5AP8t4DdYoBWZlktevssJG+6/A2JtALxUDCC1rl2eql0hWSdwaBpBcV112o3li31QetUMiZkfP9Vl4qDeBzhSx8MbxhJqScWRlbT19zkNzdnRoKenxy/Vlv7e7vZMgBvnWLsoTJTzO+EzX48mSLhofLkbuy3xvlEXUZNUJ/Ge74VZBvBhFC0KDiBA3FIyaBa18HyaEtyT5C5vKgEN+aluqhN240X9wb/9gf9DW6oDmiOtMF0dnw+OjCTZAugIopqeKJI+8xqTqgIpnVqp5m9enIc2S6K84uDo3AuNqC0kG8ifUByW3NHu7Ay0ee0Zi6yfiUmdTgUzxYYlKIHC1+MeET8gyYMiTmBRjkLAK5CUJq8CCw4vlOWG4wgm3ep3EjGAIbFKYLAl41tBn43qChfZYIBsHp6xEaFk+lgUq9DQLUYik7yO5RQ3NqU52ugUKrgkwwXRAbuzL4tYRA+EK2eJCXt3QcgRb3ctY8CdqmxfKZrFzH1udLKpUtHPj7FMhvuVyGwiRrX12LqNxhfFbeEdCQXKFoZsVAsMyVjYX6/ZYWVR8fUmOiqylNFBb0+AkXARay7NQKDP2L5Mvr1zmXzmQ2YXgl79ZGm99UeZP0wqRKid6Vrnsc7jKjDLWrEBZQbeLkhLoi8BT2EYekYcE7LJEXlAiB68X3ceyBdElc1/n+iqX4HIlGSL7hMih7mlYodalTqSkx3VjsH6wt3qlV99TxZQETdp0IvO3RSMXcRqNNuPzi7Ozi5NR5XwhE63GGdvX6ZVweTkXQn1+Nn42mT2XVKl7zL2bL/3eN//6v/63f6dzq0UpnZwsN6PLq7GonfVKwyypBOKVCa5Jly2F77hSIXKSM0w1tNxwSaCdxrZ2F6iZCjXxiQihBfahGCmxQKaH95Ir5XiWsHqzzXKUPbdylo/wZldDKm1JgkTicDN38TuXVYXeYoXwYH+zYG5koRIMVBcokvpY9gSBAuzoO8/uQjl93lbEWJwjCrukdgmhFCllMhE+kV+jy74EADCANCVebI3mNRoAXoK8hvDBdKQRPNVEPFY6Cvn3ajv9pm6navHGA4HDcUVKKRZg0+4Xsd8umnwMf2yUUFc8EjKTzB8aEmQm2Kmg4QzSFsiJWzL1F6+Xkz1flVjlYxq7tbtXHW7/xVmQGPoJ+iR1d4RapQJhRg7B1H3WImRHiNdLB2+89fALd2++9uDenRs7MeSJnWKFWDe4ETed+s7tztv7zXsznvyquC9eCetsrDAwiBogj2QTLm0wOeJzfhfYhKAlcVU9LdbrKGMUPHzbGqaNuljbWFGI5MV7XK5jlUWtisZjsNGo3CTSkomHJM+lZ4jHPx0/f3qEnaawSLV2Y1f2h1refUXSCOHayQ7Pzk5OT+L0HU4Vu2Ytj0k/dzGw69/QvQCPX7l/oNBjM/AglG0orioiQN7YgVzlCqCMBdNOQBUfNQvmzRuDe/d3X35w4+b+tgpDVsITuRwqTZlAflKnXcAGoUxCWdC5UlkwAUmzly6CfWvProZdk0XLdpMmarMFWg9E7SDiqhDdDE1HE+y3AnXC/BT0EpFFGYrlYn2lMjELJmpG3iDg62eaKjUi/yw+YMyUQzHUxBi0GjsajLW4JKL6Unal7uNQxQeApP5LsldUBJeUSwuVyx3KNudeIfjBYao9DSmBkljptSW97KgpQjPmq2uwgJ8qp+NOxegGhCy31bQOgSDgD235vkRIWDtLDaiACL+7W4JyCAr4QzsCQIhjBJ5QxTCODMb8cqMyTWMMAobXp0Jzks61CLfG6R+0oV/p2TNesTJspM2y3Lln+FL21vXXu3MN1t670/Vd8Ztr65SDMf8EEvPQa7qfg4HSACyJFWHyypVONFlDvb5P7pWXE8ua4visn+VGZQb5zlDcHfvLSTkrUm2mGo0qc/YNcTCIl5ff3iGP4ck2BA+1K0ZrAVwq4oLm3Nj0BhcPdy9fVvjTWrCAoSEUDJXWrKgYh9lqPNkcn108Pq08m2/NK5fd5rq93eiRJhC+yWQ8mp0fTV+st7RcqN7au//v/Jt/5+tf/crevbZuZsoSzoSczrbmzxZiedYjdbRYYsYzGZcplmmnWX4EK2XEGWqof8YGcraIQPzpmtBp7aRlQLKlRKUs4BkgAO9OCcaUdXB15hVvCFJbCkMC8EzUeZgKHoCSaGapsnKsFIzI7CKdHVWLXZOYT0WlSJRmBK7sEtBBqV2GbYcXCLqlndgSbgBdZBE73HGZLDmcLEG7iLFEUtfYpjxL+KEcjMm8cYYNrEgVWuzasVAPCBWNu+GZV9vdym5b9GcWvi7WEOVob5PENpUuN54yPCsZACgJxmn6eBHLkXnackPELPPHveQXiqsJ7rCLCfTMgoZVRofh4+k4wKQ2qHYvtm48n6nVIAqUOIJa+6ojAyPdiVO3Tm9CNWlaB7V7X3z562+98t5LL72kIuZgV7whg4FZXdWxrWYKV/a2uvd6r+43Xnp++STuUh3fIscEvWIWAd/gvkhiBVgLzNqnCPLlO1JOSdqG7WRcZfOQB9fjbAA4EAsDjNtyX29yoNle2pPyLYEQnJYT4rq+XpArW1M91/hqom6j6WRtJlNSG4a9mBwc7fV37NFwdP7pk6dehGVLVES23Miihe4HwbJBhuF3UC7g6bHxvOWOCHOB3VgRDCaR5aiNEA+j32wpjc18g1g1tgY7LfUc93Z1aqr2t7cGYvG2trrbNmO64P9QJUso6kwZWfUMtIEUaJCY77CazD0iSSxcFDy7E/CO6G2qPL+o1mSqvSTboq4c6tyEuCBWaKO4tEvsmDSQQcmOuxrDQfVzN4teh8eYCCQr/WKqbExMmsYfG3KfptJv6567Ld8hrmrmZamN620NyEwvWxjiayssSj5CVNtlWFk2v4wuX+dIRDGYx82RXBpZ+NYc9Yvg7YXs4GB60V8zAOY8A87Xtjaimvu4JVCOhiWfSQ00bBaHiPhfvO0heAYTqwHTSnxengsVw6e9Cg11QlSZ7FyRA8ubDD93jVyd3r70dvyJ5gl1IjASQ1JNVZ4doqCkuCsRASYWYyv0KQNzphs4BBbMJiuSh+R7B/PHhwzCN/n0+SFMMUBUZpjjuZVzQhTK5eX03Oz6Xv5ef8ja5SmmmG/y3OtPYSV5hFXL4LJyzrp+e/0+N3PQBRYroULBqlySCyNyr0WINS52dxqvDip7oj9q+kwojCobFhamptXlXKGv9fh8cXhWfTGvnYv566x277Ru71b7AuQni/GLycnJpebA+uFevfPqu3/zb/ybv/HXvtnqNCYCUzmOz4B2dXLEL7Vcn9HMFdQGFoijWEnLJxe5wzGKIl57gxmzjBaExCYBqKlNpDzKqHkjKeyeJHTBKgRfEEhjpsTGb5klsUzXm4/mpY00q7IgSFZVNvxQksCMHecgjzhnE7ELlH0R6zeYWAtDb7GnRQj2MQsuUotFBDoCC2QCcqbJiypASsGm86ieuSm9EnqvqIZ0baufDbYHrP/zymxYOxnXz1U4C6UqZNH6k2dNwufmVW+wGQwENCauveS/7ncrvcZFZ7F9Z792a/P/petPn+Rdsvuwr7qra6/efsvdl7mzA4MBSBAkQEELRYakoMSQrJBDIYfkkB32K/9FivBrRXjRYtkKS7ZMMwhSpEEQAIHBAIMBZr137vpbequtq6vbn+/Jp/veGdlPdVc9Tz65nDx58uTJkydPbu7O9pZbwph5QMGU1tMRwilVCJJ0a87cWatYFDcu2KqmS68cEILdRSese+tvYVMh7/X55nxxsABbiCWh8OCPliVDk0C4ZRQ0681+6ekv/dYv/9XX3nxrMOeulPfyrHuuudNjbb6Jwjo99HrwdPrqu/Ov/fnFH6o1bYPuQjZO27SOUkUUEWqB4uZZE+vWFFvH0CoZpQxr1UZgqBEtbaUB0ntaN8hPITczxTAYzW0k10xhN8qFUEwA28AfHaloGIxhaNgUY/3b7fsX3No9efbk+BSAjrL78NNnH3762Xm8aMWO1qgUwTDu/orBKyL9DP/NLvrCVuDQ+3SlUGI4NMPu6neUcBELjBmZoYFaCk3MaPNwagMaqx5HeBkZVvZlyXRzs7YCNz28Y9xL47fm59vJGjnTMF4laFSzidK6fDyEOGqBHwgyOW4DMTu+pq7t+eBFKU4BxiRknTRjKuA4fNR/6H2IxcgySjG4Zu2dk41YXugqXsdHgcnpYmMDW+biHMagPavJc6ZT0+Oj+aG9hgYALcLPvQNqdtexfdVn1LXjVU2KrUkFXIQlKq4iQF4oA5lKAn8aID47kYTuk9EVrRbOCGZkqlwCJFADFKoqRgNSahAdLqVeEd4yKwwBxcQt203SVIJlILNGKel47VIWqJJv6LxIsQpBKS4klTMkpbWKaPUqp0DERYOdKNEuhM4zmKaU1CpXKDhal2JBWj8sKiSRGGmTVEiclNX+gwrPLTz5VTiAE6hSedGySBIvK2bBmhrlVUK7hEldSG4B9aYmxZANKy2mKJVXpZY0HNG9dOrgNgODuVJU7EFfBrCYJA22w8cH757s3hn3mBNmoDCeQms6XzgVL9Gby+uzy60D2T9b71+i+fEWz3odl8IJbKV3DAYTavz0nUdv/b2/+/f++t/+LWcE85PODwOjGALPwgLp5c3q+WL1ycWW8V3s+9AC6GJeorsgErKnYVUb86JMisnQbBbKa4Ux3S5oCtGdZVB6bQqCA/7PbZrnL4/WOqts8FOiuVwy8wyywvCMZKG5asJQlQrT806c3uT4BEyAPFFvM7KQ7nfO2LCbMvavgwPLc8gRhiDXBmArvTFFQVTEMZJ4rIWDxTSIPKJriepD08GyksSyA59Itz64uu7zhobGEK8WYtqahVcNzO3TZHc6vX06PeB443A4O3YG+d6UVY7Rwqzr1vHK7ELTXjlPls0pdb4eyTwrrF8H46eV4gnk8cJvns/CatWjsLu2uhi99pLhVY21ZgS0Afxq8Fjz/MXd86uBnSRgVHG1YkMqs+RIrhz32FyN3xg8fXv+5rQ36t3aTXt7O+dDFTVk2E0fIDNyirHdjO62p+PDd6eWgt9c3DHTOkvHgACDpj4cZRCWqOIIC7Kym1JtgsYowWBfPqIb41FrcAin2hLNeKWHpz3FDmmn8+VtemNFTNZREFUieYee87rIqTBUi12ZABJilqvVlp8GjuDno4+Kte04p2b0X3qE5N66Urp5capqLL0+8kbKRlZKakUHfmQKfzGQwlLtGRehDRwZtEAsIVgoaHKKJFPtu/1zvsOXNnCUFGvgsNq7tQfTcckMbsc7G4Ayu9qyGVhCteqQke/GU5bcUV5S4cBRrHGjtY9Gh3SLKSMAvvoQM2xYM7FtS9awG+musRIruZT7hPCddWXupeI9IVtjEIxJPsWgt9lpRjQCdWlBR1FsyRK7sHLInavlOM/htGmWDJMqGXZTda4qhy7sJHMfDkTFn5OGdWGSTRYDgj4ilGMyYlqRCZSlE0xGR3JWSWzr5AlyHFizx8qq5DAjh6yYvEfBZRZO50Mcj1CTptdabtMvZYRdpcaeMqgIQNImLqKKXKgIHYU/pIGSQXb6ZN0slmdpdsqDkFFxVVHC6CtxyDmVzYUUUHQoIXlUOjkVNwskkQDEKtw06m3dPsSQyACTbRIHvGSTengTEqznKqTSt0eABewu05Y6iYKVilFYFJIoqlnAgEK6RBOQF2rnv6YOaa3qeKwBaC/nt09evf7aq5N3bfR0vBmp2DjoLApSDuPGxc5uwvOz2xfnvc8Wu5c0kJRDrFZm/ddGB0dQdLU5R96Xl589ejL9D/+3/8G3/s6v9ufYKFV9nBPcXt1tn293F3c357ebs+3myqEmZhYQbQU6JjqU2iQV7Mkf0qVsCUsOs2ZkaYkinCm+5injbMDdOTfErBFl6nYkFKQBdyoYLoYAdXZoCZeIK8+wm7RSMRP4NbPrsZQn0JnzOcXFPmeHCKSnyhB2soxuhz04kJ+WKkZvKbYwiixc6SCwGeYWe2H8j94ncgN2hd1kLDOM2XhapveLq/5ymV0OkSYyay+teIhjZ+vOwMnsR5tXDnevjoePZ6NTPl4c4cAkaMu9KZ+DTvXV4XNIH9Er3NO4xHIXZOkqZjixW8Y60p299qc9I9kbI/mQjU5rwzqJza2JSLQLvRfmUlfDzfPdiw2hc3dtSUD/M1eBvRoJ9NKJdcfXx6+8a7n3lSd7x8PV7HY72ji0lwV5PCQ5mC5rxZCPvd849n42nL02+/Jbx9/6+Ozj7d6lqXNwngMCgqRMuMyzwt6RYgxLMUTyZ5F0OmmIMvQZQsVB3OvT1T2STXDdpG1Ia70OLhLT2/SjtI00KbGu6kbJMFhu3aqycDZLb88WL8p3vDRdRjvZk4+hJKY+hrNVFymQDF9Ka0XgZ+meeWwQBUgc34+hjZgoNENWLjECTR5No0m/ljHYei62vIBcXF+w8bfeIu9kH+4NFO4xbMBTFxRrXYfXvdvNtO0YzZK81tfo5eg0nLUqZllAQpATga2fwoG1G1jLerrehSBLHWjpAHUjS53KgXr2EoyMNTWGR9wxdTDNNn8Gem0yC8mjBmIAKOJ5FGEx1eBd6HpzwC8HosM9IcmyAPryuob6NKDWA1MqkfEzzcNT1dFo+IiJKlNqe1vs7yFJ7e5yTpIsbS1TKeuvOTuVP93rJfulKFoMAJmexEQwC+lU/2Ob4FhGxNCB+fWWV01LJhhdcfFQQ+a/WArQE0NPyD2ay1AUL0aBKFcGpsBmYKRdyHo9fKq0WEWORQaF4nByLzO4tPYs6vUQovImcp9sVRw/Tq4dZeTOY97my1P7UkAXmpjdp9J7znBzf1VO6RXJWyKfz192QMq27rrv+6Q6pESF/xBoFZ56hCbTRJVX0bFbmTf89W4ms5t3Xhl8ZeogKnYLcd+FrxjG6ZHJ/raTXC13Ly9vPzm/e77onctoeDudHzw5Hj0mo695Htpcvjh/9urRk7/97/7me996b3LIPp+ChDrijt3o7nJH9ncqxw3Ln6ubNc9fqCyDPdZ/U46qcCh7wVirxGB50rNEFm5u8WnXX95xfsM3KGnAnixjmEUAZmoDXusG+Ld+ZDDHuaJTMWXGZYIZuNZCFmZJZaELNBXZIB6BvYm6yMyTMBH1ecOlTTrM3BlLEweSIssq6FN+klLlwKGumkzT7aJWjq9+viptW2Iub0ZhvpS18+rGZu+kcGy3f7ng9L/cPqOnEEo4TDiF8WfIqvX20dHu8SEPoPu2gDku2tEWpj6GGv11ePrqyW7srIAscjvDlpzG7Ddu3DLMq04EETSSbqLtYxiDqmm3ogsyTzK1Z55roXZp0b53ZhHisvd8u2cX98vF7ZVuZYyPSMjfn01Rew4xUPLeqDfnbe7xyatPn746fzLbP+F2lEmAxWKGoaRNu1JY1jsT+ZaOwF7SHG95c3s0ee1LJ9/6/uI7V3efGbOzLeHWYjZnRbi/jXKwk5pbwc9+umokWA6Jpz9qB1JX6dZhFsW6qi+qaMXtSDxtG4oObaeP4L4QkK5lkEizZ+mvenk9hchlIH9dOf0iynlUpyGyrpZ+ASzDQmTakELm8W5SeGJnkEhRMA3lStC4dYW+2l9ehB8AwhqbivuoEVpBHNl+gs6jgrT407cv3tCYzYq4vzOA7PzqTfnJmh+wzh8ZFDBQab21rZA76Uw/gyJ44uM9R/mGVZFhuB+5W6+s4uqhaKrgrelsRBC20lk6s2QmNkVuTUKskxlaNvtrXQVGjD3ZFm+vh+5BttCw6qzK4fhWts44NDLDtbJF4CYjx3fZTQYAMgWISDuWZMOAM80IViBL2xDzUYiFA4zZyDY9qDNMxtbYHKqTE0VURudaOq+OIGZrizPXstc7R3nQvSwcrsCDtllQDgm4y2FrluZvbizZ8z14yOmi3RG9hDuG0CFCwUZa24AhuQkeJ+128ZmoM/amQ9BKlBytEXXkCL0ayh/EIg31DRkVkbSGTo/K/Cbau0TX+UVOX3elnsqSJBRak9UQXjqhL6FhTH5DAUUUHV9PBnktPASYMn3lyrdEeZEs8ljEnrBEqtyL/Oo+IVVQlzxZJPP6ifial8kn2aU7FIl2TZOK5q+BWMmq4ib845vDpwdfOt07taHGkSeizbLwbfEnWwc4aLm8fnl5/dni9vmyx4Z/tcdb++3x4dgpZQcUmnwwnO+ez14d/ua/8je+9a99bf+I3p3/0j0W8TagbBe7W3/nt9vnN+tn10szALuRNF0EB10xk12Ssm/yqfFAExViVCHVpKbjo3QyjQWY+YE6FQGGviP6pvuqJgLUDaqChcZoHYuzw2R0Mzikbl58QcPrxuE4gEjx+iSlaQZxRem/Bj48IvyhsK2j4FecMZOwbTtlQEIdolPb+E/V7uAmG+P0BNzcuW94bnxRFjDy5sT0Yv8FB0dO3kSS0VVEDjaoxJ4tpit3874Dnflfs/vQOsiYJ6MtXkl1b1NVOO5ize017q+yRbg4FIOE2ggWZhNcXS+somfXRKYAPJkyDDaoXt2szrc5fvHqcnF9tuy9WPQ+O9/77JLHpL6D0C/saaYKmB4cD4ZHwKeXZWtk+messX17Nh8dnswG86njKanaRk7tMrZEQWulLSIgP0z9WX+yYhILkwmwg+GN+ZdeHb/+cvsj+jpoZDdoBDhwNEvEbYjPLIUGCIERIXNcYRqG5kclQpDR4xXJN1G69Q2tQIUUsq7OK1qM6KqVBeuPiDz8L8SdeH7DyXN5I78Ui0YSMfr66qUZD/SQ6qbFPpN7uGV+xfUPbiYqUgtFDtkykLd5pfBkVnJnaBSTDpsARkYaGYRyMgwh8QDqEQnF8SJHtHFNimcGD1wHcuS+5hqX+SNXDcQPmibTKgyN8MOrhDQpFYYj3WSBuaDMjIKaiAWcLpE+kTc1DoRLYbORi6nehxaTzUvxdMki0KwI83q1HaY10GR4IYbHXXE6DIBJ38Tu/X3OUzcqk3TmFxkDMmtDuJlkqrA+FUJJV8rIkU0DBtgYz7W2i9Ck2nzuFRKz2KpimfBAV+ZN5APzoP7ckWvcWTlEF4pzvvI8q99R8kdS4F/pxYuXOXJ2Mn5qT/fh4RFHuQZaQxKrlEwhxNUhMiqZVy5W1470jBveDAnyM9Q1YlBsxD8/xgZvst3DoonhS3XgKu0ZkiHIGBWEudLfAm/xXJjI6J/1l5CJ1zV4aFtsxW0oLjFE9ug7rR5K8K9zeKeAFJEX0Qa4KyJOoFgpH1Up2F0hPncpvfJJP0cG4lZgAZARyEdg8vdpOYkJQmhO2iCyEa4CBeTh81/Kf/qx3fC09/bjva/O+qfZUU7zHYGAJGW+zHjMbqury/WL5c3z5e0ZD8YY12A3PRowZns0GQ3Ol+fPzz9arj77xi+/8St/4+uzk+F2BKvpAejCEqSZZA7N4VV06fRsJBZ+ARJkRH1aAwAbeQoKDmsdT2l3lVO8SQeaRwuSqzHo7Il3kJmJcjQDA1Y3Mc8nXQ554aMIVVaK0z4lehR/L3TjMxocKqpva5swGuiKNklvzSiZ1WPdMrrotD5poZpLLyLKhCk6ZMIaQNSxTKFsh2OynAlqaCY9PJMALC3LaEzWmagi5KxhkGLUwpzmwqEtNKghCoCFm8WyQleOLfbdfHp7erh/OuLYa8j7fewceGMgZLF5YKptjLm+vB4/ttFnTI6kzMTl9exQSnSbsVJAkm4Rc1Y6tGCTFinf4qTeZKvsSvj17D0/7z1bcOu/z8cZjTBVwHw+emO0/3hxvjrgFRsecsT74dHo5OT4aPZodnA0ZQgR1fZ2y8iJWGqFXK8Ie9MsbIcPHVfELJHcaBVz+sbR228fvvP+yz/OibY5XVUNcqKFCpdcno7d6LS7gew2e04PCGUiUGhP59JlNET6WVqyvXsQx6pxG/HndT2KJVV6K1IIhRXnLFpMXy0xTWdSfsUvYbolrT6WLgt5CkVI02EdR2MnLvezDKCxQ6JQAeErBfvDC8kw2KtiU3SATe65R0sk7BpSoo2IGU54hzbzbRwioDG9kDLCCx2Rjdp761gNKRzwYdN05IaNqGMIL+kqFhjkKPfiwZkhlGhTzA7fpSCCK2QQZJt9BBW2MJkiRImBMOUGeJO1cD7ozQJDcgtNmhaoKWJSnMjR5UgVs2bRMX89wz+/qTHfDtPs3drJwIOT4crBVnFwkbkpq215hX/JyVQvmpZeThIaoOgl6zfgWUwjvJtk7OLZyI5FPstC7cPZ1Ly3RO9qIXMOvlUtTXDS5LgmDlmPD49Oj491EQhmbRdfUQpJV0D2GeMphdZsVRSMv9S0QKgJQBpL1cMOzWjUKotBlw4mNWLopGl/KNMlNRU01agL7RkxwiKCtmpf2KjijMYZHVRGk7oPzkKvKhsCyKiSgjPsN56dlg97SjaZrWM6ZUsinkIUmlbQvHJJZsW2g4QmTygdYTUQQp+KTpwqS3Hui/gSRWZ17ysoqPwK9JYcYtIDQpd+MEv5znbHr95+6Wn/jazz8/1gMzkRBLMpNsdQgecfB9Ke351x7k9RoJ7Zo05ZdMdsfO9isPrZ7sP+5Ozdb/+VR19//cZp4dcLM2zMus5UCQLss/VNUblZZtjF/7M8kO1REf8tkzrOxREa5gHXcejLo1iYMk4Xqrbma78KDfgoexFCaE5OR5YmyB74rrmJIt+Jxpuo+TWB7pS+B3lV/RBvmr8YdhT7kKRDYeUWeu9GUKHWZfuPkxf3wQepWUhB1xtOQ50Cq78czg/XjkPUuGjAwEHy7w8dvIb9sSBz0DCFiz0s5hCKqKpZPr5ytsFy74LFNi91kB5/DQQhBpcEICt+PBrdHJp4HfWmh2N60qkhgAlNf7J/M5zeja3Lj/enEXaipI01VMy8rWmgMFrTyDeZcwPaOg38GpD2mFpZS6E94kckJ9pfb5Y3i5e9i+e9F2cmAQcX8blElcA0Lut+h4/H7z6++zLL0KvNBzxCjZdHrz566+nJG6+88nR2OsXnSQDpQYRKc+9onzIXUUNNgHz2h7vR4f7NxpKR0p1dc/LG0dfGl48v7rhsUgp2w2Y9tvAyQrckTPOk8KCaBIbY0XH1MLSE4luImzzlsUaA6ji5l09+im9p66J2jVJJ03GUUemkTM7wXPwU3wwd2pulsHSYdNPoaOQoO91QSDIuirGuczgbPzk+OpzN5GiH8MvLO+yL7VMJYThvVi9SegD1VSNVJdb3wzG0VcCXdUkfCKzaCZch0kTw0I1jToOeSro3YZaN5ostCXGbdJ99ZBFYciBETgFjfqZAbd4YQVd3wgRKVda95B3CxXY9xsYgsiDjJpOJ+PLI8b/YORch6m8oigWzkUj8mAXucQUWaDPeZz1UUswNvQMnexp0LQcfhtK8wyzHOc9wfxznqFxKkOZZapJI8A6dz0IuCd1KXybsSj1f3F6sqYRjIRv3hNyS3TJ2sDNt15/uH7JxcpisDQHoOzOK8CDLU+SRxI8WKtJZhlszFYvhlhMORvH3nhHF8BaOKQ3wwYz/a2F8VloXfKscm45QWrpPVLZ2fbzk/O/s3PZvba97qQiGImWKyzQ7jN0lbX0ne2jTo/zISGsowAX5YIDAdECzExhXANcRnKbbHZvhM7YBBLv4+jA0R9oMYHq2nR85JzubeZSZuUyQB8GJkVq4r/88haKSUBgauP/UY77C+dMxuhjdcyInbdhho9kKEdlTWf7Od6+9cfCe40cmlNv8gEWCCJsEkN7K55RTyxe3L696Lzb7CyfUE7Ame/NHQ7rhyXpx/uHuL8/233/zxFoot5xLjAJ3CM/NrJVVHDYUCRvrty/F0I8vRPEYD24GAGqfuIHzV/ofvScWe2iYdS6fzfYlkTSheumk5VjAhaRtZCIjcx6haWje+QQd99gvoDzarBpy4ShL43KBD1oLnQu7MsyG09eEGDmxAmW4H8dcLIwhVo90hF4KjwuNnfM4YZI2UqsgbDIbCuc2JlPbWvtl2OEmwpkeY6JBZvOubuP2p2en7MVq/+Xm4Co+SsWN5ic+Xbg58si1en/n2IPjiR0A/dlEF3AejUaYEBevDw9HbO4QsxOB+AXSZbYOeGYYmi0bzsvyiuuGbNiqGW4IPXZ18VtqmaxvPKKqsqTGU/3CCk3vYrF3sdpbbmyfiNNXPQRWeI0bD172v/b6u68dvvnB+z/8dPszs5M3j758dPj45ORwMoPw2/HhkCOdeIfjeM5U32yMrknlM/MyJWJoeXM3th/OprUb2p5H4zemd4+er99nzMJHGRQVRWu40KFhGJgubYreQ64hUHSbX1RakOVHSCwldTT9uxoyESvSPZUjleoTvrS2vCOu5Tv/iZqM03/dB4pajw1t677VAxMpgBVPq95VRgXM32kanjw6OZ3Ptf7ZkPVxnRHZ5lg6AD5eBcjcTQT9FF/AyT6LoBHdvMBwAoR3OlSkaLwZBIwajCKGVxXNXCGH6djhGytLmSFWEzv0yj+SF+akMX6jVTWMhduluhnRovaJbUSqpsNkapbM852OElapFLza2pkGE8Kgk0wA+8GNaVkgU5JmCjlh7/o+VgS+qLMK7lQO1YEdR+B2LrJDxhwjDAu9LMwSkSbZuWiFVr1F41hj49BttzTI2ytT4+jhI4mrD3xheyqS5bbeeEeJq3tN7TAxAkyxyLLGyB53x0DxGB8/1/3B5RUvk6vLgfOqRjwjWjjAjtOhw6QzYKhQ2dtiYBpb0YFbH09/xEICWdCi75gf8J07GS1xY2LURYTxeJSdTdi8Ou7BsKkNM6jAYYiiKlvogPEcteFFGxu8LxLLxA8c6YB2D6+uTRifnV084xPBAMX/Ae1HtZr8SRamMjnqOsdsbdlPXjmEyCgUY211zpAL8oBdZac2Mi8wtErRUr7cCxWlEa839VDhRR0Jb6SSeJHotT+yUW7uGWhF2YELjB8P3nvcezy20w6lxC0tWvI7YeDuZIkcMOx0YaYT+xebPSoaA+Hk7s6a/qFh+GfPPvj+5s8uth+9+fQrx49OcFrHoRSHISjsMYJhBYnNl6q9zGK0iOWkuqUkif9Qjk0yABgSEHkUrRLa5jTgA7NWlJBM+osTsiNGUmeYJISJ2GAF4Nit7U36mxFja1jVTUg6hZtgJBZG6e/pPrSmkUawa0/4HDnCUIcc19d+9g95VCYBQUnSVRtg1cOSA5zSR8QNhnPgYY+rlsHKOja78bVuzUGFSmEECk6nQYsxX+hdXB08Xw3OtoP4rhjcjOPSkcU2Zb0RprEFc4drFhAzp4ANM/OilbIUu7rtr1le5sj09Nqca2V/bJMgeCrAQWrXeubmJdaE2UTasTWBsVRm6JjKXUQQri7Zsd7aarcweDMxx1tStyBoN2Rtdbce3d3M91HAa+P94fSTIwvXp/PH80fTyXEZmqqMLck5B5cQSo6Bs0ipjogg0bMEGh1G1T0xEXD+rXH64vp0+PS98dc+/PRPV4PtEv7gM5SoDXOFBMMaQ5ooOySJhN2i0aL0LlIotMg8paUP5mWLkN/E0nSyxotESNSKjiEkz5SZkhItAIgikYbNDz4QDNSVXtMlThKPqAw3IPyfHDl0ZYI9k0SzUmn7G+5Fuqw6SSaBomDId8u/apPihDX4YTtSVgrOvDF1Sd29LDMETFIHQ4qbKCDCWGnK0I8hHJOJ7EvXF4mYJI1R03PKr9AGi4njW/do5Brf1ZF6UlyW3SlGpQjvZREXCDP4xLaBCj2JMpeoAbMppNF/UBJYg/pElpUIahyJGOswbJk01xAUcQkLQ5dMeqyGcRfFo0gmIlk1RozrSHvbrOIy2ZEtAgk0Xum9xCZn2A7slIM/j6RgIIXK7ekxUqhFrFutP03UEGTmEDx/WdDIVml2aGRqQp12Ds40QFrR/Ji8of4YB3QrU6VVJo0dOb1m+SRAUQwpPCRvnRx7pXWMB8wuQGcMG+EkmTxJmyYOQmvgyCiDblxaLvgJclLbEEwYDTpDIObBV1erHsecC2RGvs0e/WzTFy8DdZwp+bWkYX+xKfzA8dFZUDTe+WBsIecUC9le+EpR6UR+tbc8PSc44RXkIVfFrcCKFhIDYL2pFq36JFqNARBlCsZF5CvD117vf/3o5jGFAMQaKZGIwTSTPwaTu5sr1lYU9Iy7966cyNjL9qT5eP+Ej/X+tL9Yn11tzyano6/+6i/NT08MsDlKm7F7Dtiz3ZfTQluG3HAUt3JIEkRlJpXmiXPKe9tEajhDqnAskgQ73t9ZNiRaTO1vYh5xOzq4ddgZNbQROJRJ7dgbOtV9bZ/s3I6Z2e7EkVWLu/NIHzpokS+WzUhan1Gt1D6yke6LT1LUMMPAWQc5qHaYE7cHa+p1/jStDaCQmHNGwiF+WsOIqJWpYc3w2K1xt1dK3ChanQ2/H5tRmEK51acilmQBwAmUy+0+7c2+I1ZGN8xlkHu4jwLs0UwfiA6FEWs8eY1nc+L/cMKClRHgls/s/gkyyIwZYzU3CB3c7fAmIT6aFmMIC8iab6agui6RJ17qLE6v6I2ccMXNl21ppmCONqDdK5YIzekwthPogbdHR/v88/3s7CPjzDd+5RuL20Vvshse2nyN8LUJB3m8sKZTqXSZR4RYsf5SXDtheUceiB3kIoOgbjk+OH108M7odnbFlxCSli49KZJyUWkIFZGDIMC3Luwur0VNcMijbot+kypc/QvJA78rb8j86p6+WPgxdCd9yasVKx3goZ8oLAlTQP7dt29lYhcqi9sZ4zunnAgNHw43Q63KDxjhygW7XAKEcNmkz+YXmwkfScGVcX4CqN8a8O+zSHj4vFVV5eqLSs70MPxEa1cZmL8xvWBEjpSmGDaOi5UF9NSiqoqEDCtaX8FknGIcZgAUHb0DbZ5gV1QVKDJmMeH8ssjHD/CrDhUQyV8jd3XJ0GDmDGfBWuonbUYScVEkjpzvu+3AkbIW+wxiRpzAlrf+iEWKM4MmxUgUZkmAynp/CBeqdRfGqyvb0Bb6nDa7mU2W8ZIX10SUJAd2M9Ae2xa3YjZyY/fawPSbXYmhBfr40y1ERY8BvmD8jgTH8gAjU5Usfxkw1FvtIwLzW6nvAtI9N5gbpw9tLq7XL67YSVBMmM9Tw5k3j8xGLDyocsYWkasR5O8G3PlBjzpQXoZJmHlgXOgEXyEzE+fP4lX8/Ozq8nJxRRFE5izun8YwwcHYsgyRcd6P4dFGRcgIYRWfzzxD3soQWBgN+kOkiQIa9Jjgol+Iq/u0YF2tDTxJ3oWFSBvLCClG1NJrWEPuzXaTV9fvvjp9b+IYwgP9ntkPL0gmnaiD5A3tHDVj25f2D27Ng2PZw3n8+Hgwe+3J8YuXn374yU8PJ3fvvPnmm++8F7WhARphOsXU3Mf4nOVfw8gdrw82JRnnkVRRn3Iof1jHO6vQAENESHCGaMpSTg8dIdBDCjxDBPHZxGPRZ+vUQJ3T2VMkfcuSlh9rGSBCtJVG4jOnZsFiUkTLiv61TcTqGFun18BkOGomsrLK8Uq2V2Jwmf/qYZRUxCCHV0ISHio20rUUKzt2Tdpf7Xin1N6aOrxBb4q7bb4bm2hjBFc11WGgYd2DCsTGzynBf3w7N82QX+g1GnsgRo+qykYfrwy9BzyCHg/6x1PaQk5s+FOY2/jJlJKm1VY4ApGNXjmdIE0Y0UdrBHOR/TOy6C30u7pNzqOP9p8l7oYzod7ScnTxYPQLBqMXmXBy5wT0wYHh4fnmAwdIPTp89bf/yr+8GR6tbshsK6sNImWwcuIy0yK8yJoxKOJtljgaphPJUfmoNDSJPC3BGEJnx0evTyePnu9+RiMXyPCSXGEuASNUKH71qNwhWRzWeM02JlOyipV4xTdC7Ug/vKmyyVfykCqfDPk1J8mgn6Ex+NBwrpB6Bq2U7cpTiKmu+q3QAKP0yjTvFYVjMBK5ciAMhDJd1o15iUuXDVQ1WBTDQWSpTEbUPKsplOWhA1WR8g6gYBErNcFVFCUg9UYRQM5rrnqhMtXSW2lMJGgQCQmqMoQkIBSZN1UbycgAAatGigKi8sadYopZ4hKIa0ZLz2Fu6LthVUGiSqpJC5EBU8YQCFGgQNypSNCaWtQVyTrpPGReHnUehxuqEtZmWJcU+mQhWibpCjPymHOInHVvttuh84xzRj8HE94tVZ7J2/Vkdb25cobnKsqkKOO1HM5t6n1x9tJRbTQkVFbD9YKDSePLZM1aPQUG9BQSAK6HhLjsO1GNrPTqo9QNNlZHfaUePL5llRpa3OvPLxcXFDWfvLQMkEOBFte7o9VmNpsczhg5YggyMk6FyTc6CiaDoFRcEV7HTkR5YuJPlF3L1ScvLz559uLDz148e3n5jB9WoSKnh0JcLA2tRAwZXPTOpbWuYYbOcXnZI+kehpO0fETVQjP5MNQa3Oc5fT7t677RRPWQ4ECwn7Rf4voWp7qI0MBKuMnUUlPlgi2ZsDY/6r311v43j3anvO0bUuPZPof3UjRjuAiN53hrmlfsWKJAkC5mIFpn5vRHK/nDwfTLbz199Pajr/zaV49PIW8dG2e0Y9jHPdFz+LqhmOt/M7jdjQkAtnnrmOtopS9754vepQGAChSLByQaYuzpMMIcS+LkDJtes0HYylF2sMS8IGtImHoGCv08CyxMI1juSEhVqhYWDFLN1kZBWRDqLzMDyNGE8siXWCg7Ha4WNsM9CpEEf0tB2GeslYgZcTUcvmkPC1lCbyEnkHbCaarLxH3YMoZyGf2TzH5J0wpav2vONCfsO03MKZO4no4xRk6sRBJxHJA+Y8iyrEvjZaRgeHhzM7rbTTeTIyeFjrR+hiCLrnUygs4ObBV2LAjhHPEbxwqMNHpaDkZo5K1icOG/MmumUuSTiHnVpZYoJOjA7CzyREMAZ9uDu/O7l7f9D9aXm6Prp08/efLW218dTkcGJxopdlLZRVdewINS3UgGNp1FTAgpIhNCLFoxnbF6oj6o2nrH8eTJ4+NXPjiTvHgxeoNnresHrEANGdZD0WzjKXJPkCbJ24rVSaPw1qXICxnVhcblJFE4VMIqw6Jc0dOaaXARIh76JPeu6MStsATlQWMIqScUC8mOAyaWmQ7qmzatX+VYmnDPxM2VbNN+GVSgQjvUagdKjUDaxQJfigSG3yIv9y0D0rybepMgn/ScPLeqJvO8ruj4WwY5EFbdk60XipY04z5+0Oi7sqzcsosmhrfiZEANL09ThAt4L02yq7IyoFWG+kihqyvUT+pXfD0vcLyYc+ktkKu8VvcapYEXhKt4kBx2D5DgKoNNfgpShab6JUJnswHxl7FzHO5wVn1w4VDX6chM1xdGbQBA65nRfvryBYdNtgiQbJrouuWlzhTBAzBKGlEKQDF3astAqHR+VeOUa8tsKXMqQkGdqmxoyRhkhfnm5ny1fP7ypZM/6eA3ZjIxDRofrae8GnODhxljFfpcOn+4fNTDSE3dg0tdwaYcu1tgRUTC42p9frX45MXZz569+Oj5xcXCgQym3iQoxAWitIEKkVnp/TWF3AyiURFlnpw5hSGF1CV/1UpAUCxi0JmGTWsXOUBjSL+aK+j1whXkJ0L3WyG+BBbiSxfIKimzSMg3Bdrfzp4Ov/xG/53BTWzdpC05NHuCVB2fIgndlLfBNfNGSgvrlnE6YK3+MP5Dh3tvffX0W7/1q9d7zyZPjhZMeGiVeaYlB2bhF8op3rMgnEmOeQBPNR4zE41OaZExINwfrwzLThVDcNHv0JJrTPog7MdAHvxYp+qNnZjbO1hdlMNc/SHHFKTnqZ92kSoivz8BwUiwUeQI9UXiHlW+OoNZAFF/vVixId1fjym4dZMJyyZCS+Q/yCWTC2VUH12WGUTIwBBEyptMTWtYkd46ApjYVoM0QZfobTc5v2+Mf2xnM23nYNkqqiNuwjcjLlOiG7tsB7h1goxZFud30Q6NHcRjF5DT3ull4saZM2ceUG2gJslEoCFNZVBT5x7fShSOVT1kXOavRkCY1d+8NkLZpuuQNGNtprUUWJZt6iQLI37cPmPet7ROiA2rWgwuz8aj1eTg5f5yd7nYfPd3//3p6ZNXXzUHGh6bU6UxwaBvZzDvR8VQw4BQZBfGCzLj4rWNzld9xqW0f/EZ0T965+S1712Yw6TPF2coxoNL+C0aRcDRltRzGqxrspAB6tZ2CRO10UXYq8bNQ3KsYF9dFGnTuK68wmNa70hcjNXCZspBvxFH5N1d1blSRNh/ekXCw0sd8p7dqPi+TqoXMACt0T201gYbUdPr0ifz6wpzcAuMMjOpQLGSZ0leyskQml7baD0jMiYQyq3q3mO0wAkcYG71Fy89PpkpQtXC8wUCNU9ZrUVLVf8A1KLlXWZESVcjVIoFLV5kftn6m6oHW8CqKDFN1NEi9CYXCHHjNiAClGym+0WxDe4ww+QcGKvEiBX17CbEAlWZlAYwS91ys3oggqOtdVP9ODWRQypBF8At62axXl9kfn+FscpWG4KS8GdvcNvya0GZ5yZrCSt7a1Ia0owITNjHIt2bf6mbLSfyjYUHzqFnZJoeEH3i1zPOBIBP13ErZyemKYgJEy4uNhlOq8MppRZYangPDlL9GBEFk0qENRgBK2EYpyKOscYwVWSAuuGF1gYeHsgwTJw0O+JVMnXNAnQObKMq9ja755JTqlCkF/TWHarIYix40zooNmwN9WTMSC3SF3IT3IKn4qX9ldBELMnyPg2XJpF7S4cmVETLZM1z15v3Xnmy/43J3ZOcBDKZlp47Rr3WR7JqmgGdBR/L4CznEkMnNoM6wG7v0WB3ND46PpgPTt6cPX3n8YcfOORxaxOrqV5/rX3ZJGYAgWFewKMs4H8Rs7neYyVpSsdTKBm5Fn4d6RRJCKxVFVXQVeliOKHkkNMoz8r4wCGulHfRktHD792MeCpC3JQNjrcY25bFHbNB2CQsLDpiTzCTJpKnHUMh0DyGCsK9gim0J7rZupGO3jIE6g9wEfb7exablGxB2FIB1PmLbj+DeRaH2OXTroAniahzAEPy58TcQJUBwF42a9qrQlp2dilFzDqeLAAYBqwWxL8g4Y3Osk+amc1PjkYzm4L2x1Mj7ejqfOmcrSxHxd8PAIxEKoIskI06hebDE4Soalh/RjadN7OOJVfcO05nlhd20VyUr73UnD344NYZmHowAtAzzD6w782L6xc3d4sLh4IeHE2uDj/4+IenT05ZdzCuurMzNX4tUlaJPMwEMgqGbvMMz6ZDTnJxOPX+kGey1e3Sks9uMBk/fnP65cPB4/XtZXCEzDOMqUhwFlJNe6cZkKanotg0lK6mQnlu0XKrkDCTNocL8DXkJ0KK951sRPSq2kpv0VeScWWY71ZyFSVSeyMQMQQSXyk0GQbC8AH66HJDkEgl7uLcVeWUmUT6rp4sBTqqlJW6iirwAJPMKnuvUoIrr8I/pEtYykuMQJ6HQCEKTOVNVTqRqmoNV4lb/Tr8IeGmvVk8iIgpSQY631iKVZGsWiXjvPLrg0QCbWKH6QeODDs4kfuqT0bZGskKJUkdFXdkkHBsOTcNV4FRmGj561s1MMg78WSoI1bPz/vKMEWhYQoaQYaPKqeAKb165hBlqBS1jTWsYIIIqU8blDKfAAsx2VGd1hQurlrbpm7eiZiqmKFgFmAN2KRml8bTbrk0FjhYpcUWM70pYMjQzYwlnilvxo/ocsQz6TPVKd1mw12KL36dUpJdRLEYZYjvBf8Bpi1BsBw8MIoaZ/kh5WJKgaKYk85eNUcFzK20IOAQWozyonGrBhGUOoUe8gdwLC2UE9YYIggo6fJaCMxhhYkXqDxVQsGpcHAiepGpF8QttCVKNlLt38xuJ69t331t/93Z3qFxCcWTOlUly0ZFHrZVU+kAh3bF9tfp3Wy8nTBTGe+9cjw9ffOdJ2cffPLBn8t9159zJGSLuBH0Ds9uHggoIvTYjAWUEqu72wVx2ZCCX2aFcpkZgHlAzA5CMqmfuoV380tD++/8vslwzsfheDpijMg8mMiudZkVWMjBFzXuwBxgxMDe+BTqkpZ+A3ckumfQ1eKZHmu39I5QOoUkmaiKouax3G8bWUQGfQhg+hsbUSsGsyhAIvLZJstODWmSmOL1hH3XmjIiGGfOycUwDbF1jcVuxZeuRe+a7cBjPI+Wg+t+D//G0SwMlDm0fbZmVFmrIwNoOb2NAepwysO5s1+GTgq23rXuz6+dUUIkGRwNJkfjgziDBwtbkBCxobRqhbDaQJg2NxNVpJKY1GVwyGqskw44NTX/zQQLDLpwDhJ26u/dyLyKM20Hu++zaeKCq7eCsoPt7GZ58dH773/1q788ZPoTfZcZSxYq4hADsFmciQsK+JR/WP8NXPPhOeit+7tFVo/M+fbWt9OD+bsHX3my9+r59meGJNwIkOkO0iLBjjJDw9Ae8hVa2cJtkXE6B6LwMpzO8FEMIzGRi9LzJlmm0yXPpDdzg5PEFkqsEzkyFsJPZ29sQQ6huHxXapHqvgqrzMMnWNrom+EPctcdKlaYq6ISXfElXCkJIAGmAMibjKuJ1xVRlZIEGYTlJn5x23sYPKuDHFKOeIUHOSgzeElhKUQ4MvZMEklZBURYlZy91Kkj/oSnil/ZhDEFWDWpPhBMB2fxSyFY0uKMonTwy03MhssQGORFegrJITWq1fQjnDMWPYrR38RPAVViUqZ6yaCDQPkFYAIUY2kPAYsQPlu/Elf9SkKQMIrF9M4wb6qS7jW+mIKgoSR9i2uRJArUjrnnXoRUfnvDXRK4BaS+SZkfCQJNmScRRKNajZOzSCVql37V2EQwpeJhs1m3VrUQmxarOgV9ngiCeaFwi6SVkqO/7YI9S1SiTvKJ5WcOtGVOysF+1O3JwCc/huYtYydWMnLS7v6VlHXJwAmJKcrQlR/R7ytSlQm+UqmkSFxZpG5+0xANXw1UpaX1C8HBQfCjfOiF/ioLL3j9ncE3T3ePqNY15fL6CuYmBrCcKBkrmezWQgg8eGdn2NS+dO2/35tuV4PX33nV0uRn27P3//LM7P+dX3uPS7WbKw4kc2YOxkMXbmQzg+PZ49qRRGfXq2eOErA7gj8FG75sSbWz7NIKsNmAYaHmoEA0AHBGz95lyq7fRMTcKkRE4jR+5URgRxb24Z3y37jJsa3Ka8BQdvEIKwVlrhOWJUVeo2scIBHgNMHpJgiM1U6U5dEaATVVM3WM++tQQBo4eu1oWnLpdvECnVGcBisjqR+nIYAdnWpwSTRsDt1lt2CtsNVI34y1eHKyJszO1cyQStmOMGYd8UE9HtwdDveY2c8Nafw9jI5sGbic9Q/mp/PV5cqShpLQm4ljtHLp8QYNWvmsdcmYiBThR00VY81h4VT2/vWlnXum1Fpws3JKG/0Pci4zEvW1E+1479FsOKWqerl6tj4470+cLoCoBsNr/pf2nYrOeuP0mONsE3OOVqkMYAcHDiLQcuizYcM+hdX+3uX+7dndzfPd5pktZ+QeI7zsbGl+7dH+13+0+/PbPk/ZRl7QV8+E2dBrRNFG4Mn3/qMhup4QxpdeEOouuVQ0XajeysiLvMp3iF2LxY82LhFhKtxC1Mo4XCtZFAH4SX9Irsk3TFmfTAaBJT0cIpN3IPObFs+ryiqZI7X7jxfpugLDhVthLfd0T8EKreDMgJK7ASUld4EBKfArJTxdZgUcuNPU4MCcUpEAWn/R7qFWklAoGSnk0p8DouaLC6xwMvUM7CqdegTVfgJoHt3rUSV1ha+CKfxMBrnJoKb0KpDCJuTmwZfWN8BEK0GJsSDEFFICe2GuapEyC6KWAazCQiYjQEwWAiyERsYjf6pkQVcoSs3V16KYwOQVZHgTuTntKkCTKilZyTTlihcUpa4dOtI3DPRO2zMlD61V3sF1UFxwprH0/GxwjTEtqDxi2Vb8VA+AqQF0pB5FaoERLOIBLUVrbI9K9CKPcvcCVjKKZPj1hrqQ3b/eJyowSE4U2IkJl8rQT7PtK7KfQJeQxs+TWUNbZZw61icVcBU9CatiE1Qg1awh+KpYwVe1fqInigyTtJ5SClDlE+3X8GT/vVd6zn0ceisNdYPt1WaTEWFqIKb6tlsbpzRwM7SnsiAt925nq5uD66vld/7gz/ujS5genp+dfLY+PHwUQiJdkPdJoGRDugZ0Bb/YPo/Gdmdb5t/a8bs8711cRPu/3MRBouZq1YlhF+sah0GSwsmaQwdeH9hfpE2t5qztn8KnxIh8hn+y+LIXxDEATobfrmOPmVVUQrFiQ7fYfiEm/D+oQMPI1xTBEBEdY2YjFmPxbwK/l9Q+o2mmm1FelRxX60wHC2fuofks1SZd7LOZW2voq+ubBUdcQ+McO4OV6VL0P8aAuACoZohwhuZgJdv4DQzmSBGbI4+DkqUTkZyb97GNziY5vKbMbh8dM8Lho82mN9uh0crd6ChdMZNNtlGoD0POacZ6ANWdsdpYqNFqVRmB2nJgm6cNytdc8Jlp2TVgQWDF747cTFssIryy/8o787c4APrw4sc/Xv7gfPWMVurx/Mmrs1dfG7761XffHBzhJ9Q66pq9S+iYPhUIPtY5gnqlcCThGM0NR6D7u4vd6vnq6jmP+o5WFOGQEDA/OXxt+vXZxeH21m6YSIehs46m/eqgIdEQaBFA3SPbUGsjXHH91UM6XbqYB70WCsMci7WhncoTisQO2Rfnx2lC2CSpKkYRpXTQMCG3EEZ6A0KRuHFvIaHDDqTAUT0UIafU9gLz7WIpraJX571/7R0aS9NX7h6Vrt/lO2s44iVqQZAcE6GF5juc02vMFh8j+SRqykgNgSPn8MAI7DBJMxnQIyHV+yQKezHWVKYd/AFbDtFjJictIFb8yBZLCvcBbXgZLNQOpDDoFEaESR0aWJkJiaZsU0GGfKbKATavk2le1b1vzZDwIFf0dO56m5/0v+qG4fgi1RU4W/z8BiDx0yS5D/vAWZO2ZedlgZI5hMUp1VDfDASBXvYsS4sPqySQAlll2m5EUqwcUlLBWTDAoBlwgMhV2Gug5T64DjYCZR4jQddELHBHbdDaMnObRPCXKDEOzNK05JhhNMWBgOpAcBLISXMG/pYkb1MOeCpm7kPo8CmmJ5eH4KnBArdpjmQUzAe4yjYR81S5tPvkkRjKCOSsShiKbE6Hr7zZ+8bR9in9zS02G+6C/1JfORBqIMxuLm2g4lQKltDsjtgbzekVnZH+5mtvsBFcXTtA6QOK36eP37QtVSoDO1tPrcD+PMmIKgYDojDjoTg3Z5VO9b+56i1K+bPZxiWwHlicMDZw2jDWnxYALPce9GasDieOruZKcmKJgv0n6xmLyZzsGAUo6B2MZTYTHMUgORhsox8qDa6Ep+HQkJbyisQQfIeqPOku5hDXt8xc7obo6Ho7ns3QBpp1yjYJ3bwiXDy7AXCJmh1YCE634PNALzc6DfwyAVotYm1v3YfaJ/6LouV3of3oeaLup2Thkiss2An19D/Oe9Uo1mPH+3fO/8r570Y3awJjW235iYyvoVvjMfNTgj5CgOFamCG7bYECqqyjVWVCNTUBUCqAa0EiLraNYdR6xiRDlVVctSd62YljxNvfm5zO3vjG03e++sY3v3r90dXd5cHJ4Ttfe/eN48npvD85PrzeGzvojM02Tx6sKghI2sQISzSo6VN6nbU8PuBuL/c2z7fnny6ZPL9cfPZy/fJis7jlLeni0en62FrC0d7hZYbU1u8gWCvph+kAodmuyYKvtFn0Gem69RDyEwfExVTSt6pZqRDu6V+a6HzwE2Ok6OnRvvWLys3ynNXGUIbEbhI988U8V8SKbywLxVRIvcptigybQjtdbtXPAnlSNmCqLtUZw1gLbiwhMFdhIe/75tGICU31Uv9iA6lwBQUMkEGJf9mrue/cFpRFy6lS4JYitU2tq2bhq8IiuCjCFbaSnFNElaDcYjtJF3ZyH6WE5xQkfpqnZiCQDI+kiUzZslsFp/U2DZ8RSE/QBVIRPU4EoAUlsi7APBZXEyHhKhLYxA7S2kNJZ0Gw0Lz0Iu+TE8CCJL/5b9DT1qQ3FSqqpKpb1TlxYETlhOVCATb+INYkqEwDVGK45JtYCc7LQJzEIZwWIQ/1X/HCTZIy8QN8KykZNYgrahdYWYteVzIzMCsq7ANyGzfo3hbMyaUGgCpAguSfRqhi1K0Qo0llnFAZptPkF63mwVU18VpB9T4vxao8kigjpVchg/woIrmXY/1pb/r66t23xl8bb6fMX3izJORNuFKwosrHD/VxqDjeXo38akF8c/jtcDp/8eJyfNg7fjobTo5XJy//8i8+IvkSQjT6dpGD2/H77KSNCUD0L1Qs8fbAHCUCadzSlOqf4T8rSXxQjFRD/Kb9x/390T5TAdld7oryliJy0p8+njsYnd2M5c3a1RXEGlvNLrJMHTP4iNXVwpVb8Xw4Ee5ZCYWlaPkDne314xw8DyVkEmRnbGD4gWfbExaLIMautrjgnfy3S8xo2CHvNCWpkdIypMianf31IrtS1jlhoPbZ5NtcnagY1MehixVvev9M/92zAsrpx6iuf2PqMp30Jw5enU4nJh/7A6tksajhDjQbIpih0dccustetODWWd1GVlByLOfEkHAtGn8ZO55RYcR/TkTLVXp2gK2uLOKYQ4SSdHaSVKppGFDB/cns6JXXHj2ef3X+9cHR9vCN05OvPFmq2965Fa2bZ8vds7MbNr1GpPChLDaYD/K+EtsA5ZoCOXDm5Xb7fLP4ZH3+/OrjTz/+4OonP9u+f3b3jAaJm5jHn753Mn7zcPbW3fL9DJS7uHiCWRwd/VZz+M19Xdql7hvxI9Z6Dq9L5Ido1R8QuNfh5o3EizOlkdOzXWG81U9CWomSHlEBSZWe4DnZuhI9TKC4SMKKINuLitX4omjJPEOQKMkzZCGjxOyK6MoREkhC3KqU74KihXiOkIE9pOCWuOgzjwGyqDVz6Ywp6UtVl1BTSqy6VDkRz6CyUCMDBKXTBcKqp3I9+W5FpJqyiolJ8NtS+XYl12RdFQEzGaLgLYFV5ExVXWUMQR3Y5zMWRLKRKsmTQ0DPVXO8ustAkCj37Co1C0SZs3gjlXli2FXQ4zEZFGYDpjfJrz0XH0yeLWZw0KJX2goWteKSMyKeJf/KIHkUuu9zT971SYSOpiKI56mVmEqlsIR02TbYWmiKSRMFxORUkHdp3NdzkhEpCqJ677Yy7UoWljwMlC0P0bvCRauo3lcRyS5QJEOMP9hrcAZzrkqWkIpUEFbWCWjcP7FSeKEMJxQHB5jcPH3r4NvHN69P7iaGSwoxTW4VkWfKqIAyxhCqMZzqGKbSrAzIBKRvnGvsHGoHl3LlcWaj3nxwypM5GQ3bsud5PO7b3xwVfXgSSqKyyAl5lCNXjuC4cxSJv3j8pw8J/aUOoXSeheMZM+J/f2ytkpNwjiAYxYy5fcuxvpYf+bNiwDU7nS/PyiObWUBYWnbH4+EsigEJL4KdbdzWFXQBgfQbMWQPwoJEgaTjLDNhSVFuUqfTCt0xNLLxLc5U8gBZsJIJijhys1TMORcM2nZAvt4uKVTi32K9sDutvJZG0Z9Ol06jh6RAAyttH3tQsv8aX48vioy2oUuHK1pXn/enU9ObycBBj+OT2/70xqFpTkvWFPPTMdckE37WstYBh9sDXlDGfEJscFKwBW8WcS0JOKfMaGWE4hPayMR/08qytGO5FlZhzPkMW0U8+DDj3SiyBpyeTMez40eTV/b2D5dcekUbd7CxNRxXZf5qozWF/s3CCSHsPmyOZQqkial/GQn0bBa+u7q9frF1pszy5erli5efLT78yfYvf3r3/cvRZyZD++u7Re/T1Yu/Oj8+ttfAzAP6ae5QMtxUFw15h8UVzYfKQ6ahYv/5LfIPK+9iNOEmwV6ngxQKql7hjp4SVrnd5+ChytLwglqOss99db/chq8kpCulwVCBSVG5Is/klCss31WRkzDhQpK+7kqELRiTaXh0KDzCdEaYSpvYLX46ZgqotMk2g5Af3VyFkjQsMxr/gN/qkOzC2CsL0UFSQJLCiqWIGwzJKWYNuelyS77Jo3GpYD5TG1Fa8eFCoucK3ScPV+G5rWqnFLyAjV+KzOskzG2YeFejwJZX/iM15E2SNeArNu83WXCrwHAaBABEpQM/lamvLkFVW+SuupVpVSFfybdyzK8HfzVU0zqkTes/gCTPipDgyiIvExYu6Se3lYd+61d4cCxm8NCyvsdMRU0CwZVL3XdJJA9UIWkRZFLZZKxPaQnxU0krddW34SGlJvYDHPedIuX7D1NJlikzaf00vCo+4f67K0B1+eSmQVlNK1RhhEdagOP+W6/13+CCLyuaObSKniGu6ckUUIitEDkxTZJyyjMn4OOj5Inp6eH00Zyg+eyjj77/sz9lDzKdT5xbiGtrwFj7UCBxQjKwdMlmC7PBOmkietlyjbnmeCxaaSaSG8uSpGggAZk2o6xlks/IYgRNFA2Pd5Y6PU8spPdsayKl8ZEwjrME8TnGAi/3OEF4NZqV0mj7hZkzoFW8D8IzSBSWutYN9ui6jGqZNmNGxigMneWALVyzkymyJVzHTUicnsS0VM+VKHyV1ireu8wg+JfgH5SundUs1/3qErZG1jZb8mckCDm44c/Qdgpu/X0bO+xqsOVNL+IHy36727EdxjlrOCPEcjAbLR0ubAZ0NF4tHe/Hi4T1Fv5TYtKXBXbzMTizXGGp3cTN+ArtWQAIP9Nccb5HA+WcXsftOcThbnFzd8X4VpNBTJBN1uUHu88FxF68sDiX/NTDDB1cvlhujrbTxwePjw84R7qwojg+WH5kETgOH80kmITSwpELsqd4uX9zdrc9361ebi9fMjc9f7b66NPeT84mH1yOnlH4mansXY3763e+dHh42Dtx9kD1viLcNFeIWtcOwaar+u36UgKKKlqPCImHkkPYabLP46UjJFm+8uO1/9y2jtZCktKVF5VV5ZP77modydvGc1N45ZF5bSVk/5L0D1AlYvp5dcmUJa/i20lWhQfSRG+AVSgO9sAF6o3u4jdJ8u9SWCoQJPgN21fpYokNL4lWxSABFF/vU0rVspAQzlm1qfQgbGAkHxwpxaWsDjRCkgZoBcumld6itEcxq5nAHW4kasayCPTRPLaqBUHC8iTIQ4Fa7wq05JAiqmCoCvw0SxSpaapCHfBbJSTWv0sLFbilSwWSNoiWkWwFJqRavMrM6+45b2DlIZ5ESRjoKhev9DRJNWsyRCp6THLsckqrppyqfoMtzVwlphRX9yqpC+wWKrwwXXk3+aBBmdcC7/PIzRev9EQR7oOSZ6r4EODuHvJErMITuUqr59ZuNV557vKv4pJTe04W1fapWo1No97R44OvHu6dUvHs4uIrq66wUnixYxXVMXiJd4oIsbKLVRVf3buDSe/4tWNKCVZUk1n00Ae7/ng3GuBlnBw7qkuNMvmPO0r7DOzuzvIHjomR7g2irsmCZNOSW4k3umCmOLVkBP+sIsQ7cTP/Zz2JsbLHjz2jDctWSVN5nJeWwqJ9dnkwFcadSKRISn/NCAYqZGQlCNnG3t23mVOdoqLTYDhCtZ1iqVcs8Y5tUeaeiE9bpxBNn86tXdceRAcFM+HNFpI6tzLDgz6M2VNkUEr5uLlegMYQGrPxwFasP/oW40nGnsCH+2cNG8u0Mx2XBh2ltZreTrjKmfaPOdIdxskP6c15K31zH9tzTUrovQdT+w4i/xqHtCHBXCfR/qY4wwF/oSYXBOsoVbR1NgnwSYE9szEyR7CiHS9+7H/YvFEBBROqEBqXaY5XkEnWoO8GVrDvesubi/Xq8vmu//zscnZ3cvzoaH504RSxW3ah1yaFzJxDg+jJCGQkP+9tX9yuX1wvXqwuzi/p/897Lxw0tuyfXfeu4muYXdng7Gz76f76zaP+4bP0N9DGJgoskVWjJSslZzLNpXp1V/0gfSdsTrh/f+qYHlIg6APpwcWaOoJPpIfe1qKVfqFlLm1xEr8pNF2rRU72XflqV8GJmitFF2oLMoUnXv0lt3SmitYiVuxEbMlaRClUs+UVIVZRKbVAF17V6RIW+0mh2ilfNZFIbklyX04gcnXlpgoFc1dCKz1BSZQfceUrvRqH8XlMeldgSe7qgXSDjnwarBBVHCMYT1TT+0qA4CKLGwCqmQJ/0iR1l6DKEVDppAFBMvWdyKl7Fd0hofJOrJSNdnXgABmwq9bSJEE1WGv4lNYu79zkucWuqFXnll2DITkUfBVR5smm5lRCMxhIHwVQpqUt30RI1gJMqOiagZ1C3FQDBtSqdlD2C1eq20Lrla+WaQttFRPyEJ7kKb3KbEXe51goae/zXTnfv7v/DQoCRYO4FZWHouwgva5UrGodvBAcR3d3R7dP4vffCWCYBXtDdpAc0cTTi02eyIGSl1mJ9Uz6jhBC7Ju8NV/cv3385mw07X/39z589v4HRo3ZwXw2mI72xtxKZiMrVwlNMgoDDrs0GthDyQXQ4nwRW/kc+yVnrFDOOlDAxoz9kf091r1hABPmFtbGqKmN0dYjeR3dn5GTBzfL7fLyOps97kxaBoRkOyssj1JTOC5iYY06AwCZX/vGaAaGIvQaHrKFDAVEns88JyINbs8qTVfT1NmgnCVqzZs9cTyDE9dtZMi2cdikUuE2iMtRawhsGldX8e+65OVjuWPYFFuAdCSZQpiBzeBBXWaoCxqzLEwuN6KQcGKRdGBD1ghHvZnN9maOVJsePZo/nU8fQ2RvfNSnSVtdLJ2vMT9hpR9nF0YOq/CGwzELfrJ3DFmpO7kV5Uk0toWWLcCwNWVw1vjFjW3ta8flOXPPiGvgUSdwR0OlyTWqGQz8UfUzbMq8YbW4ufr42fd//P5Pn5/vj8/nw/0nj5/EDcTe7O52urcbclZi29/wmBpO/P07G83O7q5fEv+vry4WZ1dsus795ZyZPYcWVkWhw4Iz/8WL3uGAs9HYbdRcPpKOKwNz64KhVCD66rqHe2/CBfJKmxSho78msyZMfM1ZQl4eK2HQL4nY+RTn6F4oMT03JVQvTW8QryvSj+AwhFZeEicEhabrNX6bdAlLsBsMteXZcikumlQpRb75SlrFpKC8QCGKSFDr88mvq3IC22PFk8QkErYqrIoskGSjhjWTE1++IdZw9qpV5V35JJkyGqD1XeWkOKOHyKLW0Av/6RB1pfaFvIIuqJBNYbLQVEmqNuzOAqzQAu/+O0hJ/gmWT33dQ1bFp4Cuh3RRWysJlFd0MbKtJm/5trzEQe6FcrmKWnBVhqlZgyIZSVux5FQtlnpWtHyJ5r/qnEyST0N5XkF0C0v1W46pYMTFRKy0fkmqQel9SV0+LWVVOxJBgd7KTczE78pNhlXvX0hYmE6yVKCSVzkBMIEVVvetFoFQeAdnRWkhue0uaYTdAy5uMgk4YXY3ozf67z69fZ1igTvSID7CpQXZHSfYyrOuSr1gqx0VS9TrIQrOH4aXN0uPw3n/3V96nfr6D89+drGyzYFXgpmdb7QJWSsKZzF3qKMrshnD+YqxlN8uefHIWY/lkgw7y/Hb2YJbf8ThiO2ZDRgMtJuVWVzfXgQZZxWUCSp3LOB3bCjWTbmNAq0WBD1G7/LAk7vUMy0HDKMaXlerwtxvsiky68zyRiwbig61CmL0neaVzJ1hohwSsn/ALAOJDQdx1pAlY2NgJq8pNzhhNcxuakR83g0ceMmlBtc6MizLZN5cGfmSwlfbPVuCrXVHLxSbNRRYABqQHJk2upsN9tg28X8+GR9P2F5x3TyGR8p8JkWSrUcD/rZzDC+DV5sxstSSmpLznflucDDBqPGLaoz1Z3YkGHGDELuSrbhsVntrxrteGB2o44KeYkKx4sMj0kHjSGy9vH7/Jx98/3vf/YuPP77ef9bfjl87fXoYr7iTN9740pOjp6Nd/2qxHK1symOTcddz/OWZvR03W6vMxsIbHv2uHHwW17KFS99MuYa3h44Snh84IO6R9tLoxi11t6XOtA0Oww9ajwtJa4nQdYmk8Fy9ski/Gqi6ehorsdLUbVUs1N8iKTOvi85DC1kgCkGEgOuVlgxLrdSVT/dV76t4qaqDh6d2SUxU0z+SrguRmYTJNaGVN1gS2igrP4kagBt0BYL6ZPZWkEmVKJIjx0RNPveXGBUJmguaPOQ2f3pjAL3/SNL6eX4gtnDX8mmwhCclmd/iPq1eKRg/I4xYCUsZGYwDQ/G6VCU1qHzq120HeIac9M8C2FdVMBETO8+5r5dq2wH+EOStsuo/YXXdp/FQ8YsgxMEG7mNKVbC3pDINUnMVKuquik1x3rR3nWRQbVAYQ08pPJcfcStNRmXZx144aKgMqhJ1J06V3JIlKDkkXpdTvRCrhaewvL9HXmtXr+8hztv76+dyuIfs/qUyurgyK3DzphozRSfjh7wqwkNCwSGpitLAqph0IdJRFFvYO33l9s3D3WxCbL+m1eGjBrvlcI2PPhp0Ogs7rHimc7IWQzAp4m9n11/vja6Hp3fPP/lsxkVDVk1phi3WznaMNB3MTisf9/BWVjd0Mt7H/NXqIy62IIxeLxcLen8+CaIBLwrD8KOJj+zP8lEbs9CXKxOgyYj3tOmsPxtTmHD/zYM9pwTz0cjJ0PxS0/+MnRFEp0IINgpgZnGsGl+qqXd0/khUZzMBMTJZiqDn4loOhHEBVRPakJvyspyJ9LkvnvDHHCYdNztamB/QNaebO3vGDTAZB+VtbFw5UDVnCalaRgZKjZK0VChLHbH0p8rHlc0dtkxpLco6Xdkh3lQoWTI2y8h5A2NObUd383Fvztl19pDPR8xAHQG2vF5Y/sUZjw4nq8vt+uzSFGRwxDc2+tVX0zqMQa3EcXNoiIr4HpOi6Nv6zFYtVPM+6kjsjS0KyysugCw8ZKHNZC6O/GVBkxUDVPqmeNU1Vdnvcct3cf2jjz7+4Ysfnw0uN4Pz/cF8qZqr1bg/v6QfWqyfOox1PLm55CGHc9MDSbZnuxs2QyvbvuyHc/KBxt04PRomMl/BX+h7tqPx7Zh12TEP1yt2VRmBjGGZUuolaa3wwegPAlGMPT2G5pvwWy3hfbpYqRlKCZYekLT5BPHpttXtRPLrPwHtXYTuezk6gcmo+EmLVEFiJpGX9bZuoDoxqudGE5Duk64nZsr2n0c5twGsy7jLIcW3q9QGcg3HCFXlzX1xidEpAFJrD60A0VXKq/sCa4wIipI8o0jVrQEtU9TZ1bGUPbJyBeASr4LKzLxqftNyRLalBZE2skRcEkJJMi9M++m4XjJJfRMhsKpNfvhaCTaC/gDpJohpkfKbwPzmq0Jb7MQKYMkr4XlMfvVU38Wh3fkNCggLLUIqlGwr36TqHusn2cnkPscUW0JdUrTyuiAVTCRXA7gVnxAq7wJD0QXMF/NKQwAmlcrHFbRB0P1VofWiXlWchwJaeVVSF+Uehlb3+8CWtDJPvg2AvGzoagXXi1SmxWiVCU7aJ8G5GpgFb/Wr4C0kZfHxun8wOb57+9HeU8pXfpTxa9Yig7v+4WhCwSBOBsRIBbowDtF21vJ4wCB8c/J09No3X3P270/+4rNnH7w4+/SMYYfDUsj++D0Bw1aCAExlg0DwZSukTD8vrhcvV8sL20OzOZbmpyR9+23FkIAW2jfFfYAs/Y/jErMeIA98MGKLk78O+hveHnZLPmItJxBvrS3EFqUcoPD+NySgXptGyDMrCqwPohJH9ukFsVmIdeleBgAKmOA3PoqYuEYtQ+HVz/FAO3uddQDMKFXf3Yyc005EcgLqgShGFbuFw2tMW+Al6iPjAfvTZXwvW/ig1yqFD5vLbp1jE+4feb66V+ZDuh7OmL3GJjN7tjo7EcJ+r1RK/oT9+WiyipchgwSLXACQy+KGxbClabJSwyb2AJd1nujIgIJ4XbgcR3s5C8oWZGdxcuXMubmTwAzlGXuCXBvrjANAsfhcCMe6Yjdk0yJPz599dPH+i48/Wn24HvNn+Hw4mS13Q/vbpsPdTy4dUM9KYL93mAPi45vU/INRUk6dDAOEqxgaxa7X0rCyNFomW/Fwd3s87Z1MRo9WByu7nZd3L8PlDQNFmTWuVlcCoUs69UPfiForCEwP14ZpR7epvMaTNlHqkxqFdvzWvCH5lJIkb4WKmDxypUeArrIQOzErQiK2mJmOVFwxK3XBIqRl0F679y4QNUgSN1lXbslKQxV7LVYXlp7UDb4Img/FJjw55as1Ud0Ho1miwGvT5kkpfV6pSX1lElmloaVUhLyFIl0RZSquYVKEZAup5Qzdy/SHXPIAYb3OklTUowaOWCHYelIGlKGoQBWJvAauJKkWqNx1rZYNzAa2Kqp957YDOLWTqoB3l/K+eP3cc2t0cZJfQEYI+kPuW4YpyKtklub3CUD5pBDPiXgPa8SyxEwRiVA/+U7cLpcKbpP/vOguL+/jVUgVkLtqbu/qbZ6Tz/1DgGmwtZ88dcC5u78CZ7vctHre51IVqgpWiNQPcZNv6vJwdVXvyldy6p6nRgsBKpnfp7mPDkaniEDrzfTJ/lfmu2MSO7fUOAvukzOfMGTMOXIC+S3+G+iHYZpbVQ6Arie3L86vjmYnb331HQvHf/GHP/nskx8tNstZ73DMXAdDw0lz8siaEN0znoTysgPgdr13w+rTOTAOxYxvnKyCwg0GxMMYMOn6i+kj9Vy1Gh37H5zvxhLmsr/lKPlwsk9TMhyunRyMzWPTTvHh8oXjmluGQJTaKFUG6d6Rx3QHfSh9RLYxdyTwZp+agxgdMKnckHtoPoM7ti4dRQ5GOIoXpAgdyCl+hzLOW13wFBRHWDYTAvTe2gHvoDd1iRc5dY+8j/u3P0uwJgGGFm4h7HTLakdTKpGsouViUzKa9w6j/R8dzQ+P5nMqIEa1S/uBDxy6cjd1CAFvJyP7w5jcaBmAEvwZ7YQH2Puw03AO1dVqrd40XRQ8cY1hnF1uFzynr6/WTIB4gGBBCvpYctMEcdSptrYjkvutC8RpXNYIeO65vn55d7kcX9xMVjuLLJvl+GDWnx9++vzTvrN4VvRQx7OeA7JGzh/jGcjmQT1RT4Vwqq1sxiiXrrAbz7dMRm9m8+tHp71XTnqPhr3HlhFGeyf7dz+Lck2SWtgvnh1SLfYVEvCvaZItiIGcdxZz/ISnFWNNWBpbmyRFboSnjaofhDkmQvqF/LuYFZIY7RKnUifkPsx9G0Janq0EpYMvDElmlXPATW/qAKjUIelKlXcSArWifQ5kwMmQESVgYhR4eU66oLGgz0MIuNhmhAVyWIM5AFeUgry6eCtF2upRSRgkFCgFXMbhMFF8P2ti2qUtskFmEBM+qhn1gaxkYPx0QAmSRdsBnDqlxg3Kh9G1YM+RLwEnV+rTapsb4UmRq/3UYzpP1ate1JtwpodkRQASB9F134aqVLmKB5pWSDdNuaCMkFZ5VSGJ1AASqMBQgJvkX3cFV4KS5j4w94XoRKmH9pX0D5GSvnKrVPeFtmxb1h0cKb4Dr/K9L7hhowPo/k0yq8JU7xdQk2wq++CnA6+rR2JWqmRT+Vfm98GFee8LRflukQJWaIqqALM8eHRro/+XR7u5MTIiOIzHGIQPOw7ihfFsZE5wLYiWn6xsi5jjAtb752/88lMWij/68U++9a9/a9u7+uE/v1tfDNnFj9il2w9rnKCxz45T7JETgus7R2CxTSSCLrZUGc6UwfqxwgIFiydPBkaCeQmMap1X7lEsGxh/6TDk9UzO6GHGZHRcz5ouRz308vg+EZnKHCFzOkRNRILBJzOGwZzM5C9JKAp1E6B1AYILKYg5OmyE7MtKWp4OEo7yKZ2T0f7aSewHbI5EzDZhOq2ofhjMZiICO3rVdD41m1nb0sujJm184S57gOmrsr+BzWUOiDFLyIIB7p/lCC2k0hmQxjkEeO74nenB0XR0mHNUZ4ZiA5qDKzJMmlfZO0BCV9lR3PSFGGqlPBWMALdLlUIPmXhBmykNA9tbGqrV1Zov25UtWzG0tabNb7ZdclRAwXHJ2PASy1S6OFMYmRlnbPbCaC+v1zuO9fZXBgcnY8xwDwdjPDl8NDkdnvcvN+fbzcwgStlGN2Y/Acxz+bGBiV4OwGP8o8mNrJZIRtvj494bGQD2X5kcvHm9b7/bOwc37+/tXWEypkGZ1ZjCmTaqR9YDtE24vDpBp5MsmRohxtiAucnWpNgiZMyozlb0nd6C8cmkukGIvlip4OocKaiLWLykuLgknaqkixXCq9cS5y8lpDtpsuTYuFPiBN/3PbfrqQJ9KrUJTMatJLBuhC5b6gBQkYRXpr5wWpG8UWXfxe50jySQqjGF/KR+VXBu2hhQo1olyLsqWkktXuL7FNDiiwWr6MTEg0Ez5CGVTKlVBG1BglW+8tcrrtEAJZMzgupsKKu6pg6FDP0mGSeJQgwqUZoHdpm5REt44iZeW2dKDnlZYX7aQwIqZmGzCw0CqxK+CsBkVdECgP+HxG4TlFxyl5G8XqZxUnZ7dZ9A1FZWRb9/F0y2gIffLkNZtbvufWLd334epYBTeL1Jmd2VSnwe391D9pWteO11UHSfKMnbffK/v0+DlCSanCNQVYoMgV3+qXgGy1bnvC5k5Fmr5CvZtQyTPSty+zJvp6/t3jnZPcGDgtNwD3mHmuLdEuekxCBYZsHQgmj0OXEoebM+7y1+9dffOX396Pd/9w9//KOf3ayc82JzLJF0PNp3aMLU9uGsJAciEi6CjpmAjHVf5+VGIUJHUVQHOCI/5U9BH5E/cKRN7zGSm6wUci0Xf6CjNcnlxkZa259mQ/6J11cLs175p6KcUxzyBV2VqKoQYSLbQDCGlqzwh+ht0hbhv/mLDpP6KOJPXmBBtQcio4PIMI/LO8lgdDiJwh7f5YaNIZAtY6ZF2JWs7ZVm9xl7ZjZC07u+HQ5l7sQjoBVY8nVU6/EHkXlQjw+G6Bgzw+o51nKiIaaUP/763N5hhRya8vrp/LQsxWHCNovhosC0M5sF/ngS2xmFZfwKyYeFZKRjj1m/jFAjWHs2evAHZxHfhi0GSHEgyoVRHHFmy0I8Ie5iplWnMa/uuO4fXx84nLp3Ojl4rX/0xvo02/MMc9kAOD3ZP/7qr3ztr/zNb70+f/fyD25/+E8/+fizqyfTR1YTsvBwbVzn/Ygvv/Z35fyBHP4QGiBBTIe9k2nvaD48nDnWcm//3dGXDsY/GU4unR2cA//6fcovByCY/hAkrMA0VYbp59VqcXV99cnl2SVjJqZMmZxCje1+1vBhIiN1NWjoPpiBizR8+kPGdhSdf4jKun4+1VmQvNR4NPVfhvVcIb6KC6fiy8dAKzRMLHHDhoPuyq0KTddrT1hVOnISuvyGkKuTZlLSZS60XicfgWhAlm0ioFFipdxGqfTa1CBCP/6ZKMSXbFD3pqtvsgok1V0Cuqr5TtZqndo2LpA8U+lkVDxCrLSJBLpO1r0aizBxiwWx4RNMZUyggFQaTktdWBhq9e1qUZU0g095AdeNwmGq1b9eB6LgseDytmEmPwmpKAVxscu8rwtMeVmdVy9I06irV/7z0NK5q3uQBYKkzPv2myxaEt+Vn/CGvIqSriNdBaY+lXElaLknl5adV6ldoiZWvXj4SnDq5117mdu6ijZy1+AN2O2qGK0WD3XJmxbhIb3nLkma3X0A7mI1BIdtVvSG/yKGLk2CW3yJxc59WhIqQ46lk338dPj2gcPM9+09ykhrtk6BY4YYgQB1cmWTv5xYooJ2BNuxdXi6dziZffzZs1d+5dHf/p//S9/9o/f/6B/+oaPubSYY7sYTywd0BSRzZvIxE43KmRTBMtKoYrsAfhgrIE4pYxwZ8sP9fRsPVK26nBukGH124Rwlo0oWiv3Z0eRgzt49BiWEXpxxMqW7copz+MGt0wGUZCTAPCwc0LjbfhyOLbSEe6aR0JAu6Q9ldf7DQBAs4hW+UaE3teMtkqtNYVmVMCowjLFqGUgA5FiIOHeidImbox0HcI4xwgRVAeoA3xYAmtnPjivk/Y2lZ3oszDeDAbrOSJJzLFmSTqz99uYznHE4n82Psv6sCtkxzaZK7fbXS0qeHIJgHuE8nGq9mM8bB4AbBJvQyT6Q3/FBkV1oFtsd/bKySE4X5xTDqKG4Y81uPku/WqVoJ/MaWda+aps1LHxkqjE7ePTK02996zdMBZ9f8uKwGE6nj9546/W3H3/5229/6duvHc2nV6/uLp/tLr5/xfMdm04EdL22HZwLJGfN57SZsGDIhqK+E2RG07vjwx4vQMdH/bkF/Ong8NvTr759fH789nrHamzf0GfumM0d49Q8S0kGJ7Xjofrs8uzZ5bPxdHy2iDbrynkd6mTSB0NpjdBJ0Upjz9VJMriG5nGFzCxA0U0pgvb0hSzXU55l87dNavoICgz96Unhlb6QZsxMwzHywYJTkv96XxHQS82hWv+SrZZoPCKRcxe+katgSUguORquw9G1hNEn9mIpTk/I8N9y856uLxSVDlug1bwn6cPrJSl6jcafsXP19xSYqqWCCgtlZxBoKApGgK5+Yf2pXES02hkjXqKyi5YBegqnuIUmNtF27aiTpAVD4SeFJANXyikroKCm1SwZKSp9oX15LP5dwCVRpcl38gms7vPVBcnTq/pr4ycU3KOzSqlRIVVMEbnScJ7ao5+ig5Zby7fgfLhNkkJi/bZ4CWuwVFYFWuXX4CggK8p9mfXQRVPx7rECHu6rfnn6/HV795BJu3l4/IW37fEhMMh+gDZ4l2/LuQHQ7jtse8gzyMyuc+Nfp9eyiJrYOrgdHPdfezx6jVVGpgM3QlhY6k9hKTEJJO7Gw6OjvkPVe1OWD6u7/uLx20+/9ptf+c73vvdH//QH/85/+DdPZj/bvrzoO1MBV7wbzvbjOyhrtkgyZSpQRrb8xqXC9dn18sx65JK2IVrtqKJQIxnUaJCFZgSvWkTlAhh9IjO8l0zICYQKZFcaCx5OCzYs7m9s18A3hszz77foRiLCK1WId+Ia+ZBiwaFaEBBnSnCBYjBi5XhbiDT0pZMCtqwqI8PwI6q3GFVSiyDNQmbGmSiYsQ0RuFYAvwmHLPGXaMu2HBGtNnv2N1zxccTp5mZvjYHHxamJVHFe2Sq7rW+P7wbTvRGXz7P92XQwo/4/OpnPrMgc2i68ub28wfJZduaYYsNTVCCkX66WjEiaCIcwmah1BOVz4ME3URz1Yw5qYi0W97dQsnKIw/bWMkL2WjPZ2dTqNbQgB3JA9S1OLXoH621/vTrgmNyg9Obw229/9d3fPF0u2Oxu+4fz4aP5yav9w0f9wQQubo+/MnjvX3r1T19enH985ugkkzxTimx4Nu7EwVE0TRZIMBvnFg/vJvPe0XHv8enB00N7B/iV6O+9O3j1zUdfmr7y8uYk+yO4vhscHNI+mXZx8JTjQ2kgN07d5VhjOdzbvXE0Ph0dXE4HLxYHzy4ubDpORw9PhH7IoGIL99VYJGWNiQYM1iYWmsZsCYc0s4gCJOgJ5+V+m78MBBp2FZ4XFhauWnM/hAanxdC1ecgys6s0dWeM4K08W7QahsKC5JHRNTq5SpI+gHUqJQMGTYnMA6zxJsK95fPG/BMqk9pqriVTYivUqo5hQCnJItWVHxBi1ZCfnDZSTwV2ehsgMmVRdwhJSRWtipQi9F7anuphviIKhNCrUwA1mFCUuuY+nUNBucw4labgAJMr5btPv8FPEk3W9Z1U95+kDOR+858riHHJrH5TSBeUHKvMelFxunf3aSujllNBlmLquo9QQNxnnTep2f3LJsWnEduLDuAMqBVwD0aq0uXbXnTfVeuMkZWwcvUVmBP7oRYtcSu0QVnxk4mrpa04qe7neGmv/39+twKrgGQbHMFphlWfwJOVGr/36MmteP4TTep6ih4ITUS+td/r9vjx7dtHdycjDg+yJhjJADnsWPU59ybiDkcOunroKNPx8d2IN/7ZeH+8+8q33xg+7v2j//d3fvf/9oc0Qtyzsd5hVcJVD1N4ci0VBJqn7rYqmytGIPTRm+2Cej4HkxO/Mh7VAECAyAhFIEtIapSnzF/Tv7Jq1TQ8dJa7W2eD7lGOM3oBkp3CUR7xmu84FWI3WW9/cDhy2ucQMymlctYnrSBgc2RjqDJ3gAGcPCMOPCgC8kLvxj6yPqtXzpQJrZlTJH5WDnR9dvEzFi85ZcWxM84vXkIrRRB+wjxUx8arqIEcAra+W13uzha9c4furvevtgOL19ZAciCE3p5WSnOQ/di+DIe3w1lvPPW3x57eATA0PCyz+Dql7+c44+76nNa+Nz0i/ReLO8jBCqNsfA6iwIYT4BzYDVZAdZQeaZNaZgU5mJ7FqpPzls72vbviWKK3v4n1Z/RQxTZ9afqczmxzGAfb67v1ioM3iB2c7o6eTt+ejm52kzv71lgrjfDli/EsWiSnZh5Op1/6jcfLz57/+B9+xBzr6hyztHPQW0QjxTWf0OsYVDHNpVOYzHqPjnpPT4ePH43nFjpwXxqhzfro/PLDlYEOCiOZXNh+B4UXt3dUSYvllRUMG5idovH4ZPL02N64+WJDO8TiyjZt+7U5gJIqRJ5mxctC7Bo3HTKtp+lC+8XL0gcM3OGzXpuOxuiLZ74cIoEX44RpGBwyCSWhLooglG4UKqkMSya4YySNSSM2vWZoTCmuntyJD/7oORGyu0Ah5V2WZ0JqhqHsURdmXGEMkBSZCohYnTecNfVQCdpHShhvwtDDlANSDTduwpmlwpHVJaO4F0iT8KNDlZCXcgWm/LxI9CAlGArZKA+N6HD6GNEn43ToQRTTWpAmDgTVwkCqIXrQWblmIAv1yDHQVmAWDFNgRUh0b1o5KddVQXUruELSUDViJye1kLpAzGPFqbxzn+TJ+D5hQEmt6o10Dy+TR1hhi97B1n6SSe4qepBdmeamyyURAraKtJgVJaF1iVgZVR6t4gEjyR9yC+Cpd+Uo1S/83j8mvwIxvxX4xTd5C4BWWqLVS8XeJ2k3wQsM+hLeQSaRoAZBpU+qStkyxDVTDfRG7t3shov54+kbMfqjJMZN+dHvsz60NjdGA2w6SHFU3DkonKKVl2X7lN7e/+bf/Prz1Yv/+r/+H37jb//a3/3f/Ms/+ed/+Q//q3/86ftnwx7m6PwqZy87IOBgPBsyn2eyYnGQl2ieQ6+XOWBwfU75E9GHKMpihu/I6p8hKX/uQ9rdPZI2JdURNDaJ8YD6Qucxfti5YD8wvYWu68RQpe7tjSPsrtYTiSybLqL5If3pGiVoU2qxD9XhSsWatizMtcY36oRqAIUJxPRVftmX1O/j5WThqcPW9+8mfLOl22P3pEY+OJml9nDT61V88hjO9CODnKFhuX65Dvd/udq/WDspY2+15QUNw1FFnosy+mDYdvhORjRmUf2P7UiYOAAgviio+Z0V7/VgNB/vVmTngUWOxeVmNDsYH+47lXcca1SbjTd7Oeg69qIalWVqStCjDAV46Gp3c7W9ubqBCkMXT92cTlvPDvfPVD71j0YkewDo6awJcBmHbTmbxpa/HaY7cWrZmB+6naM18aoMLLyeQjpKAeL+eEMLs7d79Vunn/z5hx9/56PDzdPxzSBb3XrZEmCGlyOOTIqwE+IDi9se16ZT1bNBG8IQAeumF+f9j24/+Wz3Q0MjLsrMmGs5Cwnn8eqx1qY2WJABXjk5nB++dXT06pPDo0uL0XfXzy5faGP4tDqDckI91VM65l6kXgRvLZPHaoSv1SMLpGcUhelCmB3NoO8s2qfrhK+QO7w3+MexSWyEkxJbrR4H3VhlFDW+g3s83UOE8NBtJAqE5CZKity6lx0OFwYbeaYJH8T5ONAPe/c6klegl2d4Nuqs+bd3qZfUvhNHgoRVl68JRbhN2HOYL0iUIaMAknSJFrHwfgDwIpAkU9/oJIqi4qOGbaVGvs/7ZOpbxpnK1EQGWQtqvTRANyajGNNfEJHvZJWcw2FSQAM8oCdSB037ba8DXoILyrDd+4hdn6xkkjcAgwDRA2xFVFYQW1fXoJWZ18LBUPnmdVJqvrqtItptV3orrEGS7/xX5A6cJGv5V9rkVwDnN1eJHh1MCQtf6a5gv8F0H/L5b8FQj+66aJXQV4P1Ie4DPivvNI1XiVbAuqsmq8eu+MIATqAiiZskyK7U7amclX3X1jneJ4OnLPNMZx10zWRHEyBj/paDQ4dBZmemZo2Sm0U97/i7wZLLiC/9jSdvDx/9/f/+2V/82Y9fvXzMlf3i0+X+Jht3FeYAQ6cHcMJAhNQnVOaaRhmFZ5ZJo4hc9iMoRwmOHQskaIMPpFlrjb8E09O88icQyYnT4/5zdsQNxGR4OL25dcxg7B2ZqtqpRuOt+63XWRjMhFwWbOYJN9dkVt0o0xpzVr2VbyIokil49O4smoaiUoQ/P6FvCnI1t1F3yxyWoWh/bO+qBXF9l8hu30TUSswwjT1bsl/Q23zqWOiEKBtujQ/bxfrWHrer9V5ON2MCxIpGEr0xnS5UbLbEgcPUIZdTtvQ9+7+Op30WldOc/hK/2hg9IT3bxBaXKwt/lGqYVGw2Yqhjs94gCipe58xZTOiyo8tiCwT7VR0INgzs25DMMXVOwQZv9lrryDmyxaJ0qp3JIGRoGx7gbN2Y3DnxMZMt/dHxIJigsY0PoyUMU3ORc2HPKJnNGkYdy9GPWXSevPutp59954PLqyWDLFOFhY0HzIyMN3sOLzPM7+Ca6z5ug8A6sLuNjGCjs/109iRcPf3J89s/XX+87S1yQITZQsYwEGstaNc+bLKGSJTG/8o2tIPR1cpNnNCSsm04hk1MLk3o31f1EHfpgO6RQNZZ0xG8N7ereIkUYnCFYYTik7xC3Ss2DD78ONw5mVegPEUXS4zI7cYP+Nmi6ST2lglNLIOp6fIWukoEl7/3UKfxSUTh4aBKHIsYimvcTxQ3gG01EAuxZExP3tWXCwpAV03DfEK+ATMWVJHiA2XVQQFVN19AKPEm2cozwVUCWklB+hnih+nybFjvk0ciZRBTWjSP/gKEiICqR1+pUjAXPhgz0MJMKzg5tGewpkSRkqJKL8bUAgTVjawDR0WreJV7pUs+dbUs3SZChbQ8Eku+XWIP7ipKgZToAcBVRcFFB0zDwn14K9BTspNxKyHJHorLQ7sKlIoFK8k8I7MkDYz2VswHiO/TBeBAd9+ELfMCrkrJXfeu3T7AcZ+n4MTMo09VpcBN0bmKTgJIg0V+iVMEiD3d3MS4EZfcOcLx+Mn+W0e8v6FdXIOsbRDg4L84IbJj5nJ1ZQcviXXdH+32D68ff2kwe2v/5cuLL/+1L//7/+u/93v/z9//+DufffQnP/zsB2dwphNOenYQEJSZADkDckfvMJizBWIeHrc61wuMkXrcqYR4CJEMe6aOwZSrrmFPqAnkjfIhNI2A8yLsmOKHvWFs1EUsjQaLy6vxbEqwnR9PkP5uuZ2fHpIXd4vt7cHN/pBsaBNUugq2G96OQ0bz7spqsI4aqSXDAuoNLv3psVkvtC5rCsMpg3lwBL/M22MLtXEupXkQyTVuiXK4cw7/zUKaOLTfW0ug68XVbrnYX17trSgvlntXm72FXWAWG+ip1CygRBs2HO1PJpxo9IwBVoBn495sMrSwOptMrX3q1xRbKdyJNBQ41rCNfdGESS5czwWpttSmDDgNvqpl7AS/2YUuHUHfnqxs68qBOzklgP8JanYb/+x0w4hu6PggpA5RQ0HZ8NPzLgcT5/g2dGSNnuWRfQKxc8IOKVpwnFqYdfYB1Zf1EzsuxvODX/rtr3z8x5uPfvfiksWrSVHPafA2aMTyFWAGJnhntgpKUkHYCISV84jRzfzR7Run2/fuVt+lMcu5RF4bxovrqmf2yFHMmfbt9y7Wy49evrhcwcfmmWOHFtxSs6dKi973irrVsNBjMuY7eERqIKq7amh390/pGYGnAkJsqtfeVRfCjv36JEa6Xd6hWhQTvCVZV0RyjyyPxSOHfBooKbCuGFWgeBintykwRMBKjWGhPUllq7iUkoHZT8si0QKFKxll/tIgBI1OW6INyb+DL6+C32QZyMPi3eURSMDObbJSURFQU5AdGGSnxGhtA4FoqULuq9KZKuZKpCo+eJFV+mrBV6Z7lUUVkDxSgSSpZHlO/GTRAt1XJvWUwGQYkLoIiV63IrScvKkckrJhSvwqoIuZx+QuesvPfUbadOvcSV0lJNXDlZgtl8JY5ZeW/MJVxXRBdd/eNWAq5yBWPv7zmLrXdwJ/8eoiJLgi3b8vFNxXWOogp3tMEoW1oCpCynoOVotQfi6vAqxLk4g+kXYDW8ggeo7N/tP9d54evNVbRdeod5v9UdwgDBFojunQGYsw5KEg5bt4ub08HN7+a/+zf6V3vP39P/zJP/0nf/xbf+evfvuvfOm7z/78B59eMlehVnBIicUBO8hGTgII5VUjEIYQlZGHG5rFanOx4o7g2mpwhKEMAKlBpKSm+UnZhWGvAnDWfqmVzBL6B1IRzQ921+OJU2gGFNvqZs8aLZBha2plwuxmv7c+J6M7XmtHMTLg436ZsS2ibsqCPDw4KNBgIYvqjpDSFjyqdPw9lhA1m07foT05OLgd8m9NXtvcjEZjtidm/RkIGGdCmWNhuFm4VC97kzeL3vX53ers7vKqb/xc3vRz5r0WiMAeSTSbk40wQ3bxxsuccjNi2cq+lf5NdSZz6hHFR7ORuRSr/9lkfeW8mywCZnAyHVAT8w47k6UGAfnLEowyqFGIyjZyLW53y7vtFWiY/ziINGa3teoOL5BvzRoo+nRoyoQGqmzDdvpCBgDn2JvpLLcHi719yxwMxi3iUqGNcGPjY8ZPhrymJ5RJ+4rr3x4+Hn35b3zl/IM/P//R1doMKvu/lsabTEmIhixd6JIytzDYasFd30loPHzfDQ5u+4f78yeDx9PdYMOO3DSUwom6yHgRpQlrKsQaE9rL1faDs4vz6xsTTLTpGInzFRuAWj7tukn6QK4i+GIV6WBFTtV9wrexlPSXcDN3qXtuUFoho9hreyObNBn403cylbwPd5NplJasvDt2X4UjX5Qsf3Eq/6Ju9/pCMaGCtL3t4mX2mNiu6tHIvzFzuaQE5QfriVP/LfOCOBVIYNo/0OSmxPkCw0NwIBd5iKEuqpvYyTNzB3UuHNQrU5OSIjInrtLk2epRsPmSqjIuSNzWW8VnJum+zKoyaty3xn06ZSVxrla8my/Gyqv8p3r1Eyjb1d10b+pl9+YLmd4nrDcNSBnK5CGbgu++gMTIm+5tQK/rvpCHVAlo5JLIhcVgoLDeknQJ5SDRfTafV03IQ2Zdgvb88KJ7HViTvGXdAVTUkKxb3h1W89DFNZVMrmnP1FVbVgMlrzRh2uc+LVKOQJQIOr4DmEz1j5+MvsLzcKgkzljwu7hQwCczQ8ZamH5hFPyBDhmvbPYfbedfmn3n+9//zX/rV//m3/m1f/o//P5P/sWPzk+nz1+c1Y4uRdq8M3YIzIgtX3/oqEgzfGBFjKet5ixmuUcXsaGOYJiYRcJMbVPpVCFV0TlLQEmdqmYIklkRBcd42Jtyeck+kHKCraWVUgulY36ojRx3N7Q0MaRwwMrSScXpqWwo+5ztc8ZG7w0J6RV+20TAikbsb/TqaGtzgKFZfBuQAJJPqBhzN/BRdJt6mL5kOiFZnAJZLrTMjAmadA8mQ+uQFkZtscIIKAI42T+/5T755WX/YoX7x+eapYhkWFfx9tqA6cS1qt1oGO5vFYOjB5vh+IM46E36+1MrJddbeVDK2Vq9P00jphqQZmyjRTCjMTMxVpl7GL8ouk2WgtMUBGaGjRumt4z/40jUETXk8drqhftn+R1/TU1D0bQ5LF3HWaLE3rdUWOZottT1bxaWOUWMJW9/5q46uJVegis2fL6+PmOQebXe3jBfmr0y/fBHn9D+3/Su9mw3yxXtHb4+uJ3zGm6VyBp1tgvnDAVjAERYI6IKejoePR3tvdjuLVkOZzEjzCuDNhEAfGh+acHh9vpssTSRAjTitDVia5W1Zm3G4KL/tF9d9Zy2h44uyK2OUcNe6Kt1jvDAuk93SbdJcV0mxWRCozBaImGVkZ6etqideGCUAg5DzBWnEiVNXnyeU9iqZOJUXrh8MfXGjeQbINrcIxlUJunD7pKTVH4qUhosADxUiiBgYlv5pRt5lciJkLv7HCp9SxWhJl08BepjLrBkGIvqiZyYqC5JIy0WWjxVSH1Lned6JUA5FV2b3eOumGRX98QAVxuGKnrip7pBd6VtMfNYEZNbqppsFeKCnsQsBLbCfQvqrqDi/j9ByS/PdduycZtS5RMcPLxuwQ/xqtAGk7C6xM9vC8xtl3Fuu/9qpy64IlaK1KBFyW/3ulW4WlskgQVMva3Gr2gtZVIF4vbjTnM0PBT0gatl0WV9H7UrM9hyW0hLKRi0Biblx2SRN7KnB28/6n9pb81bZ1gTfW6m+ESA8OHwEQYC5og2AI2mpOjde7/22lu/dvL+1dl3//IHX/vq2//+f/K3PvjxJ7/zX/6PP/kXH7z8hG3JjU1MxoDxwBmG8/GI7wI8SmePZsHCW86xjbmCBVasx7TdqSyN3acSobQaKZStWmFhaDISiUU4ag7QsT0ajefT4TErwX2cikIpSiT8o1Yc8Gyzlpj84I5YMXmriBdnrHFFKYXq0BLMoHGYARmsWYmLpFfGoenmeCAZv4wIg3/xrTSEV/roxaW4MhUhmqP3mjplERXPynYrfhUcdM/oMl4QyK4ht5ygboix+qg6FkZ2GdJGt1Z97Yo6HPRmHo0Ezv+l/TePGY/3Rx6GGLxzIJkT2XlgSYXNTLWKpebYYxUVcOTtNLTG/FKHtC/NivGOvJnNuIsby6WOp7zemYXo4MY5LJPqJ5p9n3AxmEk9yh7JAj4IMV04KeoxUyLps+60YmLIk61k1jntidtebLfnN89/evHTn/x4s3r++PirT7769PkPFh88+6nFD6Mu/KAhqKPFUV9qrtneET932eBl8KTKsojOd8WWH6L57ODkBRcf0WVpu5BB2BMM+2565xzDybtQ0U+AC7/yDlm1nhS6CTMCYDFXbZ4q1JVmLwLQK3JfDVs9p74qUWgj1Jhk8k+cyjjPyUSJrtzVPUJLrPbJvLJgRszJJ3C40qlDY4FDD/TtVfVJ6EmMPIZEKl6lrGxSbsXsIHkoNi+UKg+ii7SBMBErAL7vIU3hyU42JTY8gF0REl6li6OFMr0RWahA2M+rAJwrGSUwIQlrUInY3glPI6f6ccGSeALSo/PjvwW0hAn9wrMsA3ulyE/d1mMB5+V9eZVboOtKb7l84fshaZLXQwHeQVnlepPHlNagrLuCKInqRftOMfUyX10hdZsveXRx74Pas5yTKtlU4ora3VYhLXorpuK1aPWdVrxPWPeBU1BVuHIK6IWrB9jzWo9v2Vb6rpikTVeodJ+/LpNnTopZz+ETzncavDXbnVDTF1mKRwgk6kXfXUzBhPDGPnCGes9Xn331tx+fvnc0f2f+b//6t//097//Z7/307PXLtfLC84ipjTb57c0GNQsg32C92R+OMdNqWUYjQDR8HK93HDQv7vs7a62m0tK+7jCz+JmRKaCN73BTUivul7grgEgSMXTUTFmyJKz2Uda+CV96vozYiWdj8PEFNTbo6XZ2rKW+QvfaRtrp77DFrKCWVWTbwg5sbPDPTMIhDVs05HQtKcCOt2b9O6UeSoTyLCxLObZ0ciTueko8HTCtUHKeMNeCuuFSduv2NtbCzAmGLd4MC3b05wtb/yIjwOy8N50eEumH3Oa1FT/NcXhd284cr5ibEqMFTFP3GHGY4L/1sypfxhDLO4ojAK4uC1zuq0SI3XR/kiDK4OemVQmQ72bJZ/MOXEhLiBsBLhd2iLHOR3WHcLCMTqpMrwHBzUtGtweWEvhIdVCkKVs3i+4EWX8lEUS9W/uUIOuMC0rD/6uL5d/+aOf/oPf/efPPvvJ19775N/6zb/7zd/81qf/3bOYjhQ0ouIvzIY4357YOzjk5ejRiCMLDRkbAcKBderlfG9/fjeGX1aNMcopfaUsQiSaPn1fPYvJgj1kH+1FvhFIVjzc11eeazzwKm2Z4Fyho0QWVF0obxOWq3XdZKH9g5oWnDe5jKghjMyY8roVlXgtoEIiPwQrHf0kB9lEKgkw9Ymc7uqequwkzY2cwkOr6Mb0Eh6DtHY1iCqiF+klda8NRTM4Jk2tLYkuz673J8MCpMHWZVU1AWh4dctKiswAAlnV7yF9lyJYqOrkt2pVxSRZ4A8mNLKXzRdQBdXL4AsAgSFXyzyQV1kJqleqkPzrKQH12F4CshVZKVpZkd3c5WrvWsqHYupNy7pKrAKLgrpU9zELxiqwSxIYcrXM2/3/5PsXXv5i4SntPk1oLblVuQltT367Bqyi6kUXkpiATpArRRXu66mlbhHvg+9rVLELb0Gly4vIsveFV5YNNBZdB7cH0+2Tp8O3elfY1hDpxXbARdpK0pBUZoMs//qkxcu94eKNr3/1K7/53k8//sk//vv/+Dd+89f3nwx/57/6xz/+0Y+OuH1e8Nw23dws6THGe7ORDaHRSseNwV0cAOB6OFZ2BG3Prq/PWGdmXzEuDwnRh+cGS4o6qNqzq4DuVvAEJANAVNSx94+iCne3D3R+Ore76fJyabWZUSIvDTHj4/zHblfqbtoRhiZM9G1OXS2KKWA3mYZgfMBRQewlXDAoZyEz4D8h5IbZh7cr3fIa0LFfy+Yj5Wb3supwZsznszmIQ25od1yyYxW/uVtf4po8XTPg7B/3jvq3lqEPlRZbFfwrnRw/sIJrBuBcmck0C7/jzG8MnxRtyoB7/Mba84jim44jxjkWAbKfd7Vh9WQcqaVhKy4cJxl0aK9MSYiQae+YS8JpjmUnLTvB0uH0hRPHr/BmdLta88rAm7dxw3qC5Fm8qA381iRuB+yRRhxHUxBe2wfm1IG7GJI6CZh8J3fW/Fn1JEAYBe/4Fl2drz56/7Mf/OiHH372o5fnHyy+tz68PvrrJ3/rtVde/+zjD4yKTDoH4eAmL9Px7tFk7+mk/8pk+GQ4PBzNpweTqFGWpIPrzahvanc02k0WuzP6LFuslRTiDyXnk+lNydvQA/SQdnAfnlvzg7SDuEEwVD9cFZTg+vcF/mBKLCkVn9bPv6dqy/ymKySwe1N8uF5WzBTTRQj5tEgFSUvUsdY8NJ5e/C5VqaD7jOQfHhwyz9DWAZ2iK0bqGomiZV9QJYMEBtKwwPwGkKqueBkQk7hyqPfdbVb15NdSdECE1JOhn0KrquShsg52kpWQyq1+W0iVmAZJ3AQVSMlZgShJBzFKG7GjRkplAl8y9R/w2iBZ6eqtMB0xCHBnQpcoXcQaxvOQNElR6fMbtCVF0NCC653ACkmpqV6V2kISK7kkYdWr5VX5VljCu6zabT2m2IbjpKwc6209tHgBMFdBWIW18PZd1eoC3FfLeGxJvphLQvIcGIMKV+5b1M+Rlqb6/3clupTKKJqstB10MpWblok5PHvO7fDR/uvz3RRdWEakuSf1RTZFb9qNvQZhMsofNubXx68MjqfHP/3hD9/+lSdfeuut7/3F8rv/+Hvz7Wj16eXJ7tHwepoVwesXg7JjsYuVGzhA2EsQlleHhF+zhLzpXy+Km6zFLgOHQlmGnuLvKpbmyl/oseTx1Ed3jRu4fXtghyzxpxMm/rTRvcnRhP4HL8aS+Z2JeJmtBwfxhekQ4Qleaol273q8v7hk4aQUNB1DudB7mD6S8x+LjDDmmDX6K/dsCYv2Ct8yd8lxjQ693diuTNnkDAC97XY4NWJ2djJMg2DZWyrpJOFH5XZweHeiO5zEGIelYrY7qIv7IgAFmMnYYxZFkLlE/JJynupQ9/FkfsLx88hMisbkYNpfOFb32cLCdyxn8GujBGVUtnUx+7HJjVci9rWx8THQRTyuDcPmOn2Oe0wCVtvlxWq1sAnYkix5PgaKGjfcHEJ8lZGT9gfAmIehuwm/o7PRbDzgijq7uLnrYEVq9cE6SeTgNkM0rBhMltuz54sPPvx4ef3itvfpaJYx50ff/95rT18f9I/NDJdZCs42Xfu/xtfHcx4g+o+PBseOijs9nh0fj7y96w9XI278xrZAn+wdxnOEyRjtSJhCGFv4dTpeo+lSeoSUSwSsXi6KehQ1FbvMU3pQ+uIXGKjnrvulT3QMq2WU/pIA8YvTFEcs/iGX4KjxykSpwkpmSIcSH6+rsmTQSiwuQ7kWoIVVDi2l9wE1kPtUXklTwclabIC0jhBQA3CyafethqKHWiVvdU9Gnqr0bji7BycFVPIAkWwL/NzXG3CIEBVaQVDhHU0Eosoxgfc3Bbk8uk/e5N57oII76CDZJDg1TMl52f02EIuzNVwn21wFSwYuN5K52ne9Q6b1phomkHpquJR5AKpY1Q4tnmehqVgwlLfJTxK/BUmiJaz9uL1/mZjtSga56+LktuoicpLmKyNPrgBUcdtDQrr8Kjg1aRHzvsuxYnwxtLJpaOqCPfx8/o3g5JbOkIo9FCteB8DnWQaRmSRl0p5hv9pescChzAhj5879+GTvDVIe3wCkS9oMOn4MMhXDs8IG96hsbgdMP7df+a2vvPMrb/zp9/74H/y3v/Pb/9a/9tu//Vs/+ZOf/dF//88vP1x8+a2vLF9s3r+yguDA2vmMGfvBEbc21gFI2lgzCz2jjg04mNHqnC8Z7jOJtZS4VCf+GKVE1iichymjx8jm+UtgsU58MzzdOioPY4NllCWMR2iQ6SBYrRI1eGzmPKGPU13F2kiF9viyTPFBAXmcHI9Bq74/ipgSmIPjxlQMDyoMrUG8Hp2Zd8YIzKYIG9aNDBYbgJXzVnyDKHrTHMCL76t9377m2AVRNHHquTc53hse9U/An85B4owwb4DJOrNxJyNMvknWnfcLkwDDmtNsRiPc30h8yxkTg/nx4Xj14pKALAvugFLtsXWLLQ6Tk25sR2AsZE4TZp4VaafGx+KKBmi146vvmrUVHZgJkTGEzi1rA1nvMGAZekMQNO5MvE0zNJhzJCl/stYQO15uPcWztJ7JxJpXHtKCRSGJNefderG9Olu/+PTs5bPnzz7+cL29Wu2u5lPGBP3n55+NbgarmIHyrWMtYT7aPn3Ue+vVvbffmr72xtHp8cG+oWA4imWPE2PkeTCY8Ws323ts+TtTQU2AzYW0/WvStFhaKGpz6IzcEnpu772oe9RbMmOCi5Ql0cjpI1JWp0ovEZowN+1bU7ut0sJ8W2gVJryVoQ1RRWO67buyCbnkpgMFdMXWBRVhVVqFo/AqqbEuDymwPlVK2HnHUBJRdolSaSr3gJqcU81AXfee81TgdnklRRu6qsIpUjbaC8aaOF4Bya7yT3QVSJ51SRAs3z8XyJWTtyndj7IL9opfMHeAB968z1wyv91z3SRNkoO7IqXcfJScNg7yvK9YrW5h4LlrsQMChua9AC9aSfUyycTzqoqo14kuSsuui5wouSppC3sI6bJLonxECkCfR6688qJKzwtXlygpKp2XHbwPsVKB9u6L0Sux1AU5tJjL+g513eebwlOtVokKLQwUAF2kFFvwdHCIfF/TxFD3NnBWHnmVCMk265DsK6gOVkfTvVOcyYQAE2JIsd5bYgZ3BxM2FXs0xWS34Wp3cMk1wavfeDR5o/fa7VOqjRefPb/5Z3uf/MXH4+18cnLMj/TK5tRr23ycAcav7+HwYMY2h5KDTicsBc+4dvQICIYx+sCKeAqOi/yYJN6jBnRIITJ4emDqAKjiUpGUCcjmGBHb8SBu8fdzBlaP1H+Yc3G5fTA7mFwvV9zQSI0FME/k26W2GrCBYceu5lX/WD3v2/v00D2F1uRAgTpK5iU4S1w8R/4Mj7e+7DSzwYRPZscd3i4Wmxx5TyFzLV2oUn1kql6GjKSLmzX2qtZRifdkddliX4oxl6AGgt1szcpQEj9xcR7Uag10Kn9osB7Noc6csYwjWTYbi9HTo+lmydUBNUoUPgyFrEOwNUrczdroPR5NmLyG4HJlTyYwfJgm8ZMAUfG5YayltslRBACJFCEnkQ0dKM5ibKYjt06AsEBUZ9CAn9uhKKU0zM4RMs4cjrLIpmjsWU1Wt5vLnTFgcX5+8ez5ZsONxB6jVfZAz+4+Gac1V6E4erhbyyDT097p4/7pk/GjuaPmzK4GdzaGkQCCD3v6bhnYDua3hzZFy/7GOUPc4KXlvA2syFjd0vNq3hYayUOe86r6X+t8rStViwsWocVMh+nuRG/8vut2yTy9o/pREoRaKnrrOKEKYj5Zol6m0IoC4UnkOwVVmrqv/FoGDxm1JDItdowCvQnYxpV6leLy3/JOjnUvvxYU+CrfwkEC3RQ8XcQEpWLJIIlScoV4ztWyTH5J5yfl3l8JrVSVKHeugJcqurovxAwPeUgG+S+wWncKYNYARA5GctV9JmX3AV0ZhbFk0J6BmgRCi/FVcOWdMNkkeqqTeJUiWd9nmXcJVLZPDRQp2pXKV/I8FNRVoTzVBQuVUhxREURyL1AS7qrERRMNtgZNvaq3iR44kkuB025aus+jdXGTWxLUT8uqwMtzumAVFPkl98nwIW4AzUCZ1JLXVx4b+JLnvsAPMPcltEFFTsGDSKljlI2RFHcHh3tPJndHHB7IUO8+iMWOaQAfWUOyIt+fd+Pddrh87StHd9PbP/nj7751c/pr/+q3f+mX3/vgzz76/u//4OVPX7776M3p5Oh2QwJdWkWY9u1itXf1iGtmi3vwUr0yq82MCzeRDrOjFLB4hC1R8UffzFEK/DJOj1UotliQtmpFr0KREqt5p8uMxk6DH1JOMCOk4WmjBcuU8LHYGYWF66V2r3q2UykHwgSfXBZE3I54SIiL8jfAxW7BDTy1A+6hAiF79E1Gxqgx/DYepbtmsMYma7cEbGKsI/uScWRDUM4ewLTIpvHFT0MlosGDjb/zgE2uTFOqGZi65IAwThbsJTAHUpx9Uque41lyiCMgLS8bL9MOHDONexwqE+djGWqNgOF8Zh3ampRNExTTT4MQju5EXRU3sFqqtkphCSTDKVdBfP/beMHzUgzpzYxq9hVaCJVBQ4aBUI97/pSHE4569qd2J9j9QS0/ejKYzge3Q3avMQu9WXPmGeugrCIb0jiU27Dt3V1cXizXy1uGuLBznf2tlzzf9V70elc8Zed40F3/sDd7bAAYnz45fmyf8/jY1OYGaWXv8tKaii0pBq29wTX/03ODhhEpKv+i3lRav0QWRcbVQ1oN6jtcobTN2iqTydB5+kqI3pXauVrq3OddQur74bliGxa77pPHxOqSSZVkhaqi12hJqwNWJGVBYAEmVld+UsMFHFdOeZskLYGXlbmw1jvTDIkncnpxXuddVaVVISlbnHyH1P0mQVJ+fiVpUlbkyhX6WrqKVHWoJLUqUCXev9CP5CZyq5vbh6yrinpNrG9DbalVV50CNiAlXVRAKvmAt4QWjMm19GUpTKAXgaq9llUr0k+0Fi3/xAxfCxRdxBRRl7DKJHmCxCfP3ubz81fC6+XPBwtrK+P3+VSNArx4D0V2acCUaK2A9ttVscX3IsmSRYpv/62KLYdq5e62CxepS9xVztPn1PI5xCk1OOjqVfcFQhWVPJK+WrzuEr2V5DtQtR93yV9EMvV0vv9ocMPrQ0GKZ1GR0KbbZkU+t5a5v+gNNrNXB9/+O1/vH+9/51/88Y//YvHlb35lNh1bhz2cT0avDOZTK5zj1c3ayMFn8YgvYP4MOJBnnTOmm866AKZMk45rOkb4esGenF0LnTouj9dj9ARALQyGrJE2XTnG1SgD1KixHPiwlM+O3Hh6c9aIA7U2t0ePZ8OZfclIBf9nfskNIetMZ93aMptJQAwMh3a0UmyP9hZch5qIo5T6QERhBroghLwMCiJecflgjExMywA8mqoYumR/lcUD23aHmcGsbibH0/nhzGyAw8/U1FZZMraDSuJ20ywgTsCykap3bdsuHz7WKTAIq9EpyYjbp4uhHL/mUnvRW1z2zimI9qyfQxs30I8nfC9fLVbTw5hIPv/MzIxWLEs3sAi466udY3bMAyx5GFuwfU6RM9mwYGEakmldOgWPF4ZnXowyMODZ2a8F4aX/AUdRSVFVsIF7GU9syMoJOfZdZIMuPZKEXCHdcuuXeZsdXTmykoM3WwQ3vC/tFrY8Ly1tzMaTrSWSm9vDyeFbJ68OLp9c2hB3eynnwS4Ly4e9k6O9k0ezx/NDG7cH80cHB0dWyenH9m8vhndn/eXlbZY57o4He3N+SYkphtO0j5arnpmnNE46Po5WYdXrNaFgfyHwfLW+UO+SQ148XJ40QK7KqruRJNEqz/C1lls9t7DQaEpvZXWp/MQ+tQsPKsVKB/OTSZ9fd/dXI74WVMAmeXufHPKpq93kRd21m/aqwfUQswVW7d2GRaT4DviHsoX4A3r9lIRTCQs1gL9/m8B66jDW3oS9SKnMyiSR2xVog+6KFhi62kbS8ZjrIb9A1jVNivNU2VSUDLmVR8KSi1G/bgQnVpUb9t7SVCwPidLit1hatYXel9OhtkuVBK3MhvMqS95VdsvqIdNCJF6QSkslo/wkB9+yr4iBq27y4h71GbxSvRbH6/vIlbjLIykzsBt+Kks9L8/Bmowq/0rZ0nSZ69TJq6Lcv2jlNyQ0IO9DGrIDWcpp5YJKh0qAHjXcTWeDY2JtU6eKU6bj2QJm8m+zU2+6uz5cffmXXn39l06Pn8wHs5uffv/D/8/f/2Puu4Yc0lzsO5Td0SfkzJxyssa6aWXG04PZJF4sqZBJfjGVIYoyR3Tmoi2fNn8tX26yl5VVSvTgQQS2fK/5ibBdMwADQFsVUANsPHuAI3iWiSrHnowk8UnJCO/YctYM5M6tzRYvsVtqVGey7w2cujKmo6BfkC2eiKVl+Td/MfwILjvUpP2a+BZ0xdqTJtPmhXiws38VN8rqCDlUZQpVxgpmMVkgTe5O23XsOQaeAY0LIPZBmxjb7BPqWVUq19JpZOfhRobZC0DqX/IP2ltd9q4ubW7du2RTw15owiFH/B05X/dwwzzGwkRwdHBt/5YJiDkB+duMKFOi7IGocc+wF2tQ78FbBkKZ9UAJpd4NH3vwbcuu/WwZZbOirS6d+hwOgwP1zwIJtkuPZ3Y4HM35wOBhwm4tIxMep2qW141A1oYcTb9hVnq5vjpbPn9uvL07Onrly2/90vD4eNYfPX7lyXvvvbd5Pvzz73z0J3+yOb9+MbqbzXqn095x5i23NnNw8+/fvorYY2Xn4JD3O8Zja6PT9G54us8HoeZtBq3wocWyoFXCS7pNGxISnCtknq/qebl3Fb8QEPLvoiU4da2elvq0hAl2VYDABFdfqlzrRTJL9g8FdK+qDyfcc0ykRE56ZVTedr6gYoSSN3nR8ZO87kpRljv0lrT5b9d9Tt4BNjB/4QJcSx5wKh8vW1huWsgXU1TRrQLeJ7d8QrTdbZLdrw90BQWqhFY+7Sc4aHfSdS+q/AAprqK7Uu2WN/+NTlG4rpdpHEE7k5CCU2GINUq9LvsEhwFmmSLlyqi2deg8obyqb9hfJBtCSU3RIdZHr2YNEndgMvOVrSYdMG3w6Jq1ZZJa5W2eqvBCTUl/3egRpORKEylRJDdkqoK4WJIy/bXUrYiWZ2Hei1inBbNJmGpWXNHblawrvi/lCozzwVptdJ+XoZf81pPkmQml7sFP4bOoMA+tGl2NUqXctsrnvkIqWlCoy7RsqsM7iWRkUY4PymK+MCpKNZ/jouhzqMwvxk9u3/4rr13unv30Jz88Op9hTr/5r//WX/zzj/7sn/3p6ydPDoczrhyz2LplI8/2cptz5Q7G06HTC6NI0X+jHg+Q/Zzice002p4tn5TRXEpYDKahpxkAAGULETxJ0hPSpiU4tRpKnz/Q4auYa/jqzQhftPCqWIePG7ewWA5HTVwcWWl6gqdMjycxfr+gXM76xvrGefeoSVnJK76AYgkUsT1cP0QU7YcDDMwijH4J1KNL3VOIyRyBfaelV4NC8qF72sa3MY6oWKucyS0j1b5pQDQ2UZNAJheYNP45DJ2rO36bR1nMUFNGs2us3yEBlz2u4pabg4VCD64Pj7erLMcsgbyZvEJ05skukyDFEbT3TsbOm3Q2sCGRQA8eu3v3DIdjB8MgCi6A0vShqfVuu7h13jL7H/4fsiBspOaV08zEFryY8WQLQWKb06fjZKHlgA3+3njiGC56QN4oplw/5HAe/o6oaEQLgZp/9e5WzuU6X1+eXV2cXSzOLh/Pjr/8xiuP33njMfn++GhyPLfH0OThxY+O1tfTq97Nce/YJmdLN8Ojw60zJ1lJWS9YMfTMBrwbpgHbvel8GG93e8NHoyf9Kz4/0iv5FcjcG5SQHngbnVZLhqN2RJ9m9V89QKTc1WPukFKuEGN1nHqqkERrV9ehWprPc2kvhbqq+AZDPRYIcqyXX/hKap8Cp7qpQkM0BV3rh5VLBbd0LasWIT2i6liFtKJbrLrPV/ISuXpXbvJU1326IvTK5iF9IElwdwU93bu68ZWXXaA3HUISKS9SzWKmSVT39ZxXhdj7zPJ88LW33z7OgG6iGGMSE2J15R0Fy0aIkmMVRCedJ+yyJK+oWslUThClzhTBNs9x9kJOOWA0x3V8YDGJeCu+xm2u1/E/S6+ZSWkOgHUsrJNTx1PxLQaiZmMvrpYBw8cfKMR1xS4k1ckQA+pMG+gjgEWdTLhRPKNuggh1bi2pJQ8sIYeDwzudGS2nv2Iin1ddlth0uCvBLMOf8SiVS9S4VvNJddW7ISxoVHigo+/FMfA24JlwB0x48FsqCbmG/oOeDBnp2llCdAtKGdT7ivNwl4Grsk/bSandYBttWJIlzoWx5Uim00jl4aoGtupe2VUvyhpqrrbP33r3rb/2t77Otp8jt+/8/p8ejMZvPf7S7Kj3+qPj04GNPId2Vsldg9IME3+sHEZpXb0WH+QvOcImEOOJgYTMzzw1DTQM6SJUBXBSYSWlCCLyRzjVGlnobTQXqQq7JPjHLoVdKaxzjs+AfbW9m+YgkgxXUZRHxW9VMWySWGnLq4a0YoA9Z5YRR9GoMONsNX34XbzaODGy8BSJ2iDAohJhRgqO4IEsGtqNSmhYs2ssp1IBZTyZalJKfEwZxqJ3YuI+2DOy2YRg+2+2TfMSbZ2X/L1zHtYCx8feM6dI1SCZn2QL4Nur3uUVXfmBs3a3VguONdD+cMrL6fV2cbk0JiFRpph8L8OJ8Y5GCa0iqpoEILYo7XQGCjfkpK5CxET/tsdtr26NAdmpy1UCWO262GO+iq6MV1quYyBZ4ZUT0YULCUI5LzxEFz4tstNtL7sPIFK1HQAQ3x3lZs6o7zwfa+zX8Wr0+NHk8ens9NHR8auvnL46NRRxKH03u3vz28dffv/0s9/RtwZHfHj0emxLzeLMrpw1YFycAXbAvZSjgfY5brKPJA3SG8/3Hg/35iUoGmm1UiiiCKYow1OFAbqGgCRCDFkEqPeeEyVPrvvfhyc9p3KsWHnd5VfClifv/6fXfS7IouVZkVrMZIjRBSggVVrcFIWH+CpKvWjvqvDiQK2Qyi6JumJbAULvS6xo3XOFtRj3wS1eclFWS+MhmXkI07qP7rcgesg4LwJTg6gDXJr7VG1ESM65Kutk2e6Tf+rdikpoRaiYB9/6xjfePH386GhqJ42moSrU4a/Ori4XpDLq5fDrGVtuc3VWzHWSJ00qR+Uvl5cvruyiQYn90/n80dHRo5Pjo5kzB8fS4B/X/MesrxcOkTp3Htz5xWLhDCJyn8nqfDwV/+jw8Oj4dDxhzTzA9jJL0B+TLHNWXaXs9NI6ZD2nfdMvB0a7ZMKC7ehckZlyclOm8Wv8GbcwNc/CB/oqyXDOTHuYA5umfLanB9bhR8YLXmrD2IJ04lXZ4+mpeiPTbgZ1TkexmYfwZmCQWz4RqAhAOXsPV2Sm58/QRv5bO/aaagXT0h66ezexwQUwAX+4LuZjnBCjRjY/eTBuCK7BAgPCTFdrLrky6JKcnQq+d82dz8Fw82g+epVeF3Nr0h+QJIqTd075x8Pxo/3RK9Or7dIi5vx08qVvvfeXv/v+H/6//ozvmeF2CIK1Pa50BTgfRgeYeIzjpYH7B4uieB0jPaq8O8uPkMYV/HV8f95cXazAHAE4FKricY9TfywjCYVCtAZiavSUtV+lpPfIjvKZbfxkNppP5k/HJHGMi1KCv1H2iRgcbDq9YHXuzCpDjsEpfJn+yNqpA2GiQkl/lJfx2SSlvN2F01NyUHxl9onCWKFE0lUgdGC3ofYcjsDfUH+e46xw/P2y+RmOxlqrTpjavzq/yuzjJmdrGeJsukJgaCft0NeEuCVrV5XKsMcBBgQYI3iJWOwtNuYMB0QM1jO8pNGkT0fT+fFbj8avT3bcmb50CLsRSY+5nR5OaJFIQpQ1gLblIWSzv5tOecHLKTQ0YxmT9TaUA6NaYGtNJAsAvAnZ+kv2v2aWGVJGpOEYGYVTR49IIGsVfNIN+9NkxjWRyZNDzJaDATfbE6NsfOqhKkOsCUUli0/v+BXSmx49uRnNdwS/Q6u5y6xJPL17+zdf/8GPXrt4/+W2Nz7tHY+Hh8Zdfu6i1HOG8yE5ahn/ciP9x5iJ1mM0+mj0eHY7Obe8rWWQKCpIy4WBFWXAYhEFlHquq7hr2FHjQ/muqBUSxpfrPnJ30wKTV15V5olRsbvESeV1eyrqSUgewzg7cHInoEDoCklIF68iIin0mf6euSziQpvFj8MoWuRwYG/vYa0MEhToCsQK+eJXA0xIIAkEn7+8v/8cQZVF1SBhSeFKyRW1S5rR4h4PDdWVdSuo4SXfYf2VssVJbt2VAnoHrz5+/PT00ZP59BCLHw8YR68Wi/UM0zZjvIQAxDodjY5mXLpgjM5U4i13db5c8LS7O1g/21xFwuXusXfH6e7hdMypQLwlHpg5bq/H1zMegOlJ9TCovN5erla2/xxaUhoOT6bTk/nc6txgOsWOqhPYqb+ld16urpZXtsMjaTzrjqE6f+I5vs7SVwaKu/VmdXlzoYNcmnVrlph0MCIhK5bJYXy4EP4PpsP9x4fTp4dPH5+c8piP2ZmRLBcLu2y4OLMFR+sarZC2Fb/wkqiKw4MMA837ec19zLG5Q9fNbPccRDI1m9lec5t8ETDXwI0z3pst4StbfTIZMsnhpjOHw4bvZ2KgLBchHEmpVO78xzbQDWGe5R/eXFOMq9vrC44ALjef/fDq8oPBbHuiGfFHkmDMQFlGhm8sKQIenYx+5V/++mvffvWf/9N/tlxu3vvym1//lW/+e/+Lf/v9P/r4J9/5cKhZ6KHJwJTw2NyICk63dUjvyNGB9PNwDoKL86scmWLQOxhcXSz4sdmsckIivBKGkRmiKeLyreNjJ9kqJS1MCMfiSMNoyV+2FjNK3x/TUJtKxYl8PCRwoTnE2exgns1mtjBgYUunS2b9U0ReKk3giNmYeKA1iIa7hOhVNnp0nFIh1LQWhq0M0DxECR5VuBbTL0prhr1lwPaED4tqAid7GScWFATvwb5dWIjl1iJHDtTKRNPEDi2kUeIq2ZQgTi8I4Cqb9Q/ffARxGMcfJgkZnZAg1f3GqY2a1HnKx71lZFI7DG4uz22fEyUY0+4UOIqNG39DlsmMWjnPPds2AEa+p6TJlov4/lzWVDn2qVljB2A2KMeLNMrE/+WX/lyd2hhkDgTPfFH4jBB6zgNXvev9pSNohvsTdjvmFnsWhGPk1bswwwEAuYYgdbddLXj/M+CPDboH/e3tcDDrvfKlt771G3/t0/e/qxkmJvZbTkmXVzr1kUVgCEcrhpWD7C3WHtbMM6M6GO2ODg9e27/7Adfhmc1ENEndG4rCuQIxbFWNG89Sl44d3TOjz38T8+cvzzJIaL0J4lzJta72OgFVSoV1rxLNbXvCvl2J/flblNHKa1j1Er2gGVZbJfHxqBQxLnVpIHd51YBaJX3+VcAVCMWXq4JKkn9DQFd6C2jJ6vXnObRKBt6Mn66qdL0PlN0EIYkAI6Ay7yDKfd12YDR4uzjJMBnUp/Lr8Ilhznhmmc2mh0cnp8fT8QQVO8vz6sW5k5tG0xd4nPLmBIX5nLEI3t0GRLK5RTcKnav1SpdAegQFuyJHk/Hw1lZJIlvVIBoCK4NRxOjN2QNEFWCTTE77JkLAY479QYJT7tTdOadpu7U71DKHTklrRATDPNE1Y/eBbq73Yxu4WaYK68Xm6nJ7eWVLy7Wluag5aJhV3UitwzmBEF87nZ3g5seWvEZhPcub63MbTs85ACif7evr8C3kbvKs9VlUWCocDm+Yaw8HTEbim4BEZdfL3HFKtvyITgLsO1IKX8AGb8wAVqYBUQWRufbGs5lJfv/gcMLGZhq7D70ispuBC7N31U04SRCXlhZU0rRZD2xFhQxJplaL4e8t/vJ775+N72ZRQe12rHdCTJzKOFF2osNtXl7Twr55+OrsrXff6G05Der/3t//09lvH37y0w8mFGyEYXMxto8h+/2oqM3jB8MbM/zsEzVb4mMojE5CbAdv4vNn7UjXHW+Qunqai46AVpxNPJVGFNPlnh6jRE6hqLpUT1+qU8BiZ5kpVQA288lUKs+329mhxcS+6WOGL1neOR5gZBfRxuI0w87s1w0VmxmFFbuHuGwcNlrUJ9MEi8g5BgESSsTEZeQMBkOCeYfBjPi8F9PGze14bntDio4ycbGNYGp+aBQG0Zhtko1SomcxIkb3aC173JqlE3v/VJNEbq5D0qf4ss0i1BpNfKxshjdOAx6b8NrxvF0uwxlNoW9ymoK5c/ZYGF5NiGyuTmUsedOPo50o9/YYF2VWWL08s6XIEwqhsdE1AAvPIDHlMi0RjJQbO8C4yCqqbgQs53ROvrF4DlVmEBnfnUowmg3MeiAFIgg14XV9Qkt2ZkNflsHZltrR58iDRX91YdNCnR1nfePl9nR69Etf+eZPn7746Wc/4Rf68vLl7XZgT/Le7un0iEhszEkH5E+DOEQvxKQ0fiNuJ08O3vzxZrJvAb3EzXBa/V/R6YiIpF1ppoSFFDvuGC4lXn5CSUXbX/ht6SpNJ4K3kJ//rlSfR030+/+EFhyfZx1aTBEPpNtiFwAJDH5DelkgBLv2i3DxUInkKHn3U6C1p8+/P4en+vVD3FZiJWk5ZFRvyVqSB5ACX5df0JOn+gRPea4hNjjrroRXrC7fQn+DE6+RtEQ4cNf7lnuXLzUiO8DD8fB0fnB0dDCZkxeHpzdjguXl6fzyKadUOtgYebPphhM6WsdcRPZZ0m6ud7f0llHi3vSm18vZZjlZLfevhmMAHdDB7lb2tBPnry4I88toSxjlxZfLaq93tbrqX1gNM9rG5Lu/GbDSzhZXBtO3t7z3HjDWXvNG5kAPApnzLfhVifeDVHrPuaOrs+3Z5ebicnd5vrta9RbLu5XecnC7NAvHXtB8rz+jHbXQOKTsMMjNjkFF9Ddvps5wStHlcuEgPYNTrNZt7CR4Wu+KWxdkTXMc4dkMYMzNVkRnPfR2PGZ2l+1SNu1Y2GBVd3bx8sUF/VaMxNkFXk9XegUlgN5HBLYoYjxzaSLt1GT/tt6hbaqRQmruPFI+ReNNcUx1zm3LZv/i083+1lGzI3OUtk4rNpYUS/Lp9S/9+lurweaTjz/56f/9p3/z3/i1p49f/fT9T1/+dPVH/+CPMakZRs9j6Ii8eW0UC00P4q7MoH2LRcbu3KxNvSyz4je88dzcXq5jyU5HhFuIgfFZoMSTswAANyTTaP/rRm9BdeHFWD+SyKFRPLR5ys7efb6deXnzgkBPnuVmejo+2A3iec0QbqC1fIPXkxu06j4DUbOEQf96mfkQ9oWFhe0RvZQRyjUXcZsugxdAl/v0V+9I/Nm85ngnQyQ7nGy0pfSgKIxbbHWzbBTDyoztBo+4MqbKu8S80iGK8cZCvoT91E5g/cm+ibGpKSEhplDmH9F04etOgxk9enR6/OjEeef4t3fxBrG/b0579ZIfOIs2IR/QGTLCQjKoqbdRLJUyzOVW91QnaF3CTFSCOQlGbQxbPEA43owbED0wlvaAkCCL3Xj52OBi/1mACZYMM4DNccgO8bJVbGDFKNNOzWNiaiXDWtvscERw1/8s0Bh38bZMg84inGxNxl5sl3vP71a3rzydffrZ3UXvZfZPb5ivHhBulmfcnPamhzEYM1liEQDOQh6V6/z04EvD9WGvtyDiQP49nyoEp9XyD0z4bAyshaT1wJfgGjHaS08VPTjKuyRydVncP7bA7qli1lcLaCWJUmlBkyscNFceQzh1XzTU4hU1C/eixDWcFnQwqNsVpSVtfermHrz2kMzCZ/PdXVVslVL5fx5ecT0+VK3gaam+EKtRd/Bzj7Nk3jKs1F9IEeQU3PWTQaxFbEV8DlW7S5afX1wL6Dp0j/vmb4y+ymTPYRbDA9rbJ4+isk5/Z3JBSc8WwVLViuw4u90OV+e9Z/1VDgAlpO/mk+nlbDVbLw+W2KtJ5D4GeXXlACiXASDbG+lNcJMI8T3+F+krL60rWp06Su/dO9JD6Ruz0JBjjii8t841cs70zTqTBiYUHNyHG4RgtlybOCyJPTdXvoq6oy/fXvev2V6TBYccGOsVmXPYMjWbn3CNY6l7Rhq2/WW5vR5eMoAZGKIMT/KrNV9MDIrxK5JaurIb3Q8LwdZnh4ez2cSixWyzmVjKpMnerM/P6cnOLZZcrK4yE+KLfdlfW42ITteyneUF3CbDS5Yu9VSdQxtigNhtrRk0eTQLhYmte1ruMOdHeKnkhx9dPHuxHu4fYr2BwyVYJzNc9jYnr4zf/c23Nwc7+rhPvn/1T/8ff3I0/4tf/vY3f/23fuWT7358+clKZaXCWwhsuIOB2iVrHIHQ6zQUsl8Km5iBDYi/eKTVjKxasAoyzcqScITimp1kI1FN2TRt5m5FtWqDQvOHLWZCYdfY3TrG/zXdod1Se2slzsI1Tbo734yOrJHiW3Tyk82CMwKOLbRX6MrYaOyDw6yMBhnhvtBCu4MWDAS6Y3pksQwcUVdFSPARejco1jdND04dMWKQHcXcH8yO5/FCai4hD7OemuIYEczqOM+xuilTjJK4XTMb8wA3qLT9RRWjjPsBIF28TUqI/5QkN1cLi09sb4YTR8ivb1YxhUG9U050qPTplVbr0kGxjtG6gRbKdEArGTZ1RA7IlCzzC2agbLSMW9FH9XIKmIVhi90ZXGu4C0Oq1HASr0RUO47V0WFyDj0fFHZ73VGZzk9NOyl9bOajN2MmsY2Lp9vd5DizwcHREFBIkaRH40tLyX+cjSSLs+vzj5Y//uSjZx98vL66cUbPs9sXuv3BrQ0FY0cnOm2+ZwMJcyZzpSs0TlXs6E5AgtkC4atD3ffuWYbmjhvBWrqT2hG5E5gv+Kv6BxN5zE/7zbt7Hl0vKkqLLYrMukG/UlS67qvQmjaq/5QTBviLV0HSorS4iXAfz28rrlK5rdJwmmA8V95XAe7y4L9dXeFdXVpwon4huy7iF4MyRH7xak9dMTWQdAUUzTTcie9NwutdQ2OX8OfAb0mDap9QXSM9USt1fruyK8bB5cVZJqvM8UwS0S7nwBaW+Fb3i3BskCEjaWgczJEcNO3WCbnvWk3vZtP9Gc28w4AsFt8yqShDA3Kl3hQOgEUu14uLDfvjq8XSUq1z/7JPhxYJY7qkNyHmb9amDgvz4TF7QFtGJ9grpjmzvOe8jSFvwtjR7mxnAzvPkabhUcdRWzNP3PTYbKzuRhtM38mnVCeELKzBBDm2oGzMD6wsWJOYDem2ZrYCHeMU/WvC885Cw8XqcuFQDMu4hGI8Da8rfD80enBcbNfKx2y3nd9M1rvr4+kaYuCrNtYsNrcbKlz7peg1YvWk7tdOTN/rX8WGxtQhehhL3BYYovVqawfXVA7Wj2HXNlKtEuuQdI9wsagJHPwy4rr97qc/eyH3Ey46GTVaSI2yJoIxNjs4utk/6f3xD//sr//mr69WZ0/fmq9eLG4nez/67g+Wn13vL4avP36DSo4UGLsQ4DrpY7G9fHFx9tkLrj37valyLA9Eratn4Y6OCvGBXq69sn8qC9oU+hFJs400K2ERS8MZ0xehJh07GUcubcofdeQv0/pCJN90/LBipETnEY6+r/o7a8N6lLqjzWyX3Tuw/ZX0HMWYLc2MIBnpk2cj5yNdpeiIkZvD/4xn1UZYeQ0RurXhMEAj8yzdjB1fxfGnpYW42cmgCw5MnybHiEaWiwOGJLpx7mSk78zJ1LFWNcr7Zo4EaAsACSQ7K70qyx9Hel8GmDs2c5PjISuG4/JwZ+yy9DFaLkhHTpbf4LWqSSoyj5ICeRGfHLdgoqIrGSHoFWE1VSQsUKcyqc9erawSld2tGUnWHlBfBuJ04lZ0vCmZyMWKF3Xf0TQ64X44O5yN9UTr5xrVjNVyHBELuJxDWHXPfoGxU3sHlDTzuPE35sXy1UBiMtQbLF5eLc83L184NOJPf/bBXzzdf+Xk1VfPPrqw4XnYuzrfXowuz+h+9yV0xkDvdnG1Wl6azMdOKTzFEHMwOxw8+fTuA8CDD9LhOqhX+Xw3BlWh7bHCEql73Z4rzX1Ipe7C/cSKQLUeArwOKyv+1u4T6fMIn8cUnJRN+KqHh0zubxK5uCFCQmURlKzcxS4laevvF/PrkraiU7NAI5dWbeB+MW/3wivOffDP/XaRWxktWhAYsOurMn7I8nNQKqg6RH1VnoopQCQtYMBWmSSjivBzv6j5s2efZq2VcI4Ct7vT7dH88HA6nSMlvTf0pLvw9idbJEkjY4q54shxYN2JUHw4mbIZ1UcBSXoJCeO+1duLz15flvHPgshA+bu359AkA4r+Td8gT2VccpvCywifxE5XnYyjcx9N0eZ0/xDnWa8Ory4uNEsWSKNmJ1ln5Wxzu94Orje0UNz38pVMBKX20YBUq+z8bvfnvfHJYP7k9PSUbdKxGQBr+JnOsb9l8ni72qyfrBZGDFoCa9oUQRafO783KSQ1CXniznrJFfOV5ehyYJYzG+UAECIzxiTa0uxEnzVd4JoXikrlBkm6R1ing/RiHRmujg2BjjrYSLmwCr2M9ZAS27wewiwx6+368NSS+N3g7NPNj3/w6Q1NdY5kNzsxPOChRqqb/enB1//GW5OvHn/nj//g8A/o527f/PK7r/36ryyvnn38/Y+3FzeTPUfGk2wtgziCvDQIaRkDj7VzxV73c1riel9j4Os8R+5y8K/RCC9kb4rfGnS4pMGwDPflwkGTxUql1NNQYz6QCxIw/ez7BX5Ps8Ew8d4SOG2WpX24goBo4SnYmIeRVq/XSO2OW31mMEBBEmZ9xA/rDRE5jVaYaTaSOXfQGrqpJA5mmMT601zYdv5Qm/GymCOky4TQQO1tcgLZsd8xDaCAivOFbAcDBYYpOgkkdEqjj5oM+2llChN7qXc8HTkR1+BjvRckbeezXhQeXssb1X9CEVVlg9yBk8UMAJNjMegprQqF+tMXosDfyy6LWaRmkOY/Aj90o/0opeDVKAsMM9ybZWZC6VwWpu6MQP44ArIwksXisBWJCwyHDsT8qT85uLXaZmpqxm6qarSj/0F9yNhqiq1bfQsKMZ7LOGASIQM7hM0JWdxamR8jD1Pv7AsxxV+vFhdnP/vkx9/79M9+dP6Xb51c/+rpk0cXj14Q3oKQxfLm2ScvWIbgC8P5sM/kwRw6GqRaQ3dcxWjXf7z/6P0bmtJFyosUhjLCFxVeI23gL9ZTDKqeWlCC22MXWLO/xqvat3A39V1RKte8yn8NIUFSsTm/8vd4/5zcuys8MpFaHl2g5C1Iw4Sckw55RTEYq2Qzzhp8RWsRS4yoclvxsnkA7wGuL7D/LxbXjQ338PzCbzLN9Xl2D2k/5+4PQZ+jpKXqvjv8NFwkzv+kvpW/0NSrxo8DB3auzNJjsJw2M4k1aTVBdtoRXpxWRP302ZnWs1HnJmx3u5kcziaPT46WT5+SMSejEfZyRPc5xx5j+oL5REhHzmbIDjfdEN8duXEtL/aBOiPBI1Zx0ClsuXT8kby9JelpguMTwhybwcF8z/EnJ7yGLS8dknS9uqOqzDKcdTJ88Jrn9cH13vimP2QEvd2/cza2g1XZ8vUnd3tH+6Mn06NHc4u/x5PJzIaD4XQaE+kdZ2GiGNX25seHxy8eXZ1f2ChzxZ6HugpfptNaxRinbIToJaIa6l8u4Et/I9ETaJlDOYADtKZH+CZGDqHRz6hD6IecJiFnXaVQInCRiwilYUdCQp60MLFkVRYlPB62u+VDTEfd9cb7VsHvDj78yfmLD1eUtShUaqYqxGoOwJjLz472j08Pvv7r746m6z/5h9958+0333nzqQXW7/7ujy8/vHrz8L1Dnh8OMpSSoS3NRdPMLB6/Uasor7IMS9EwuN1ZtgcpDVz2HwHPEBDLm5AGFpG1SsuptTSq6YAdDpzZQBZL05g5UoZ+Sath9FrVNOyWEYFVCzsN4MJ68ujUYbAMLg2BQc7YCSLh6Vn5mM8m1hLp/akhCf5ZrTX6EiNtR8AiQ9WwLnOgSOuD3GKKCjgPeid91DBdGMvR9lnWNwOpLSspTZoYOBKNJzH/1UTMF9eLayfi0rTRmlgQ0Fr4sL2+BoBoYkofgx1UBYuPpTAwBJ7M1npsLMfjHqPI4ZIl2fqWYVxsI7bWMNQShzZPzUzFyQOUM5mAZLcdUmGWy1R/VKNYZlSpnMVy+igdYrcyLWUoxfKX26WsSaRZnJ9s00DEUiNR0Ms+JV6pDdDUtRkuMzmzg2G9YA1qmSUu8HQSFv8EjsyIY+qa3m4UZaTAYTQHcRlRqBvjF299uXn+0cfPPvrwpx98/+OrH58PPmN+fHj+5L3Ddw4X/IMyTD5fyvFmRBmwv3e4WWm7cAKEYJoC/4bW/s3gePR0cDO6HiI5woGKBVsd+3Gbzu0pydznv9768qLeprXSfVpIQttVd020h63G2oQls/xUhnWbe5eAxKoiKoekqvCWqB667CvDFjlMu17dZxHgCx6UBl0hADSRatWVMsLR81x1SOj9y5R+/9TdeHUfmIzreojeHhOeXFNGUimi7gW3sCq+vawUDxndPxXMlUnl0IJ/Llbw3t5VTTwdXDme42ppcdakENu1VqjrpHAWBeVgXOmYIFFDl81k/MB5R5Ojk2MjAYllys779DE+KCmuyHTIeIBVbfYi72cMRec4hKElyymGBhJ+X0/BB/Vl0IWHXm/Pzi6Gw89sDvM6u8NMceNQfmS3gFVga5GELU6syFnk2JFtZTdLa11rfXi4wV+dzGFqYli43ZgK3E33hieTwyeHp4+PTQCO7TcwZA2njk7Sge2dJwtRW3CPMz8+OrRF4cIyxYU/mxXMWFbnl1cvz9lC2sZgpYvWyupcpgVqEizZyJYtb+qQpQLdDVARqdh5q3HfjDg630iOaL2mRFSxglAQjMMgPE+nM2g1nWGagytjTVYR5RiNb/+WbdPP3j/breKeTPnsTnzhuNZO3vzqa29865U//bPf/2T3/M33Hv/2v/kbP/nux//N//6/fuvNt9m2Hw1evVsdRNE2NGCEJcntYIi/r5niUu8vHARLTwWOeD4w7mPFBxi0hvAa2G50dyRA5ibKRgGTISoMUbcP1w91ygBXMsZlHZINlfyEMhgiQJgFmLBHTM+kZY+Ay90cNQV9j8HVWGRl3Hir39A1W7a/xplNgHi2nx7slg4hNneCduqeYnnF+PBADEcXilYE9wIN1Ib3ZRE7LA8xZcdvbG6tMkCWmFEbWGw2GaOep4ijKdxqhuiTaCFZJRu84wnCprri+0Tvkv3T08t/Q6qJ4eK7KlgVjzpIfTlSfXTyyuPXngBhu+AyAhvcv/oEH6YVZ7PMyJbeaWWySiAaTVFbBlR20hm97J00E1UDeHWhn6WNF8avLAKvMwNo5wBHJgWJuqW5YhFrRkN1E3E/OjfShHXt2IL2R8fcM7OS29HtwAm7i6OTKc7sWLEcpszW2ZSdIVJp5tJYGRxY89vC5ojIzdn584/JDrfP9wbLu32+4j6+3J9PjkbrS/PDBdnhpseeYnB35TwKoo+TbQgS2SOMwGkPzVVOpo8n/ePF7Yv4rtC1w4ZSu4bK3DfOXtwHcl3h0fkEyekrYaSNxbf3aYME3ydJpLovAkwOriSpOCFYxRSXbbFahPu8W+QKK96Xu+TdrgRV/vLQTbN67lvfEFxQpYMUe/65FCmtgZXgwOuqXD/PsAX6TkVzddHqvp66HBQdOqsrP+5/LkH3LuDk7X3JVVyXeTqGKxnl9xeuwk5GlTbOtGJ1P2z4prfcv7i4OL26XEV7OVhk4q43sWs0GeAHfMjkQHqF0wllv+Nsnhi3vdlkcXrySB/BD3RcgruZrILZjI3GN4eHNtXQ4+6foDZcLs7Lw/7Koj+AgpPUA+cmplmsi9VtZK2w0vDX/YPjQwKp9dvHT58uF6sFAX1DYbVaba+ubLy5e77oP7vcPV/gC6bdWRa+G+6PuLh6dPTk0dHTk+Mns9nRpMaVDD9ZbbXY0Zv62MVoF81wsBqO52M2iqwkxpyGOSFpcboyAJxdXRkJLHHTd2Z2Xjt2GGkzWPGwv7qOtkLPRO4xTg9aIyoS5obRphlTFyur4psDGyGIYxhXdug7ZXUUlbm9SrdzW9gi94YN5VB3f/qpIfLZhQHgHKsKn8MJHXRueBj1V7eXvdnNr/+tb48frf7L/+N/8dVfeu9/+b/7T+bjo9/5P3/4sz/56NXXvtTfj2tPUvRqs9ifzpGtuVvE5qju8dC9bF+jy6ldo7TGxitxFKIpI6s20a4kxxuyf+b43mS+RfnTdS5VLuc2xpY6Jwtjj0IsBNNbR4NEN0PcJvDu3XKIbyuA2YhBPCjUsM7kyoHpY5bvxnWkBBW2pVHMmBeZVNGEWSKlwgg60g10jNz6x9FbIJADTKg8YoY2KF6ZGDhlLHrNpbJ4FK4dnRbOF9oC455Jp6EMcS+vqD5N3kwcopNs1k1yrg4kx9j7YphZpkhPCgAEINzfmZFOBj6cHWc/7ZuHvUcWs8xyMdK42TAemuyavzp/zEiU8cn0OiNxpgV2z7spFmkECiMlimfGWcmtsKJiq9CG8PIrxJGGOkW5w6Y09BtHnJqNbZfDnIkijllgtcazBRqMOyfmdiz6p/MZndZg27clxbQhCzzxCxQuFv0rgnPIzwKB2sS8vXi5/viTZ59dPrvZ39BrGiEXu/PnvU8Or0/Wd4Npr7+OyfDIhMYwRXwxapqkmTjtDZAH0omqc7h2HMHcvM+m47DQhrB86xYPkmzwGPQ23uMOTn1XYHt1/52mD3e4v4qzNfZ2H1TpkleL1uVSP10Z9zlXWJdZ8vVc/LPFDQxhvikuxeax5LeWPMWl7Uv6qbf1lTw60BMjD7m+GNwFtRd5lZe/EHhfRtDUvbqPEqge0uaueyo+XC8kyq90XdyWw31gF7+idvEzWjaMeVmxdViGJ6RhAGxtrlqv9EwSTH9TJMXii1hKJNQTsGgt615Nsq+GD6qj49n40NyWFGitEGvW/WzhQmrkEyK/+QFLudXqFSxIx6In0OHNk3MwXhpOTlQo2VJiSYCR/tzu1GwdytaXofTpyaRt67dmx1HTsyzCWrlMt19tuT2/Wn12cf3Ji+WHH1/9bLP+1PiFhu0ZPhwcnuqfx6fsdvSBYhxBQZSwaWrSVFnAOAhkzM85K4rBdDg6oenXj00uWPg8Wtq3/NmLc2W9oCJaLxfZQ2YDJPE5thmkBJ0X64hhnrbTD9E5Dh91TfrzxeVyOloY7xSJd/Lca3MsbJogcbQyPVSl2IlgjJhs1gMyB9DPrEnsffbxs7Pnmz3OcqL7tgFpN7J6t7d951uvna9f/vf/zX/3K3/13f/4P/2PPvvw0//8P/svjmdHe7vR4eyxb3tC903ARn3HkvBCMzrkAjn2i7Rpq/dXOVkm7Q/1cf1GH4YX8jkZnTi5sfg+OtOIQIItrRTWaY22GC6aKakfLbjJxuzi+3CqbdO8I0wqzB39ZCkyBvfZWrhyaqEWZ2c6PqTQwNJMIrmuZ7Jr3yqnO2QHPDObPWwAN3JGPiXMtE5aADeaDuS6UOYEcK2obGJG00VIaYNoqfjGC/9EYJlcZU5lAXYy5mKBywf89GaTLVYZI+1n322y99aKVAaAKiRtaYRTtUjcmhb3rxlAhHiaLksdk97k0cw5CgemiwfL3tg0QK1o7+0pMfxA6p21Hws/xTjiN2MXW1eul69XJKRyJVKrvRYAHB12gVdnASBrUIzZ6mB6qpU0kjKDhoJHfXU7k7oc3ImvD6ZW+fuDefZ59aeH6hmR1dKLhRbpdDISlBGPxZH1ABXX8Nsl8ZyulOrHAEBfur9do7e7q4VDAZbGlCybQGL/Zvr23ozPoz8/R+77vSMSC1JBGLRsWbHP7CODr71i5QOP+v9g3jvc50hQ41TrNIYVbpX2gdv6b6FoJU+50qIP3y1yOGBeh/8Vkyr2lmbumqjSdekFdXeJngxlUsnuI1ToQ9LK+OGplV09QliDM/lFCvAnclqzXWnNhDbo8lBXCitKTfx7WCpiF8FPFzc/LQMhybvFaPnmofvv4qRAt12e3nkISPdJu+SVUYJb1MotKRMSdp+A9qqD8/5dBWqwdKfwZ2KrTcAXJDYta2+vFdal1TycHh/HA6bj7Nu0QZRGJEqR2tHumNB4/R0M2AXThPA1SbhzpBFR6G4XhwrYI9ZNCIrGX764uoUrdUn9o0WKUSKJnl0ZtXxUxRSxmx2FgFUsUwWGbsPxeB5BT33wXDvFELDBxj7ci8vnZxdPJ3tzu2KJUAseuDa3J/PD0wEXE8dHllNNXtgGpoI5dTYK/XTPAGu8wneij6ZnNZ5Z0aYUms3wM5z+eLG2Gn40PaISOj26sHn4ygSE0rfJbCDHiIBU4r8k0VJbUY4CS8+LT0k2HefLlZ0ABG2GH9FTYY3RR0+jAKBeMZbGyhabynRBvWI3w+nWxeaj9y/WK0Y9CsGibnkOXu2ikvpbv/XX1Ob/+n/4bz/4i+/9R//xfzB/Y/Knf/SD1Qebp8evMqmP2sxorbOOS09CVjxmhaO78oC/c+CgLyoE060x9z/7U77vOYUAOPGesNtoCDVDkPrsYczFNFTunjTdRNuDBEv2L8lYo2Ta5jLSsPHl9tIcSDMP2FQOrEmSHo2CybNvrDe2m4/RutApWzRi62411r639ZUdaIRhBCE3A6spEdiyIQAoJlmoJeBYEI72CYCgA4iuSsi2Yza2YboMsjJhMa8xTKF+6iaUzcyHoO2RQEH+zkq68cZoKLHF8ViAZXWY4jwqs6qvAUBNU1D6IXYXXZgIsDvq9XOGMvbL41FU+qAGh5lylq6VZgHN9hrONSiIGEFFREgeETv0IFNqHD/Dqq0jamb8ccwWI7dYkbFEyoY7dU2zKTIjsR7qL0Ma9PKaMsyx70oiI9GSWuwhZvD/RCEXbgUM61Omz8YUSDEHh5SYNWTkURyBwtkAjl9IbAo5Ot3BkLPY6cGGBwnYGiwPdq9887Vf+fKv/sF/8Udnf3l1l+myeGhTAisc0IiaQ/I+Dos2eXJqz6x/ZN9x41BYaKgEUah4gjzlCo11t11AAuvWd/dSIRUnj5hy2HFtxtLUnuQlyy5ZfrvbFPPwCK6K1153JbSHyuIBiC6FHJN7VttDQikkmXVvxW6pQoLuE/zw2kP3UvRu7OmKffhJgpZO1LoKI132BXZe1MsWWN9V+S7BAyz38RJeCfLV5QQ1lU9BmAj33L/iVkQVSLPVSxncHRDfiaI2FOJAy5zErT/dsIuZzDmLZUM/nY/nppAaV1+hucey4/tmaTORCTuBFv3YIetEQdv9SeirWEc4bm9/g3/EjAjN64tMNelaI/frt5mQWxKtrsvOZ319w6A5PiihgnS2PeCM8irrztzcWg+gI8iiYiYdVFCRYTGGMl44vjg5nBwRemO6YRvK+GDd35xg/Qdzg1IEFXoHjH+50nOxJUyDWiOJeUiha2X5vjKemdFmEyy8RO1EgQ0ce5q5QZ9Nz16eH00nmyO2Dw7bJqqV3A912TMRIViPIO9zopQ1RgONXIJ2nWvftMZwaZEjTKIpLQy3pQVTJc0HEEn0y9XaYUxYEb1x7+XL93/6k5eBJXMK6czfeyzNLXO///5n3/hr7/w7/+m/8b3f++7/6T//r1558spoj+x/NOg51WsiB2bqxETlGXLqqKhdmUZhvtc5mctoxGadujiHQY7xoiVdkQNkbeHqxTJEp874QBWUvh7mCDm6n84RRlvzgBL8rfxS+4SUBBZpIxxNyujogP81Ar7NBZZKsE/2vcuzl7Mnh8gCG7OyyRgUmmkCY0qogSwBGy2z+oEYU99M08LK/AWj1SVhPEKA5kc3IoC0tPNhzS741GhmpVaiBjOLrdkQhgLl5i1LGyoh1EqOoQ1nP8DVRqqUhvIbhxc4PsMHeauvJ7Ur1t8GAPfMQEVTaP5ueFbL2E+0AAEAAElEQVTY7U9OR9Ono5sRuyqWTXfUbwhXvbjpMZ+OIhMfz6pQqE582lOTRgE1nGA6KqSxBiQAFc4AUDMA/FQvzV6YcP/Ut3F/qSiVAOkgB/inazOhRF16FhsIuLZZsz8ztcuUJWv+GTvhMDue7T+O/IW/helnyGYvZEqkjpbBvvyVX14drH/y4XcuN2ebGzrgR6uryZu/9M7p/2r03/1nv7P94MAxDQv+IsyABkFCmgZwBj5/WaTokTvGe1NY0kgqH8S6Anse6q6YY/BdwXldXDRPLax7U4nytnhxnlzJszIS3AUlev67x4qW7IUJrcf7rwrqwn7+TRdDYEsaWiu+WzUs8RkYLtBUH668k0cHTQGfXALf/Xeec7Vy3XjVwV939+8e3j/EfEBdouQSP6UXFgNTQ2y9aTWXRwpuhXURE9YC6033VUEFRmVShe8dcNRmuqqj4cAMifm0Qc2Xk+vB5SUeeHpyujePucQaG5/O4ijremN713Z1xcViDP6IG5TakW04FqFrQeFx9kXOB1JsaGIUlH5g6TUiiB5JFqOyJ5JiB7TgTOCqB4WY0OXqfMc0f0b8RbsxAIy+wKZ3whsSjsIqsioxKlYQjCL2bE3sZSvBkkL0xKSaGuJkeMRVFsGKNaZFXRtn6aDZimpaxZvp3FxjuVEEhNH5GOHw/tIXYBP4CxZAmGdvQ21zupxTH9Ceo3kJUH2KtUcy/lEMAKZO17Y1Ub8qxHmu7FkME7gp+TAGKBYBB3jiIc4YDoULczyUVRMRMgNTHZoxy4+sR2X26Sfn9hVTrDcJnHTOOuXN15++981X/uInP/qDP/ydv/vv/rtf+9q3/tGf/g/PLs5GVK9sjQ6dy6pB+SmLSsqwHKfDIwKrARcWcwIJ+4/pkbNhljeDu+Ppo+HtMFg3M7KEF2NJ4jz26CAU8SOrxlXELSfS24MoAK3KQkoGAjRY+AkXKbWJ2QD7HySsPfE+HkNMgujwGUH1DaL98Y29uRo+kNFR5ZRjri4IylqC7f+WfgY19InkDFLpFlDbgfUSq7cZkl3KS//DirHvjFKRzpRY5vARM6KrJy7oKJpGp8U7wZJEbEDxWKOu1Q22w0gujMs7AnjyV62bDGbjHnc50Gf2G9bmTxytW9wgHKdqlwVhkQ97h2OHpmRikR2Md3zj2HXMqMZKO6stlB8n/laDjHJZBwdLpIvIXo6IUSQgKeZLnWqdhfjB+d/GSrRlEEOgOlR/jxih/YKC1D15WF/A9wFpbj0JwbJ4ikWDUWTHZiJlicwXBpsO1lYeWeUxydvyaABKkwuj7c1usdtccUB94wxp7hdno/47b7779pde++STbyxvcl7o8dNXZq+dTo4efeVfef3yg5s//r+8v/14kQnS3YE9YLbnaAZz/S3X4WyWAqA55s5SdIwr2oWGqgWKYyWGq9Wlms6T18Vpc9Me27datyq333r5C19dfi00zCw5t8B6+IXo9ZjX4YAtQhtEPn9EKsnBcNjAAX5ybYy/8I/4amZS+VRhD1G9l7h7fCisikqhCWl1zP3PA1hPFdpeda+76PfxA0xllLo+XI1KQqztqhyqGq2mXaHd6/tYySHdJ9jN/cEFRo+Adti0/kKMoi24MQ5MtuPZzdbRqlYtkToNJVNJfIGukJ5ovbjk/HwU92e2VBJDyXt4kCxJWrH+xAaJG7JLcTQeRDvM+PbGoUzkkfQI0o3tLxusaRkn6LQhMUbFN/sKmC6YlpIUrx14mK28ZiIYjgNlQVwTgnDevR73DtqIDwP2m8Q6RnB7uyWdglmIObH6gaPfWxDPBgPH+Gkl+hZ2qSvmqdaTFYpph/2FWfcn9lDSVse/ls1beCgupNiRNeQI4unxtucUIZDOde/wHLwRe90sLuhR8xnwmKifx4leWRkdsp6eHc7tl5iF+2frTUm0Qb+P6kapEg4aB8a0X9uf/fi5PKkasppaKw17B1MmqsPJW7/xt3/9D/7J9T/6B//kZnFjIcEK3rhve/M+JS8XTKpHjNVG1Gb8V1gNv+MYyTDA0JB3d+t7u9XY2t0B+47DG/6H7f3QMiwJsaS440E9JWCHzuA1Bn3k4WJf6hmASt4PY+S+zEtdBqcLSZVcjIbCAuygMh2cxF0n8ZR3ThXUeiLC12iCPWPUOJ2NYCNVpubRXulABpaabyAh4VGrJCVoUq9Qa9AduTzU3M0AoqwP+GiLIM1KbLnUkNhijJmHTra52yw5Pcv5h0inpnBkVsaaKoQzplhqH8gk3bbxzJTYurcSaupT05G6V3zmDNmgOH30ytPj146Hh8zPzJisbO/fLuyWH5m+WlMBuwNg7BdEVKhVO6phiZQ0SLaqOXAtuzJgx7KHFSebYlyxGygzJLyzOqcqG1xNIVwxJK3t1tlyMYo1Mv1m7f9yzABb1sre4GctyRRwOD+wu2XEFWIAdpHKSDt7fJfw87qxe8W6NU++S/Noe1mWk9PZO++8/s67R29845Ubzo2oX6PKZBF6+9f/zV89vD35J//5H10szo9RVzidlewl5JlHQQksRcowNO4mbJIytpGJlCui78+/wiQ1nP+8aUytgNMEDcpAmqtC2+3Pf1eiNP5DFCk9h6NVqJuWcQagKltwcfO8zlWp222XSVIGsi6prPTKFiPgSu4pyWRYAUn3OSS5r0wrTRdHSNWqZZACKkpuknO+EuM+NNw4n1y5Twnd1QLr4efCE9Ih9/OUcv08ZZdBh++E17v7XEqKQvTaL2pQjnOZh1vUoq+Oy91926eIGaV8ITsO7eLBDCKbWyg4v3j58hnmenz8OG4W42QtDIaU1Pogdry5WurvsiLsysYisIUBWpQrhnKU/uSgrEdGMl3boloe1aSln6WPxO4ZI5G2Sen7ywWrUD6mD0+O5/MjQmx2ltbeodg2QOH21s6sJyfHFKtzgsnqIlbdOiB/CdQ7myvKqL39S2r3KIFjFGj5ICYXSzL7NsbnIVYd2a5dTNoiwO18YgeVPZTWo8dTjEQzIfDwIfNnJG+9hLGK/s2+m8xmknG1ZJihQhYhQEWqJWni94+mYwvLxxNO42M4aoIFSVn3KI0xYc5UP/JirijQHe/y7Nn6ow8uSsbOvD2W6s55Hc83y8t/9g//0Tf+1W9/669867u//6OPP/pocjAvbXWf5hj7o+QmzHMobynWOBUH/7ahWeCuDdwHs/6n9CDXa2dAHsyPnQe7dPgWgw28CXcNvWYUdIMAosvBr5s0HTICrjr7i3ZeVBRnexO0FTEZA/CFCKepYYQJhdpObADIBnOYNxUw2Khg1PvmGjwh32zNXVjMOwArvBj/ghbuBazB25YSrziK64YjMnax/Qj/uHKW1DOlDIsPjbHMyW4rRgtAyjL3dnVtGRobj+W/phzbb65kQ7LBA5ri3SGWW/CLTqL3Z505MSCkqlkQIc8bA7QtjTyIS2NSSNBW+gvdjn6BmqjN7DnMDIOmzQFi240dIsYB44Xd2Fn/0qyR++Vym91u9DxWeqImcdqvLTX7uD4DImToylJZisNS1TJqooxt2VXvUq7BD6a4gDa2mwcwSI4e3naz/SeD/vyO0RGnFGTzmKvdWap2SD1qp9zEpM1ckR5AMfDKMNMv2teNmbAFseFmtFmsjo+Hcz5/TyhTOfy3Jc725oPB670v/cbjn/7R0z//vU95IJcTkrcRGnaLn4DNdMdYZXWbjUPqmHZIn2ocrbHoIpWEpyPlt913Px0La2+SOPEav2pP9S2J0LpCsHVTk9HcVRYVo31VIRWeAvP2Pu0v5ns/UkhXTBvaAqRvvR2PStIEBaJWaLvLNzqqoKpkwSTi/fWFIruU9fIhQmVQke+DkllYTJWVMusqtCQzn5TWgMirdlfR7rMQKp0XAu4jdtWRTyp4/6YNZzkw2sqN/awRxZBpzDQdXjTgyRmVZ3fX0fH86NDSZdscxQ6fD4XnHz1bsbl5ct3WoSheicPcRkazcnnJZIajB1Wh68D9MwDsbuMYTpp8LvBdAn/c6dOXGBJMTK9TnHMHiMr6WrbgnzmDaHN3dWmWe4E3n7+kj5odnZLMs7hrdY8Xiug3EfyN3nU0P7EytbH2yJsJvs6kDnkz2kH+2E6YGzdYB+LT5YVlpmvChmErQmWsTlm7Tmwaqy1txwCxnXUexXU+hX1VNGyVQVRWIv05KWO9YSuzXl5Fl7VaXVye2bY2sQV27OB1jlQPpvaOpeclssJvssXQiQkZQ1i/KjkDSaA0Rq5/+rOPn78401/Jytn/ioNt79745mtvfONrf/Q//o/f+xffI3v+6Ac/mu/P2THRw9uTSctiFX205bYh2inrnfgirgW+zCCyDtm/urLNdWcNen7k3MXR888omYisJepmZpsVECQfmjAkBCm1xkejH8wFT9HO34v83poWQAlq8lbVRMPts67DL0bk3oj/RlnOWc30rMJgT0lkAKn5gVVK+THI0dSa3kjkTHP8Xm5Fh8Yyv8aAtJBCihumIL0yZSo0lmKZPMXaSGkWRbUueQNlmJyBJaKN6ZuJmrlGjlfHMc3b7oZ31nMIwkIy+SjLTvnEc3f6Tr/UQoYGY6D31DKZDRRfTs9S8Wg9uRqd0ZJR2wAgx0TEBnSTw16imLRZJAfRJLbxjwKTTRSridVufdDnfi+9ENEZgoCm1/Fqqy9UQVCaBqgqG0jsq3Bl0L3Hszn1ZLI3pV2i+UOc8s6O3/g+4qQrs1LNjedrBFjKIoKy0C/DhK3DwsSLE1taOmvALHjMh/VAsQ5fmc5Oxx9/dnk6G99O7SkbEizgiZXuo19+8lf/3rdWi7tP/+TloaMisyfcGFm+Y1OAP+s3FFOTWc9ici3TGCSj6IXXAJC+Fhym73zhqjAxwm1r9TUU+P8l609+rU3XM8Frrb36fu3m6yJOnGOfYx/7ODPtzCQL0pBFVamkQiJVQkggEEKMkJCYMOMPQEg1RUgwghHNiAFSjmBSZGVlUiR2kVlO9/ZpIk58zW5X3zf8rmd9YRuxY8f+9l7rXe/7NPd93f39BHkv1/z/XFyIp9ysvGk/Qhj/f1+fbxlKu3z5XD4VivZS3r78k98vF3NQl0v8yPPDO3nTaDODy30My5f1vEgC19mPPMCLudL35e/ys0zh8sHLvS4/fT6Xl8+VT31+7ueBlvu4U5jwMszLG/mj/Hd5NSO73CJrcLmld8pLf7V0Gddf/5Ffy8NzkV8uC5zBpCQlGm40hPhgGOxOlqi0ew52GY5evXp9e6PM640/ZDXvdG2RpyGadHAw9vLp6ckHb0cD3RZ0EA5+n+u75cp3GrgxZwXBCkgy8JFk0YxabNFghESbtIk/SB7AqAJZRqOHDA3cV9L26Yzs46lucUtIkFyHTue5/zIc3+hTEZTu6FGdF4lgwTPKpyOMkk5B/aE+akuU88pyIDjDIgqRPGaj4ZSP5HBltdXjw45HlELITlf+oDO2ArfBcOiX7qDvI7r6ouGyJWWPdb0u/Am0sXbWEUPFVDlvGDOn9f3s6WnypHDgqjbY7+Tja3JBwbKu6VLhOXH5MgCUz/MhKUxrds7dk3Q+iyIfURLkL3/xkeGS+ECmpe29BZtNV4+dfeU3/tFPNi/bf/3/+pPaSYIN95wHi8OLPyZvpLqOsCDGwL+OvY5FqGvgFXc3OrZjVEJCqakHpbZ8jjDYO9MVtAUmUXOYAEnj6gjffMfYiRwqEI9ovEu9/CuuIyiKsmJS6OiinCbBRt5WNl3912Y/HKa5LJoTj9RI2+gK8Z0EPIRFbA0z0Edp9Boh5LlZac8xkQR5OUg4y3OJN1BtQqreo/mjJuIkL5VR+zXD9ybU8zO2QYEeL5F/+XDsU8vgI0ZH/vozv1zQX/YqjTu3IjLi6ZKBJDpwZXVUrJenZ/f94hqLIKxPd+7ctOrDOO3UVCNkw/HJuHV2+xJ+N1kvualdgIoJGzFVzDLslsYrolY+zfpmHSMLo/MI808CravK8BhRrBNmQbie+u+bE4mPUo8rdEyUcKmeFkcZG8owUX2slcM5Wy3LVkEfG19GtmEiJuPLA0TjHOQuKpDqY67LyfOktlz37jR/7ErdaG3rbdZrYs3qoquLqbqR/Re/fffbjz/+57/8fW25LAIBYGog3tQNzYIG8D3q1Fa8wmAz4LLQSedKgDC7EgbIXvhkvgrhZEfze/6wt8Gp/Jnfs3pBqPxXXvyrH+XPrG3+L9dd/vn8hHLDcoes5+ViG19+D/ZZk8sdP791ecrnS4OaCbxEZCWJxD8ZdoZT0DafsTMuQ3uuM3B3zoDt7HcPu/yWmX0eXd65/OXjnx/ugT7/3Udy33LFZXCfr8ntvfD5r1xz+Xh5wOXVDNjX5W75rXx9fvW7P/17WcbLMlxWoDzOeQB6VIFaYIx205Nc7LU6GIy/+N5XX37vB6+/+PJaqklLBgn3P81eClzwnPdcamSn1+TB30ux5rteY7Ea1787JdX6IBAcYOH7AOh83wbhnTSEphmmAooVsJ3P51O9KDYrY9JfQXstp48x23XQknU5ncxfdFpe6a957vS1lnHy5MfrXm8kcaHnMDF5nkN35qvJYiZ9BdzwK8QFz8jI2U+6qVnApL2nL1y8ScOR8w+kjdD5jMfq0W2tT9xcvKrqBtgXfS39BW+jY/k4Qk9kmyFR8I+wumBQeFggbH8sh509f3r89Onho+7QXPfNTVVPxsW6PZ2LLibPlZaMZoBeIEluDIfxpt/osCBOvSHcieq5ni7uv30ilPT9j0/7eHUz7r599+brb376xx/+6L/yuz/ZPnKhrXqtO0yoQME1iXvuz3pwr9jwOrMet2N9+eQfyUGst5U2SMm3MRVnVU0b28fq0zfrzQz2au/HUQ2BtfY1fQpyIXiOHBdDn+AEx7qeDMaWzEvkAkGyGmF1L7IwLlLBi37J0kf75uwaqa/rtEdtWUCywqS6Oz8WaNl4SoJ1BhebOUe8ZmagqLlcbyiTYTF7GAOr4JVf49eOoEk+TAAivJaBhd0MJHoliyBKGobIhWpkvR2jkMzXlM6+L1dI68RYpEY4Hl2MfLskbOKYKnlSvFHuZUasjaTEyJciJgCrp6HYMjW/h+l9czcBRrUqyIdNpbubdNpV4qFn6kito0VgfEcGwA2pqYfU+ST6GqQwTFJjI5/Upxm6moXDOt/xZPqrxB+sMJmUGGscTYFQMzcKa+OtdIDIt0wc/e2SE6rEutGpb1nCkiR66ToUwwUeW0cVmMUCsIFWJslrqdoK5eZUCyXENgObnY9PKuGn62//8kOjue+MvtotFRfoMZdKnE6P5Ki8fFDYVn31w/GbH91+/fsTQeAyvIhmS49cHBldqSxsiCaD/HKhn1hggEQ8P9Ig+xhMypKaFPT8DGxlTzNFn7FKoWYuK7taXvHJy8d8rpjr+fzf/LoAYS7OHuXq/LhclVfzf77K7y4p981YLi//9U8vJJrhowjMyyZYbnkZVZLiQgnlVUTnhvkj5Fnkil/LMy/Dzl3Ly9/N4q/u9N1jc/F3g8nVf/2VcZTh5mcuL0h+Gfl347dKWcDPF7qmfCL3/PyVD17I97tXjCDvf7c6l3HkJ43xi7s3khVLIXrO+ZNBMhyN7969efvVVzev3/bHtypkJdi5GAlJflYGjElYAmlglWR8bo+VRoi0RYwN3oVYRXEZlrQIqYiqR5CuTJ64ZavVEcWfBaARQWpSRezWi+XMb+bE9wQ3yBfjUqHYWizTaO05DXrcrrlaOJiMeFBLs1mOl/3B8XB7unbGXo8m7M4IXFIGSGem5KAun1suyZlQcqsBfcY3rdHNtd7Q3cGIEUBdtCJ0I/zLMW9HI0rUHAhT5uxaiYQ0Jjov/RoBwPqS+CDtjcuGYCj1merGxLDn0/ks3SOm89WcD0yoV077Yrd6Wc7sxGa/rM8mBEiyD6MQUdObIzVvgx3ZK0HwSlo83Gqc5pP58/MyFGYNUGDlbBq9uy9/99d+5w//9Bc//9P3RGKgVy0Oh8GVw9pdHKxfnFucGqkhkkyjZCwdBzQh6A3eKAtyuEDl+MvD/i9Pk5+t5hN5qQqLU1ZW1CzpsTS0mlozzgTgEXCURBmCR2UYG52gKJpxfkI33zi6kBNF1W7lZ/g6/hlwWgrMdCzC/eVqxpyIvJQXR+OYFa9c0AGjb/ZtMXtJ+A7mhZHwCkAVnIKf/D9uYFtDpgUJg/v5leskFOKGod9YC7nICCK5MGqU+UToba8LOdzLUkaB8S5KsYHuGSFWVtgef17uTCEW04U1vY9f8sRc4NE+r9dpt1/pX9+Mh9e9rENSKyW2pqebEThHopQBo0NxDqVfrDz5TLHmQmxZUMDBtCHilEm6t+K4CoelLFhOJPeH/uWsYzItFkn5zgaUMbg3Nwv5mfyzurxrBQD9pgafVwP5vcwlh/gQdQ1SQd9YKj+HGGWNHcz6SAyMoV30cRNSL9YUDBo0Og7nq5++fX8/X08IguV6217tO7vWVV5PnxOKTPW6s1J036y+/sGrP/z9bxwQVXJ9CJsoT5lNnFRSoAg/sfTE/CNNrZlvCAamzdU08k/oyi8x9cobwVAb6Heb4vfiR/R7PlEuzBtuk82yH5e//Op++d2t/OPvUGR+yVvlZ3m3vFjW7/KbR2VEuagMKJ/1SnY4JFW26GJpZnt8ZZxlJAYTRbAgu4v9lsH6sN9dgfAus8tnLiO7jMNtPg+nXODt777KyC/D+O6n55c5l0vykIwuX9/9Um5VXikf8Zv3/+ZM897nz+Stz1+f1yh/GfbnKy5v13/9134t9iEfppz1xB2rw/FYY5m7uzccIrIJQSIW9hQqKT8r/y7mZMEarIKAlUPjFotma3buRUEWzVotqfUzsAhPPSpumk7anAkQqRGjrRfhGTDhxlAEsF5fExtMRXfmdWEm01ZmU4/qLeebXuflpcyRvLBD+iY3K1yTS/wzm+lFbWzxC0fLSho9iUL6rHUWchIBQeQVxU6Dc4dnJ+kxaRAtxjxsUvBJNc7b5CaJCnMVpVgooQsdzqA7qpCJo+N5Ov2kYlS4Gi8ZtPukvtaxGrwEGhgvBBoCRlF/zTTtWmImybCcriUg7Z+nL0LlscIp3nslD/p99vfXoyEEcp34AV8NdXt3eHkSP1glpmipw+1XFPjpy5o1r6+kfKWkh546cShUyWBec7WsSxhCLVV651DBXU2/vMVBVdx2eKqPmw+NnXKrY+P0/jz/s+Xkl6vDUc02kaZPGaIq+k4YEKKAqPzvLTqp7EmcyFOfdHbcHTQkE0LLf0VWBR/xSWDLtzkkMC5qzZ+WkmQtKA4i4K3+FaWgP3TwkFR3U9gURPQ54Qp9cJQ3iKBIHCvdaFmhKBR2J/gagvXEAKjnXnjPL2Ucqfo1fJKz+DFzDSESA1beKrTOwetEjvHYWGBM5xfRX87k/RRRQyDgBfI3Uo0xdElpvfweRPNdZEDGYBQQQrJQt9Ia6MSZiG99zGHSlWG8M1P6DLWH4ek6ON7qwVfSjMZ4UrCLYCI9YrockRpFOcZ2pFscfwflYryQOeyTxvE5mkI2FF9FQdIiDGwxd1D5iYLo726ZLFqsq8CFeylaueWQx5qmqrlT0WosF7Ua2UZAcKMFxkjZeGSzR+PeoHvXvJ7ezVYz0N1/Nc4RA9n3IIIhEVEnpf2THE5w+1Vf9tPsYaXk0Y67HwdQUhUiq4qOkNZ81toSl8XLntjGUErkcIGvAo+FovLnZ0S/wDd4CtkFoi6b76ebWwtLFYQt4JX9yB0DZv4pty+vldvbK5eVd/NWrvKY0G/51dvffeDylMtPn8nt8kF0kc/k+7uLPZldKMfa2EN9Mel8IqGf7FqR69ltH8qMDCv3y3+XX3LzPD5feUQZgxvlSl+fP5jplIsuNyif/jyMMhBvfr7H5w+VD5cfuW3I6W98GeBf//XdnV3z3eKUkbhv/bd/53doz9TC+MujeZ11Obm5faOPAuiWfkmPjxAUoIuzNr4dLna8HSoiDCqn+WJZq085dHyYX+jx8fnx5UXDHrEyfVaSAZp68bjKUT1GTLVvpAgSwenc3AxrJJQqSmfpIm7KjPDr8/NUmpuQwPX1hnfR2KNaoGH9JtdbBwcw9LUZuFpe1fdbuUhyKJw68AJupy/SVKc51n4R+9eK1yrSPX0QS2BWKatsGiHhJPWfq85yUefLVjB9uZtt9c9S6EiIsIgGo3LniClybinea94cF4qEWR50Z5JHLiGolqf09vaVQKhQd8gtBasg5DBfBdt4irK0NG/miNhv9axxal6K7RL/EnWS22r6bNQrm8k4x+JOpTfjP/vDP18d7n/wm7+VXpcHQQhxgbRvw6Gbynp7clL5EuOvD00Gwfq8WO3n0/1y0R7tTmuJqG9P3fNi//EPHj79BclIYe1sWQ7xqhignad8axC0coC72ujEDgkBWNVA1ZFqF7JOtCA85MsP3y4CQHYuLumUpHL/5DuRWf1/okydTp0BXwOlU5M79hsxp1QQdFIS06gypmE5rgB9SKZBDBRhhwOL4GRk1ijs5D5yIf3in4gs2kMwNrAfTCA80A13mkegRi9emMpD03wi4Z/g+Gmj12FZNhMxM/uDGBLhiNVgVq6B+MKjOZ2XGpMwgO/k5GS2nht0TqZTwxHAdF2pzKmJTQ8rgdemM6/ROLspj2dGeEfFDOKvctEYbYifHECJboP48ZswTg5bkyGk+DFzu6D/5Sf0D3MEKbJPXvSxstSt9NMSx5JV1gv4YFijj9dU3j+Bsjk4S8MwfAZ1UywM2y+EAPdbHH1hgjAiROeVEkpujdqdt91Xp5GTi1oDrjH7VRZeV9L5cfF8FHmaflwI8L37leu/8+/8+r/8J/9GilB2ITFq5mVcWn4RL+lxKaf+v3fsWH/6U4RsoRaTwPC0/rKv5adFLXAaJM1VNiP/+D1f2aSsffYvH4UcEQa5olChGyIOcw+mldeCDvnP12XZ8on8Uf4OvfgOLnrXJ/xZPpeLyn92J04MJdKhfEPInQLX5YsMN9AMxvM8NJUPucz9vEL9MHgfcf88IB/OTcs9/MwrecdX+UC5uXGE9vJqeYpfygdzVW6Vfy/vXm6TP8vQ8+LnB1wedbks7+erPDzvX+5QnvX5A2VA+Yyvi1pV//FPfhIkSqg0zvmyTep3euPhKBiXszwseyg4zeFyeKrTGFfuLa2RBynngaUvT6kO3u7n2/Wnp6f752eKvfICeZ8+k0PT1+vx9Wo0vuFXTsdCpT7uSH/OD1+SkKxusiQdW5FemrUrbWxuxuP16gZlKWCy9JFeuPIkJqy/Q7RgcWvH0aemZ6my1+nAWjtPp8upAfDHiEtwd6R7Yb3uhHl2BoOVchtkTnyL+363Xk2ni+cJmTGZcUnxYicMPeCh4bdOYggZBv7FNjTLE/q2CNpjbHkBdBhNlyFk4Qyd+vVwKMrseGVZFfbVo+UhkUAajIp3qKz2RV0z9UHRvdPXnSSEHtRuHRxL4ai2rEkRtTkyVZKrevrx7/7tH7/+rZ/9+b8SaWBpEcntfduJk5gbT6CGHY/XecnxIfS2PWrqP18cJu2DUrIhB87tcLA73Sweau9/Mdf1u1ppbyozni++YghBGEWKgzYwbhoho8zHYJKXSb8s+cElO+XyuO/otVx5gariFueeDgxz9DtHKE48meD+Uz+agoR2EtwpoSqH1CM1691RNwA3j/fJWFwv1n6cIbSgUwRPOAaJYaAIITQTCsRzckjN2YcpXkUCQZnS9SC+9VQGgkY+vB77LeRFSY0bptbij5Mbi+FSUL1ARQpQ5B+n+hrDRJ54YE68kd+eLg0pU4sFgPTLmhT8LTHYWr/dGt72G31nUBibdIZ2AiXgFXq22zKfVozF1XJ43abamKFxpCJZZBkEYDrAXJaer1sGPj/YfqEnZ3JkrT8jgw6htRb2pXB6euaZb+ifCgDiX/6P7IekFcu+RnQqYdAhAaHUOEZuDqb34SQ/1VVapH0cvYVCow6AJXTgm01QKGjLX4o5sBXjLBpPR8aS9Uj2mVU22uX0tJkdXz6sv/7jidOQaj9pD78YN0eN9b1NsM1oJs4BFFISZxMw7+w7P/7q7/zg732fnqZNEFoOJmUpi9JIMsPNsqFBRAxPMF9wkGTPY31zBySxOZUdKe3YARMKJR0OH5KbtB+kH9xHPOHAkEq+IqgDeh5Zdi5PyFtWPWQUgipXer1IpjI4rwP3aD1xSmknqaZTjagUsfBXhl9u6TKCF4Ez9G1IyVFzDYBJEQcvoDsXGM/IfCLaSmae390lQyl/ZtA0IEwXvToo5s8y65C+/4ogyaKVhctNfCQfvXyV8VxGldfL0/7G27no8qQy9kz4cqdcc/lAmZCnZlCUq5t3P2DKxDsqexxFMCk1+kI4SMP2YHx9PqSymKXFT4Y2VXoPU51AHc0ndVjJ5bRazsfj9Hh4ebmfvBAJvEUz/XG3+5fZYjR9uZs+393erhc3UEztgP31UNNVQMtxZMsdEX4cj6qHAcMDXkCS8ah3Or9WREWC8MWQPogoaFI0N7xT0z1C9aURiH+ut5M5LJ+8TCaPz5OcWoETCBYZHWgKvNhhCpgT8uRHpxfMTvB2Nn3+9PThw6f3z09PbiHd6Fp1g9ynyD8iTB/51LXxLLnvYjG3DG06rDCGRw/UCuhmKcNRF6Mr8WtRiqLWO3AGgK+crEbc6AYRdxcQY3SgWO5hJ54IzoobKj1TrhNnFK0wZycLqiRwEpJI6OKnf/pTrX663aMuqNbL2bpXev6kmAgEIsRwVrqTVgW77aKcbj2EWldbgJe4+pfjm/7y+v5Pd8un9anSXHpRd8uGcoicUV58PpJTir6HJEMPlim0Hed1WljAuGSCfkdhqCnU5bqi8WFBOjLPL5iKGMEiePRqfXYAjwgzGtCwDC+SJTws4TKcE4pi7lDJi10dLosyHg0grBN+znfw/ZJ0FKQK/3gtD4qqxSTgAkpHMpjHZ0srSAl09AaYBGOCMg5Fd3aXKsXigFlPnc4ohMqdQN3R/E1zG3Wt0hkJGX+jKtCfIwFCNOivYIiJG5WRyMwRABhUJMoPRreD4V2PC57GAsdTV6XygG/TOXFIVAm0RkDxBCbfhrlrXMSQerGwOlhL2g/DUpG1uvW0U4sKXewG6C/MiwNNn8JjabImljYmcLE/CAAdn9zNokjwFS8mAOLx14ZNZKpsqZ+kuF2sVNLpRP8njlUb6qUAZxyMhKpH6OMjLJ4e006Y1EOR+cY2Qzfkg+wExD7jl+Q5vH/89mE6Uxba/uEPxl/+aDS5/8jxhhwtHXHMN6WHifqJGHOn2m377r/93/xvTefPnG9mRrOOghn0wHZxokaNwwz8AJxQyY7KhptstGwji1YY2otTgkdXPG/h8NWXpykLmXM5RROWMhVLUgoy6XwDK7TgJgFT2xd0s3aRiXzLuXMRFQj18hV6t/UQJWUrUVN8yhCny8Wp8kilTaK4/xAdsoP+io2G1+/u3twMr6WTWHTDlNc+cyLscv5sfLOFtWZGmkJ2yORoJKH5AG/hrfyKojIeYarQBl9epBPNiPYd1SGnoEdImobdMu7MByJHCw8tuhV6KP/lhXLH8m9B/csrl5ddlJX4Gy+V1//6E2bm5vXucIge0WVYLLwfZcRVEafpqZv0MfqSHmz2QrqyXTEMfiHHLMraROKUyNIL5RT/zwuc5MfQXHBrU0R6efmnnZwv+fA4ubud3d68DBWbSMTM08MFS7dFFocT3iJK0LJ33N9Xt9s+VUZaqCVivD8SFSsdfAL2cizC5XAZ1Io3IQpFWDrDvUyp8ounlykqoeTw4sCZIG/OqHKmgMxLWiOY4LnRisbDp9OX56cHNoP0mx2Xly1xqEEn22OAMu1iMLhFaDNjvrQh2qwaC9jTPrVp63jAdLRASIe14hfab/uz6cRCbnuIeD2vr5OtTl0iMKSx9gftfr/V77V5gno9E6SrVda1xQsLDH9S5RoCFaQLrzPmOx5f7t5+wcIYXo3bp55+kAWX43gpUEl1VugDiIOmzro5nldwuXs+vf/U07Bj/VF/SFdKEE140GDtra+0VTCtTCxaF8FjhLLS6X7AJUe8wAhnk5tbZECyfcJTFqFQiLfJhtj5xTbnCtAWYDBqq1sDM41uC1Cq/NM2ygOIOUQec8cpBGiDzETodnuvUd3JqZDQEPAkfOJ+iWDXDMLSxy5H//EWhZbJc4xvFMknkqqlBl32QFT/qCtuCTnkbrX6vOUGG2QshBbmiXPpcBI91cZDfi7tB3cede1338wxsyqeH8voK8hbvrNcbqddxEC3E9KK5qElv5UjQhbO1zQWlySeBOOMy834CSUF8cBAKTBCRUznqGICGM926ShrvVlZStY+COzzvomQ8qx6HFWF7w3KGOxYsbRS/yVKbB9bzl7qk1dbZosyZJ56O5fOFgZb6kp8BmzBt4vaQ8ggQMwdZHUlAWkm8onsO0cRW8kzPYhG5x/vr8+76Wn5tLn/+aev/+JnDx8+Oc5gNR/vq53haxPUSAslWSdU4B+jjf+kUGDj+X72Znj75ds3jhoJ/OdpKZLAtr6FQQhg2kZ6EAsKxqHFXDFYyTZoIJpp5IWljOa1fn58nssC9xgrT9t2DdxwgFIaC7f0V1Gslgr+wGn0gwAoDMmXZU0LMQ8AA0FaQFC21A/rEMWDqQGyKeLmflV9ceLIfgcBojgSXuVihGp49sWx4F+9ffe9V++uh7dsJR/F2eTjx8enb58/Va4+TWYzITTXUutGpIRiPGPCZB4cXRqmuydBa0imLuLZFk43YQcy6sP8IiVyccV4T2dZy3ExU8zDMGKk+iX/XUC9kGgm+Vdf1u3zFV6y/UUE5rPlZatRhEg+l9sUavdPanRJT/HXvGzaAoZRUTBa1Cg/QX6aBqR3upAm1Uk6R0bvFhLyc1JAkgWYTsfl5rhMMkqy4giUpDaHIRH/fi2qdFxSvwPIlVM7SYchnChjEF2+PNopTO51zn6OAmSMrXpndVSNfTsRBrmEV4v1urpB28xBwsVJ3LQo4kfnfX0Ynqez+VKe5HpmKA4fJvzZMrI+R6PrV3ej2+vhzcjJJDoYYXHNKNob51pS17rODzj1s0EqAG44nm6uU/7WlUmoxZaJUAiWdoSKxJeD4akD1o7hY5562dH0aMEqDJI6yhudsCAw6vKtQxvL62kpcrIpnCWKv5jiiubzUws2LeoSN7MYK00LaGBXVRGJ3X422HfGX93+1hc/3C1nTy/zwxqTc9KOZAFRtSyChBttf+JoSD5kmJFGRqsLwZ2Pj9vKt8d37KbuaQCK4iNgrONamxrbmfIWz74xJecPKNgPWTxptqFq2uvUJksoIyj5HjC9UGGYA04hliDMZ8EgvyemTH/UtQRxRte5zuKJcC4jwwDJhZi2B0aP/PUsh6JSyrJd3SgCiHcxaj4SjQgrw4/+as1oF5AQ0xuyxgQ4PJzsJfILe9OqMVghKi8C5XzYOsSkh7zZOnxeoWgzAyEE+Ij27bgtrdmcb5dlDEJmb8oELVTETf70TySB35Ck+3khZb/IdLMXq08uvZfhR7JrYFy0thRut1TJxqUpHkoDNnTad6YGCU0oX1aYJBYRZjsYjAhLUP7zzDP/DCXLbRD5JVtjDMRtulZ4RNFpqfKSebiNshJ2gD5ilcSxyrWhAKft4Osre6FCwOKkQszqCfMERQGE+QPLS3MWOvPmoJYYVaWcRtnXz5bv//Llp3/04Rff3M+en2/GrwiNLXR71a+3z8vNTLYEY1SlgcH7aQT2RZ7S7GU3ezx89RNBxJ6NM3Iik/MAy2LSg05ignZEOPzvyRqmlqU3eBacbCoC2y6hiRU2BoNhZInlEuzWGOs4teKUjeimGhB4tvwFh8nq6M4rVl63E+wsc6eGSwDmFEy+sVlbUgTmy8rCE9DDi5AO8IneJzuRXsI0C1LGIslOsDftQKQFQV2vstZVPn1x+6rfHVne5Xr2aeqsNIngc3H/yYUNeRprdX6MmxxH7vzAmGvkqutJOKTEeQ78iyrYI2wAZNwki0WpDJcYrDwyJwzGWIOVODHgjzxCEgYVGVb+CKGUV/Jq6L5c4Dd77HpXf74i7+TXfDKX5fpcnPvVpTE2u60U91lTEFg8bMg61r19iCFE8HKPI9WYkAKoGptJqtHy0xw4paEAhhOD67YPtPjxYRSndkmxN2q+RZRHFEqw7w+41/XF6XXaPTRsFAi2TQKoWFE6BaZvb/ujcWc4iEoAlqSHIu8kNcRnxFkBXZertjbQQcjNwYEtK4k/2xW5IOg7mefweZaU6mb2R7fRGA8Hb1+/+Z6ahq++ev323ehWuctAJhJdpa7q2L5Tic9y6prr66U9dnb84HrcH+vg0BeRBvRZBGdaLeZqnGR3ZB2tiI9bvIAJE2mjMkb0VLwzo0aP2BW52YZ8EXX+JxDdCfI4/1XRq+6/y43MfWcvHBwgklOM17ut8Mlmrzcn8GoLoEoQuf/m/fDLnKqugVd7P2ge2pK/4Q5U0xKSkskRpAW9DSAMLv5l7ibYLCFLN205L8PNuR88zOEoYdRoFhoUBDQuBJN8EwYCS07OH78K0ncNX0Iaxdl+7fIxJVoJuaCc8k+cEpRiPpWGrqJp+yZcLrl0l8RBWE2oNHKylwoNZpG1EQR1EjFJh1DjvKGcuhcpEwPcoLKqQUsscmJiRjv7jv/iM9Yms7xC4GAZo4sTLE7T8CoOIjwq1U2VdHEjiV3VzbndNZHQJd7VDSQpMXYmk9OnI+5lWxcDIPKsUHC07Lh6CJIi2Kyhd6Ap7I+EkIDvT7rm4G7YHLel+TP5OacptQUdWprrla3WE4eVcglXGGZqDtwR4SR5Lgk/TEs188IQQsHa8vhcXE/F7+Qyi2EDDSarHTmcV7B0vr1eFod41cv2DNsgsMWMRtmVd3qIgErHu9wCCMbPajfBJIbOr2qA69FGLQGIiaoA26J8EcdYIWwcMVFdP+2efzF7+vn9p599eHj45PicdmMoGvz0NG9eHcZvO5Off7I6Dg1uV/rZxhI1MTwkMX/efP2zh69+6wvK4YVcovLSg8rIeH/224T5kuTA/NVuotj7ZbqxruymJiWW/UT9AtOd1nyWzivEvL5SlLA5FiJ2URUdSp4hyad9GfUwepesjXCHBpa5XuIhS8lh4CAEMTDcguWBVI9ZLKupfwp8Lwr0UUXkgzgohzEdkRAQtpRljego3Jsh6WZjNO5dO+vqfJpOz/PliwQG0sOKpttsipFiVYfodYIszg8vCBKQjgicgI0DRD57q93THTKuiD2/lrsl1aTbXm1bObPP9eXpxlzW0PtlKBfgtsMFv11S1u3yagglb2CN8EMI6a8uyB/e8CPvfPcpAmC7mrIOCSRMlm5tViKta8nPOFvBm7vBf2o2JztotdkI0byKFhIJS+dhjQ2qtZvz3SudRMWIV2smfhbPbpCb6YuYs7/Vb6m0ddZkW0Ze+DBfmpHQewFGb+T8R553WiRMiaCT0oa5Ua71NQxKJlslHoCzan6bMV/uTo9y78sh66JEibUW7771Z2u8vhn+6vff/sqX3/vRr/zg7buvRrdv2uMbfTnTos7CIa042QzPKeuIWkhQG/duW8chOaNGSHmQLGThaVKKI3WvX61AuM8E0GOl8jst0gQy5QCHhlbYzKnorS1BBipMNBH8GrXVq1Cqwo3l0ZbEvpdjFFQmg1mOhSsFb8SYI2Gx492ASbvazU4Pz7OpcEhbo+3G8CA2MupUBsYv9+JwddxczXn0hflgYtlaK2rBbRxoi451PvTo5naKVhhYoQNZWedwOaMLhltiWJwOnFmPGAPxAKcdkBci91hmFfZWgBLhQJFCOOCSuo2gwWJ8H25ExdWRDqFLG8bAqkXgEdpgkZMhlioH7ti+WEPajahkPm40QVto1ZaObEWJvuB41iyqGjFhm1ERkaKCsLjMUUvtFPnX0HTTqM0wYrYwXNSJgDm2pyciXYYr/3y/247EEziPoo0e+a35gQANMzUubFP7GzIgQF+gNhO9KOD0bquRKHcmy+1c775qdm88pbpkiQUtfSid0oucT7AJ3BEABu+9qG50Mt8CBgjZ7pa94C4mk9UAB6WjfxlMzK6/Yk8LW7bFLSKOi2mSSuAgIbWeDhOBkAarqUoJqxylZRAXBfPLp2JnCE5G8AXkPdFqEQaQjSm0UnueAWT6rtw4SiOdUWXhwcjVw+7hL6f3v3h6+vTgoMdTZT6fVB5/2j00h2+/vL1+c/PtNw/z4xIBUB4CLEWIwiEUtqtc3b+fsiztUVLpGJQ6IAVPgoAczgW8aHOIn/feZWWNom1nedipuutCHuRno9xRIvnoNFR8ag0RP/jgqwHTWSATK8CG5clpkqZAHFoNCLPFIzOsEK7IkmQjsq5+Rfd0lMphsZ47DTbOO/pcjnaTDYh8MlqqA9oKAJQF08xssVks9DNzlNpBFjjyO9MdOaBYID258I5Liz/fsTlH/SZVIV1JfUOl8f+UqemoDznSCTMCA4WHfOJBzLcGPMwI+YRYS2TVkMr0I84zzYw8ZHn5CqFk1X0VGvOjvO2SKP/lSvfOvwgw/5TLTaz8XnYsd6xPHj8FxA2ABZD2mTHMc2R6nODYi2T39ASBOXPJAHwbHyIllcs4qQC2owe4CbVWt0PzWxXlKq0ZUB2BIaUciUnWadS1WpM5QzDK27PXoX1dZNVTQijqgGhvv5MTKeU7AN24+7IULDpepLgB7AePieJHYOIeqX450Pkfn55TYJxQfAjMqOjGd6PuV29vfuXdq+8ranv16vr6pjsa0TgEYCOis6CSHxoKNLmxzt0uryR3rRp7Zg3oMpFoGFFbrB6b28kEjUOvxw8RoV3OE5EwwIuqfEsO0nwxjaNsnYq6TqMXBDYFm1RyExEj4pOzDSwO0vT1aLs6qqNWeawpwlUz3RFetBLVH9+Je6fTk5ZCcyOsS9FrXLM0iQ1myqhfuR40Rniay8FBv42qnr9O/LIRdEycbLnQGacDrZj3lfgCl1wdgRbJMPZR26GgsKvRafJNTdPvlGQe2eRlsmdjBUZzwAd2OiiMUs3HPvonBBc+t8xBrsJ/rAb52zW+Q3UhrWs0TQzsQCfZ4COQv9fv+DXRfg6TDfQnv5IoeEguDYr7HOEHEeUhnhWFKT5C6K+XxFmEduOxIE5fetpKYItrSp4JOJMVxOrOWdRBYVTL/ojHtSpRODIho+BL2Jy2c0o7qiSeNXalVpS1TCQz+splspdZhk0y1fCLzwt6EwA6XlEiNTs5H7s8HySsTVTMQh2JXk+fwklUgOQNxADUiSjeiN1R8Dm8xO2jDiFkbB5qZYkED5bHEB3I4wr6e6JL83zPTUyEUz+mCXsr0g0h1nvNzk2nPlJFfDgvDnWhifSCDjfJCCDEQp4H/Yg4izj1ER8fkwdK7yJrIV9UAQMFQXlpJ4S2jxrA81dsFSt3/83zp2/vP32aUHnKOqSb9OOn6aK2oy3evh01XjXmH18crXoSvMogER6mykryynz46QPLZjRwUn1cZ2gLM0Nfkw3f29LspeeRijYme+VFGMOgSg8v8Je87Uhso++N+k3BsmH/1fr1u9Xy4fnl/unx+emFW4KbL0EEKigIplY7pSelZCArpJo9IIXkKcGsiB+3LJng7LMcw5cHudBIrA65kPGnR59JhH3tQsDUBAgA+uZ88SjF8fH+7noI8j0T91yPh1/uXgNrxoT7Lfgjdtu5z8J4Xs9d11tQy+9G5flk9qrZkiOYvHmV5PSI8oCusn05L7YcH0JAke91Ii2B/lCmMQW744TJcHzmAuufoT5/F7b0M7M2cgt3uQyRhQHyR+51+VxkRJ5cv//wjaoormRaPl3UBT4vDQ0Ksl8YbkgeZclkjBGky+eMlURI+kuLXWAob3KkXYQfw9sxVcJRsJ5NFyXC0ZefTvIFo/QQgOsjFMBQiyXB9+7JJ5uMF0uRqrPoiXLXfC4JGclXB0oWkWMh84IKfBw5OgZNQ8aNRHspRHFjwgHJFppP1Bv6tb8b996Ohq9Gw9vhcMztxHyIn6KsTZbA/lABWR+IfzNfL0wQBXQsLkcyeRhCxiAmFP1B1M0hI0Dc6auQ9pL1y5MDd8xmv2GD8D/No7Xsj9djfknQzIroDo/XNpH/onTbi60Q/ypTr9UgtDxaFoj2ShvnwEyhSNzYcrbVpgXbakClVERZMvVH53796HgVLR+Jatmgnba5VrR7Jrzttq0F5BkyHbNY3G09ooUuw9rybuW9RMzbs1hXLsZ21tOOBHfgBO2R3wJARYuNyhKZ8p1GjFw8N6QElwKIUZYL50eviioadJILedaL2Im4sDXJRDkjJEYlpnZLE+ZzjcVYb9tTa22V7QkH1E5bqKja0O5KrA8jCITa7ZypQ3CcdA2FGhCeRzUeqdBCIPy0raGNxFqFA4XT3WO7gjWOTCRfVScq1Iq8VXiC3c01MJ+eDmCCWsG+lLuSyri48YNf8ZV4cJg/k0UqJpuTIHMQ/Ou769uRw4JQGjSxziYRay5Z/wfCPmvEFjEP0l9xQ3gx7jYrDh1sEwo5bXS+c9I0jYqDrfBonvW5sNbfRQyYx+cvcsM6++aeKgstGOWqPA5HkSMwDRFrdALUbIHGcNnBcMiRr8/iQ7aMzS+Elv21xxalzS8R9x7Hh65EeSM8li0nSJbP68XjVFQTEuqVbQzNSq/t4LCDhrun+rA1ejXePD5sD3PE7iMYqpBHxIDFe//NvQhw/1VCaJ8RuVBntHoAyQ62FISUcgT9B6QjJT8o6Z4ijUnRZQFg/hKDolwjf91ZRtWxJTfYt7PZ/fPj/cPD48MTqz+6M2dKXzoLBbOHDDN3jGipdealrKU3JHaHEXgRwoK0pFq4goQcjihhbQ45Y+PKt4bgKsRvRcpmlP2IqJYbOluvnqbPHx8+QQVnZWlvYEeGg+Hbu1cqWOifFP9PT49uogwVGdB/tcqJRR0ZF28y2YtOB6fzOgXjh36C2FRS93P81NBxRWw63IsiTAF5+6hvoyY5sSW/R4QoqeCfEIh3LkgffrggZEyqMIgNKZeU2rrYNCzQbFWxgso7/qq//8UvvcSgpaqTUlhcyESrnX2jddhAMLIBy3mzRHG4Kbjdlzgsw1OJLnVEq7iB87FfvxZrlduOtMI9RqX+Rhsfi+HGNCJztPJRhe0Pj4jow0buXVzQEWpJ4yt6HFcmlZVTg59jjaC4dVwI9SMEmfZkhniSFhKLuUrk7HNU1mAZ54DK4G69djfov9JXqNPpJ8bEGxSOjC2DAmxrNKLDWmVX0suep48Pj8/PKphxcm+76u92fZKZyvw5lwABBtoCqWgZ9wET7M3N2KJTxzEsRrxmG86mas8i2ipoYqySgEMpJmtH14fBcHz96fHl/vFpMZvbQH5qKXqBg0SYt7SzyWROINKE+GHxougY82Qktby2UtFw0+1ePeNSXgM2UDvencOO/tU591fn3qba3KCoEAYpmGhh6ckg7QNZCKrDWYvDU4CW4G3cRDaAqIBvSAUxcYnGu4YSrJUoYPqVwg4PBAk+5dKCDW5XRAJcLyDs9eCk58ZISg2QGecDrMI8jd3mr1otgs8G7Pa4GaXKKYCAp8XGmSTOpxUeRJ1oNvCBGoixIG8hFPt/Xsepb1US8fT4kLaHRn2+SCFqSA4ACJfJb4xJQNTz87EM7BhDu1aV42ys0eGTOCiSUENwJLyZhpjzbeuiXnls1qT8LNx3iQ346bkRfI0BKM6ddb5Wis2iQiLuElLXuBAPp0ylJJOIB7Iy3c4oEL4FZdRo/ImeiXiPZIfYspJrGwr21CJlL4xbPuOhn9ffUpu4JaK6xNPAqTXgUZYyEW8C0PyshrN5ZPSn0aw55P6xly5hmUqkoNtiuoJwWWyLBDKFs0hswXFc6rPj29vv/2pOunt6YQIw05hiuq2r527Udt3Dpnpze91qV3cLHMVJqPc0paRsWYX7/jyVMz2b7Xf9+IBJ3YABUJUXCo6j98X+jP3CU1+naUkFX63SvGWhl7AA2TqFewxxZ3o3xmPaMVmedJ66o2ePo8EYW/dkITZbk8mUuaVxbzvav28AYDa0BvPWs4++gb2IlfAauyyrndYkicSGYHOyZ5+4JC88HLkCN/MvGQnYKdKdJMjyWcxzlcb58PLcSwpM9WZ8PeoOOTNcIeHn7fUtM8CzxEufZRPBernbkie3Ozf4bARgB/yxqntnue7IFR9pQCkoWtobU4G51FlGAI0sVElrUbMZ9p9ULrnknmWj4pUpxGJsGVfhSS/4AxdEy82QEVyw3v5/d1WZSD5o20NqvupPH99jCasSJGWrEkCt9unm+uZ6HOUh7R9sblCYSLdDlFauID8RmFp4CbTON9dDrctFPuj7M3fzIPfXjFf5CbqKMxz/Ewppbmk2rA2xBdxLKksJsMp0QpEzOVshv5w+mgW34TtKKwkU3xSykV0UPkIuVplhILOu19Jr2klmmSMBkDqdHA9A6x9o2hW4ieSL8JeUeuSWYIoCIOUMckjtuYCyZkMqhfZyE3W527asAgdKymGwEDPQHhBJ4XJ6H2cL/JGIGfVPSbDPNHOQCNhhBH54/15qsKtDV86NkuzZ5xE5325Xt69m1zeTweDDx/cfpC+RSsZEG9Ia4arTsNGTZ2kOaydNCS1uNgvKxXZJtUvuHqbUZPst6mCJxGkj2gVy++vzsH81Wp2HS024KismkSVmdAUBDYJjqSZE7A/KlHY8ya6CCEmDyTS8Ea9Bzu6CDuAtkfu4rkgL7Emdgf9FobOZgR5Ykd8Cjr6QXZALawfYDAesIPM0o44E5+SXYp5oSaRMPLr4tzTvc+gx77PdyyEtltR8kTTsDFXQcGLbxd+XX9zmSr3sivoeXpRdZPX9ZpDY0xjQu2hiDltOtMZTeGTl49rNKPlRM0kXjlmAa9dTs4QcShDAv0SamGkcSQXgYNzFCEB7n2da5MtFAGCDOmhiw601e01SZdNEASOq4S01IuRnYD4bFUPiqM/5PQZ47AFyGREaLwKKUiwRjkAHumolk78ZVr2s6uW38kp4mOj1bf39TvJwdSlX3ztY7bAbOA9AAkdSzCxKqrcJO1yW5aGHYHxb6B09Y4mHbE+ebql1J9ytUtovL092LgKOhrdVHXzkX+pfw9vOux/c/eB3fvX541MSmneV9Tz5xYvt1MTYgDScL7736ud/8gsKT54FSlLIxgefKPp8tn55fHq1HIAzGiGORu3lK8ogtA2EUelATsmVmqaEc/Isj3s+oWTaMrQh0+T05q4nojPQS0Y230BgCQLIPqdWyYxIkm21pjyTfDWvoHRBNrxpqJhLWc10pU+XrmJsfQIA2RE5VzKvNbwc9mWEDPE1yuHWQCQL2xM5yGsdkhZujNYsyFzwlvNShMAQn2WJp8iElXpW+4mImdHDXl/ffLmGLwPVE45a1aY1HqegchSA8JsXQEqIvdgoTG9sCPK42/2X/U1SEwsZ3wpu+5DUphz6jBwp3HzOtW1NMj4Ci3elbHM22DPyFTFTBACp5ZkX0YCFY+z704uZiP8yGL/6I4DiWQiVPAwDAT5bs1401xKrbDQ0OHBFKQJYzdKVrQjp1YLGpMpJDkiTV597pS+vp8N/YyrhgtzRI+x6gunUcxa5SXuRNmhVaNQbZxDoX5OgraMlo6MX44D4ioehuF6uPGKX1myy/uvJ93Qxoklffaauswq6b06vkKoumLbWAnmmmNRAMdegRx0AzgS/8zZEidlWOq4lbpmcx7jk2LmIieTpDPqUakwKoaSMOgABbTApZXlDlhzxHq9UBBtSsHhW17MQQBonnJvd4djNLBTLlUiZzCcOWQQ5XDWyhnot/UrtsvZht4P+vKs5TrP78vBBKbIMbs4K9Wpd3pHz/v7pJR4BmxA/8Ym0hdbUCP6PRmv4qqbxtfz6NGCxe+VsWIPrdqoyk3qCGIIBoN+hT4gfw9vfOskVFabgNtpD1+HTC2UnDwRRhImyGnRRFgETjDhIoMJ8YBIZUNg7Kmz5hkd+QY0htgJ2fgZvIj6ctwVbA0UNjEbtk98Rd93+lOVT+KZI1T7tpACyghvp+rCkAtpuxBc12bANBq16FRHaHMoCaZY/AzEkDVCLh/YCjgGzjAt/EhSOpnB/MjVh72aPu4vmRKMNMRKaAZ0kmhMr6BFkheizHFIbUwPsEcWKjHgLiPuHCHFFBIkR8sJLNGT0q1CXbyMSIDGCWrRWz0u5UWKmTpSlhTH3yT5s6ecavTIGR/IgwJ3G0dH6PcaaOAZyv9ylfiOJAp4YyWox/Rt9IoPL3GJxFP8PpvLNFxnXojiZQ6BvWIdy0Lbt6/qVw3UqWpP2yc44nACXRaPDZDmJSC4fp3vCXH/6JtshkZWNT0JUPu46Lnc96RKk2K+r69Ft+9UX3etf6fzq74x5Z+Ddy8fd44fFh/tnaU/z+VLD29/+219Nv/6o90gyCGPE+Gki527lerM6TR4fnSFGOpdWYIRNImSMd40BMIotiOs/bR9FVFcv0/nTy7PQbgSAlvI7a6hHdUq1g42p4Bl2+vrepRgXNUEA9oPLfFkt4s2VNETiWUE6iBOsVIFPlswWqrSmEdxAIm27q2kNUPT6Xq+nxYBqzLBM5TRdkkepPcjG4WhRkQKbwUm6UPYj+aCexYU7mU8BgH4em65kSJ5jO3em8d32e+tXtxhP/0q1qLR18vji22QfRjyFZm0s5jpCJynsF5MIY+iYyGWk8wCGVBo06nV2J/pMGvdhSLCwEPI4a/Zlc8MkofyoF8FaqlTonCBEOSHfELAn50p6QNQ9l+Kdopx4L4ZfIY1Xr99EZ8A8aqnaFGFeqniQo1sVkstC5PEEl9A2zcER8rpr6SPYH2iIcHvdHQ27w/5F83Jx0d8NyzRDx55M0QyS2JbolH76I2p4xCJwBJZl3VtYNNaNkwLiafFxVp1RbSiyyJ7XVde1nE8bX8WYv6/ben3D5W4drSHKYoHlf7qDRCN6Mvaxb6m4FJfnsKIWUPUYO0l1lprawXl8+6fTDQqIml/a1ZEcHF8U++BRun5GwJuX+UQzNniCA70U/apMU5FZz6Fdt8Pr53F/s5vSNp2Zp4GcOeeYAWca664oSaMz1hffZgk0IyHGENHi/MaIt83xaTI1/8TMJTmyTy2WJAjlZeDGCR2VTjy6RpmhWDVJ3Q6kwhP95anP2qifZiVMWrq4heao/IxT8ArkssOEVUYNEbIloWcvgsnQZTYjzoFWu5+KEORia5TSHqoNDUaDStEECkKVP8pN/Rl1ImxPHGs7VPrrtWsSBuypZsIoIasqjgOJ+QA1GJKBk0NoIQ6XNsuQGI5CkrtjO5ZJIBANh5DhVE6Zd7aznzllN4/GghlLWMj4uRRpxJFhdh5SSvqjQPC6NB08ycWQWNuxJCOF7r0S5Vt1VIqcEWeI0oqkZUR62rhzSok8mYPLQCTdQ3+4pgGyTkcG61kaHHXHzVpPpgd8D9+7SzyzCY1YVkaL7Mi9A0mLVh6vZgxHmh26lZSTkLAGg0q3YAknaUCBbSHglannK+uZmZbv8udnPiSEokGZg89II7ECtk+eVcYcX5N1pNkYAxs8ems8glmr6KHEeXrHnZRrByHsjOPsiDGpqLpSR+W1fgQbgcvrh8wDTGeqEate2TrxPRZ5VsF+/vZn9ztB3dpOTOAnP/n13/v990bDQkiGUiwA/c8b++N6+ul+8TSuat+72YRyJBxtlk8PDysVl1KU5cJFOjnPYF0KSKc6CDxMJs8vE3ouwsDzoEiL9t58oZ5whFCyMRFuhKBTm9gTvZV+61PCIRFVRWMg1JFQEASwrrbPs8XLy/JxMX+azOUeIG9UJtNGlgc5It5I7+QiMG23coCJaOJMc2Ln05JMTBayMYtisQJGvosHO3oT2c/nO6nNhSp0qdACEmDmdPSrk2MUv7wbg5/ldj2dzxUr2YIwXqJEdID8mRsyDHCZdYbk8ZGzXeUBBNkJbjQKvmTIKpeN7ItxoOivgUm5wp1uZ2UQAjMCZ9l7lINosqu4vAgAxIMzfbmVX4wZ8sacjyTwKy2tCASq27uvvjIh/E5XWw/6cX+wksSFnQKmqWO+Um/kgFnB7PZxp+t4R71Ur3336u7Vuy9effG2Ox6yA3KNOXlAYU7Pxloe7G6JZfg/jocMgGaSaZYVNeViBR43yV/Eu6zFYtgZYxSXaoLC0ka77c22C8dV35skprfE1tGw4VewX1CAqq+xyjpZSCL0lkKGFv8UFzw1RBCLPm/V/aTLeUarV23ue/yRttj6RuYYQFQsrGT9IQneNwoap0XM1kCoy2RYsLHWaI0WnzlSOToA0YF4w2570r5SirbcTB1nsN2PztWbGMatBIuuGwNWBhBh1SwW/d162R2P5C7AreSTzmcl5rmL3FFZ5siRauuruy+6N4eXF8cOLLlVGI4X1MLfXAqdq37/NFhpQnEazs8T5wLQ46OEMh1P3fp5ABJtdWxE3+ULwWQP6F8F69AkCHU3Om5cxWAMrXiOi5N85aU4t0ND0UyjEqEwK+9HSU0RXig0WKmu5xvVHbKYRApFrMlJ3i2ZYpdD4B2x4xMB7+T0UqMohJZUg5v61tkNFDSqB8+wFQ1r2AljhliG6zcIGgsVqZuap+c7jJnFsN12K1JamJZdDo0Y3yQQb09izDAxllXRcOUMkShVAQmYWPz+STVItkGRBAVtzc9Ty4rYt1J52650HATvLEZjoGWut2yMROraV534MaDSxhtuHCpL3zXltds9nVUnODYrisfCFH86atIVpFCsYW9lv+KHLEdrZUaXr7LSlwmGhfNyNJ4YAaxUJ++lZ09AYr3vSm7NejjUj9ovEC3aSK8hs2wjSkkvfh6SMJ8wmbuJinBDeSAzQfYtIAF1u9Rt2GECOKEFObidkICerfuXnXp4dZNUlJ07D6rC4HfL4/Jp69C6CeQdNX7yG7/99R+ep5v3ikJodYkwJWLMZ7ta3n+a3HeOQwcrDRNx4uVf6tPytJlNBTA4J1lsdpGPfkbxn81APx2IdcBRm4S+2lEKtAIiDubrGbNgvl7K6QW1thhaUTASGKCFziaTeFOhaOhqpyQYDojKScwQTHCaCFuAWcNqhzDsMUWsctJEC+BAVlLPLqfczmdi3qqxVrYn1mAYJrTmK8yA9rIZAS1y3Pqs5PsdFvUlV61osMPJj+JxkidrKXjiNt/ulft3CIDcQ2/gOIVC5zguCnDSLJ19W9ws7Po8IeEBGM0Z4hvuxYMoUxEWMGDRJ0sNGFuyrHIUmfDkhRXyL7aO8yXGTdHMDCaQFVWveOgyizIhl2YFcx830BP85rheJGvupBtPhxSXW8jIdIAKjdh1PJtWVs5GZzYfLhPokEVoxuPxeHB907m+GfSV/2sbl+T2y4p5Msh0Q6iPtLBGFK7yN5+oaRWpdBk9jWgjyegQ3OPLJ5NlM8eraryJEomD0357rePV6EoiZlKPBBrYlcWOk0YS+gbIjqlXBrAZWOTDAYZzGWpWgUBUn3HsUBnCOhyoGo4mMBCBTvkvw0mQ0CvWBexHvlhdDmcAUsSsq0zDSDwoxYPxRUlJJAMySeFWpwhWK44F3jlEiaspDsXtdrps95ed/rIb13sOaG2Jrgxvr3Mcx0Bf4oEodDQQzsxWm04oHmh3zU38J8F4BQd+bs5PfLCrFTRfVabrw6ArhZ8CY5hXte6Vkur+tjKeHGed4/P6PL3SyIF3I81duEsJgA7qy9LH5SOg4dfomommhggKTdgQioB7ijqLB2SeTGBuitKtBrNGAIQfomoEVAvRlVeCwZH02eSAUVziYoAirWwnZEOmWOhk0Mb95N7JNmCX8KcoYpLFddzIqC67HFqJdUXG+C/8Rg+lLRSHevGTlMfmdpEQyNIK4IECXoxStbAIhS5vs5wJsdhJXyDBcwyLW1AdMK6l0PtmLc/cjHBhkn/0RhXGBM6WwZ0vtqkFAbuZcfSqJIDSvu0Tr6OsYVOjz1oRekdWCUenBgLVaGFy5ahF6EttovpYereiied5FkCJfVLvubKonf4sHqn01LRy5GuYJtMv/q6wa37PFzWkiAFT8L6FShhVKm3/WhQTYFi4k9Jy9pXlQbc+Yjzu5WMulzsqfdoWpTmbD6s/nPt8Vda61NjNdM3YA2cUcwpbrOJOnbxMDvv66rR2zADxJpWNn66jfaAquA/3j7PZWj3l8HX7qx/+6v0f/VKWqllICSUAajkVoD5/eHn6pM502LyaSeiQQr5ylDj136lStYZE1r2TYtUXrHJshgwIubS4q7hgojFiRgaxyhiC4fZ6rGGLrIpOm05sS+r0MIsc1cMfjcy/5PHH4ai+xscD+r5S7JFzN4NIxTQcSLWRtePYQdk3qFD/n93WI2SVPk1e+IrjSbaYwNEGW/4L1WUfUII/sp8uINGcO8JFdWhTXAADCNK/hInGnZxyhJxeVdyAQWoIIYcmOa7ynAyNxWidNZHE/qqCQ0+kUVAonBi91issZ/BHUUmbhJz7EW8HUy7UH3wK9Wd8bm9UedlqeO8ySEQYQMtYQ/5unIvzX1i5fKB8rm5E9gFxwiLrKwGoRp2X6Jb0nzhAYCn6pUNcs2C2K9hAFWHvwFMxzqqPcEnScKKFIdRy64wigJphAoOcgssEzZM9PkIXu9vD0nieOSVOg0zBptAwfbo/0ok+d9T0iz9BQLUL0lSIDYdGipGFDMB/WCIyM0fLUssCi1uuQvqbUwzs81i5HdlMiYgDOg1jSEeDtAaIIZ7VODdgUlaysJ53rH1kI3kYIellmpGvBK48JOW7qtzUbE00MdJwzS3SRFHhxJQEemR3rg4v6/2L1M7zNGkmdEaJ1gzv7vAmz647UsSZ87eWbT1XDp18cHAeh6VUUNvsHF1qW/LA6sPKYDffvmhZWj0Mu9vpSs1hn5SMnBIwt0OyWs46aTrFVfsxmqHgsIh0+oIplWqCo4j/suqZH1IAJbJLaaP+QmU2I+EQGO61DKbQVIAUgyEpq5GUS7IwYOJefvoz/wIWemF0PQoj9KTAkBn77us28OYCs3ecbLaGuSNdgyGSBqkpmk3ajMRYix8xF2BA28Wh4QmXe9NDY5K4R8RXknVQct713PJwA/g8Jgtc1Am69XIvGSQAbSXq4Re+S/YelBWNkG9lElvOAI74wDw1Tyt+XaVk33LWQWrTBmE8XXG1ZEZpDRRRFLOkUu+PhlzNm+Wpx18kjcdqSlEDxVtFZ0dinhigRAvbXfEHtJq83SIy7R4XlkVGTsjPh7gjz/tFliJ+qKwnXUddNx9UWDc3/RtfXvEVwiyWVlYZVvRr3Xcdp62tXtZ2uTXWsjA1ZvxOKb+ImRsfWrQWmfZp6MvPAEvYIkmvwFq6JjB9c0AF00vhNMdPJGCmZBOdoqZGRYM454zuJ6RGVK79sjb7uFt9OJzmNVWRqO79Xy4+fP1HMivbld6yclKlKFxfrfQPpeX4ZP74cP9pu5nXzyPxpbj+t1McZC2kmUtN3vI87E9pyIiteNYD/uZhtsWRIK6Tozf3yrT0l78ejWnWdGHgQYcgVNODbbaQkSL8B04CqWLhglh2geaR+cDxdFRsscDwYtrvKKWxjQ4XpGEDBNFNQd0p9Je7KbprMbLaQQHgGcQsMBpyR3ooIShdtEWY4E2LuRKgjA4UmJXF7mWAkrhFozHQr9W//g4tk0kKSKCHTCKZQWRddCYqaZlwlHfgnf9DBRShVKvEC4cgPVhYIilnouNWxTb5UP7LGP17+SeAlT8Lwoeysp0UpNCc1335J3e//JoZIsqP9++d4+kQ3tG4L1ux0x9apEaP848b3OCNEDvknnFgWeU4emK5mxU6lyFtkqbouQb/3RNYoUH/aE7sdNyEj5PbQ+UiRtKWS2u5+XQ6ZflNn+cvL+Rjtz3gpssq7HfaTRibpl1UGkuUknGDCCqDVBZR3DWuLBKEIOEtSO0yLZvDXVpqd3itpYQ9TjQDvuYovlBVbh5Rni2OAoy7/WP58rIdzaL6Sd2xIRcCsH0ebHZ0W5EGasxsfv88/Wa6fL89TZ1F0GsPmrSOXV0e6Mf518/rD5PNbCUIsF/o3ZNwLK9Dp3GoX/V7gBkmn7t0SkZBRiOXg8f3LJPBt9VDUnk565mGY+atqb9K8VV1vq5P1qexnKGNyLNuYzqxcPVU+MJIgnbDK+f2TskqNFccU9WHXhJOZukpNgEZWTpyM1N0/xyUwIdY6DwOYvyTmFIMCEtPhoSos1qQNrsb+vflpRBDADrVSSRgvq2gpbZi+QZRyWCL2qh+oSR4y7qT6GwoVywbiAOI4bWs5lgeISn348bYwy2oZc0MWFKLHS3Kpz/dOAhucYitODEMruxj9jcWg/yuiIJQJ75Kbp59S2BT8JUyeVickrPIwk/K925VkYvuRB1NgjbaWGZWQV4CIHPO/5mmZYq9HwlZionkHaraSxYR5cXBNhzJWqsajvH4jBoFFAkCylojPjhHvsZdB98ZOj7HRa2j7iono+HuSL44q4gYT/fErG35zo84dfONsn3jA3Zti26JM2r9Wr/eI8TRJk4U+3AOqL3N7FnF4ua2PlQUkDKkkttC9WIJaT1C2GsaaOmvqr0U+icaLx1FBUZcjDHIN/OtheVg01Dx5MzJZhLStu+P62+3u2Q51Iedzrl19Ti5/+qHr97d/d3/9+/9xVrvhviprvSsIs8kL08fjxR8xZrMTtglid+eiIkokKAAE8ISoRdKeVQTLLXz4iSJG81oLWXR1JRZxCqQX/3w/hNTW99AOXuOY6K0yQPUnZfviJfHB+iElwUM9hdrknZof5xe5lZIwS5QrkmRtPCNgSoN70gf10B+Mpvw1xMG2Xf7YRWRO1de1ICwYyhB4gqPsoRUEiWtbmBhXNnCQCuFHTwDm1161uXjafXDR8InHJcGHijeHI6A4iQxzNCupJ7s0t45uhr8SkG0+dn6oGsUPGxFKlNXSAqqRTIpAZC4sckFmnKtwfkQLvZnfilMklid3ww+P1zpj1xfplZ+KVdChuBh/S9//mfjXlpbOOJwdPc6ncyUTPH+52iWJDtRKssSqDvqsh8LYeaTyCvPj4pf6C5PKORbuBRcWENxMDaODUCFRoMHkCv+J7B5BKXhKzD/9PDw8duPy8Vak8x30kyFisaLXg4j6HdGPTTPc+IRWROPDezHMxPFLCshqUTwB/WkYTRpJbFr4OD4GydZMk0Sz4wem3HmoxbEMmRoZd0yYr/a5fB4FigTiGwosPd5xfJ29ix5inyKDlCVzf+Lbx//9HH2zeYwx5SD7qh17DASZtvpZCOfXzXLXjzp1N7VENX6XNPGeZPwqlgKy0bmIfejmK4R0SS5qCfLuZ0OmXpPIoBa020KGrTL3OwWFM2c/VKTNTI/XA10X001LVdd9oHBoCmmpKXe6tDbVZZYuHHutCrDZlUfCBBaphWvVlIFyoxp3pk6OsED+MISgZjLNPNGCg4BWdLVpN+4SXzpBRwtBLos6M/kjwyAMYR8rJZKUhekVzOBMR4nOaKNAi5nkrtfVFofztyouZytGXENNgZw26g/sDchpc87Ee6NyQgKigAwHNvmO6LIf6GAjJ32ZMORhURpbOnBbsSUpVzvGrxfpVOROLAZbOfr87YquxzpJTnkuFpUVmQAC6CkYCKByyMi+y2APxlShmDWAMSLLAb+4Rspz+869esaGb6e7VWnyTRkQYF/xIbSk4mfohdOyBPTU5Mk1g4NxXS8muAE/5xIVoKu5KG1l97GySZmQQhZkUKZVuI79C+BFuhPk4KtyTxtayJChdbC00F33cZRP4PjTp8imQWqE4hHojTbSygpdSBUnf4JDPZauJNPV1Akb2KdJHQnDFDQIc7PqKNSaNIPLqVtUTVzRBCXp6dVDrPDZqKHUW012c7m0+ftx5f99NUP7/7uf/DrP/vp+8nv3Q8rt/uK2mA2qGXUmLy2mlWf5nM1HP7CqNDMhjtvWGmZ8mIuAO7UhZRnh21sOVTi1rHiWC3LhRdUPdMGpczP588a5qp82O76i6GBwm9TcObrfDLjWgkWkwFkm5Wm7DmPWW8bE6OCyrRIT/KABXkno4aDkv8AtjI7FO74ZoXAD1f4IEUlux+rv9Bb2QsgZ/VsMLeIwz/YVzyaRKaHmgdvU+qlz5urnE4F5lvdXZuUH/ecO5vAYry2YCerSjY05bhmcfUw5mSl6MdUw2hVSi7fBiZFy52DMiQnE6iQgG9kAOQkjQOh6PJiAyCSYoig3vC1wYd6YtpHkzN9l2GUz67FDJb9H2kRGHR1Yfj6z37x8zd3N7TNXk/gAjkkLwzjWcaiNofHQo35BNeyT0ezyAPtE2HuNwyJH4us9ER/lZUBZfmc8bDEPBxbZ7VY9/IT7L1SLirz/f1Pf/bN+w8fFT7LpXEsC4H8+uZhLKVmfHe9uZZo1KwN9U8yDEk6rI6gP/axHNqCJ9FU/Xg6g9o2aXCd0ah3fd0ZDhPBTsv5DCcTL+MPcmQQGa4ZWHiEBnApY/k77M77IwYP3GgNLiO1oGByl/2fK/0WF54EwOXT/PHj0wdRNJKy1RhEn4KitilJLkpEZQPtj9rWtQ7HR1l6pr5lYeFm4IVoKQ3idGnhv1w9PrznY8p+JXdE1gUXVu9Vc1CdvByPK3210z3s9LKoimi3RpX2udrHoegJlQJ2VcHdq4GU0HWc/qwAwNCrqxMGy6Asar49NwJ8gnEOzv+IJp3HEW/eMPPoXMGOEEpMBmhmx8oeZn+z4Uk9y2+us7GYXPak12ERjomyQyFO8Xg4iLYrzNYdtieLObJLsZun0cV3W1E4n5dvgSHiPc16hmINj98G2Ro2CRQQCAoHFAqRhdS84roiexIkMAd5N8ZCikWIRY2K28aYrkDtXgxN8PkUlNTwH0vYOQWnleW6or1GnD+APn7HMEO+3MzowU7pY0HCub20FhIzpE76pX8uEokd2tjON5PnGXNDabMmoFaAr0oeKHzOfSLJxQbgkvQnY8uCs5Nz1GaFW0KjGBfZl0iX8m29IwPKNzXFfgAO3+RmfjFrpIxoxRKudulCceb7IQK5REo2RNlKk0/EA+UbJ7kKkpJsKqda4IcqhhGp9bbd01xo20VGMKSsJpsYu5HaR1rTu+ishUbUiogJz46bp932frWZLWg3+uG+/d7d8Ffu/vWHP51spqPXw9Z9fVuRhFvpVbqOW9q+1A7LqxUT92rvRRttb3i22WOED0lJYVo5vluyJzHK9YkBMjeeArkgyapFTZbU5iMLpyEB6MVyzcY3Y8uLXIVgUkLIbBFHyUwotEEIGGHL6IzJrklmsAHE2HIzvmCLiJUlYHtX9f5kzqOrKFFEQb8ywj6rCASTIJu9QPtBEZQVSEx+DrPbigYn4QMwRIPJYDB2wX2kyGd9tXBk4Xbbl7i+bm2kCZkOeoAgnFY8OewebZ9LXxRpE5vdsQ0fbElNO3pTsAeklgYi+3p1m5NT1Yp4FIYPIiHTbEu+gvogvoC+4RXSdUnZ3jBs3g7LWvryhZUwuHmFocrc6t9+erTyfKfCpQLm3c2mSVDLCzvQ3fin4yO21nSDwHn5LvyAHuP8zRNyt6xV/vBefE8RA/4gKQzX6ltC9/Bi+j4wAtDbXnLL5Bc/++Znv/jl0+Rpudg2m+y5l5enl7vr69evVBo+f7l4++4gI5hqAlZSDZGfCDbz0LlQ2VZJvwsRM7VaggRdrdyAoYQfIF7kk4eastGE6o0vK2c9oFfSAf0Unol2lry6JC+yfLk8OfESjAl7WsiSKYSVCCHxZRK+pSTypte6qZxf5jmrZVuv73RyKiqwNWOT5xQdZ/bODy9X63pj7igh40DsZHzIiukvqABFdsvz5HHz+DRJOnhKSE9MI/w4aNWcDwEwRXWjuF1pkLhZVF7qlQ6Xa0OydaXPREcRsKhZTdsfr7fPPZe2q0MJG/SJuGYycdpGin0QlqUoJp09ydRMKfsEr+MEDm1YrphKsAYtB/FDalmzWE52M5vtVtpAFjFQbInQrgSMjZotTi9/FU370Kl2KquD0kw0wTmefrL7Qyt2Txx7ErrVfsayEwxM3fvFACKyjAlT0Yl4DJFL5DL6KXYIh0xiw9AQm0RN2evC5g+qUA6aU9WSDlUesJIskGxIeTzy/6nb4TIDW/M5cBks6P76r+mE4CkkA6HhKQVhM9OImeAyD6x4pi8Rl8b41cBT9APrb3XjSTYad3530BU6tSh28yjlKlGLajs9LqWNknmFyWLYUeChxmm7YCceNVvevnA/a7UeKLSSrityKN6abEz2rTBbflr27IigT1tV7PWg2VdBsl08roZfcvu52ghwV7YxxJ7/05mSyll4EInYTu9yOUQ0uSxzsgfZfY03TswXjkoZLLS1BDeikcb3FoFjLwxQ7FoCy3LnXB16KXVoxh86XX7905evf/7x1374m+9+8Jt/fv9H7cqYts+1E4V35xijw7lDFgt20/6TER/vGZEV90t89U74EoZQDJ4C2uRBYvDAt2iqBEQ9XSCyXYXdirkc6le5mlLPkuMHBwoZoL84QoXWup1gjGUo0G/uEoibtKQGAHFn8JtBoHsmBaJGw/w/M55o/KtOsJgdcCTbjbCIzqCElbT5nzciAgBCiKej8ciR6JXox2rjFS3i4Hv2bncUCdEUSD4Ky0IQUizSB43NBigOcHihA1KVVXGpZ5/xDkUIyKBnjQzAZjlwpdJprY/t7i6d54p0DDUZTmiK1MmIM7zyKqSlQ0RQeSk/4+ZgCpTBRfkLOZlZNt4frrp8DiY4vaXTuLL+ACh2BjWAxVFT/i1nOfgiDzPAoKLB6tCAyoK4kUWFFF4oVJ5nu6lHeoGczCMzt4ImxWLxFhRPx0I2VLetAmu1OT1OV89z7YVggzXYnFBMWU3xD3gkaCPSTNXSn0JpUdIxlGAmMh2BjFipCuVorQT+48dg3klEhh/GVoTjZdpoGJSXNcmeZlVC4kyHtDhNFbo2PujPlopocDF2e0J5ob2wQPYZIlu1ZA9LIevdKk647q81I33p7aerbxfxoXJgFw3RDGqCTigoFuiMh9PzrEqVF+JTN3mKie1QSriLAYn+3/dfnz7dP2RfwbRjnnhQj8eHT/cnrSa4SR0vD6ScdS5vUD/22npSXTVByHHej9+c70aMCb9rodqtixJLFtQ0VNghkJnBl3+Il/RXIsOiKEU/tQrZJgyHNxAJAormn4QKsWiSUUAsn/qshmfn/3pNpbYWnTTeiXwMuwhZGErRMUOAaBQr1RrijEYheMQZ2OrWJIGQfvZKUhTPslRISGpA5IDljVQmlsOfdDHOcSMgb0JHcB2+ssX9bmXdvEAAJVXEg1Ar5oTsz6QHWFs9M9S4OhJrKxOpskvi43ZBuMJ9ThCOuaP1kbDkKVSbAr5hPLqkKRNCJqTVMq8KqUnji3pj1ZgmOINyUQi/1CGIJMZPTWHjlbC9LM+oYtkai52wpLAHFETRNt45iXsnR63kPLA9yi0jAEIgjICy1CFDf+OfwGjsgBBh4WVuoktbKTVpcgEkD9vQNkrWDqrXp7BT6SMxCjeaR/YsnpXEm8nteAxQcgzCrCYSOCgSt8M8veFxT6L/RJjYEw8tAAPbGLkSFEgZeu/+mMDdebKqKKF/Wh23N3//zfh7429+PsuOHXldm5vKHNURIdacTU6Piecr6rMViYmN2DyO54TlnsBm1LBIG1MF7LR+jdjl6uH+SzkPOUaLT/yQW0RmcgRJ/BOYtVNrKeVycoeEmtzc3iPC2K+ZETiLRaBxt4NakZSc442+A2fHgDPs6aDAh/ofHReTRNrFFY8coat7ERKEZVA34tfAGupLFSCJWoVoWZIUp0rsDCuNVcB0/GbOhOELYJ8cScxtp7Vqzuei6Lmtxn+pI5OpmLoE1i5zjMAzGDyOcBCWVjygx0YgOm+xK7k34wMiQu0bXij/lc2xZ/kKBOeHOJ+9DVG5LpLb+GOp5AMuKJThd19ZGl82uI7bYICkScVMxYMraYGitjuQYmIwfE6IW+WFmtN8wG2jS+ReyTMLSZmYtzKw/JOn+1ke6Dn5TOjRb1QKJgwONiE57lQ12GPXsG/MC5sFpEucjE9tt5mulu2XZylGwbFqY1A9gWYURLazTPK84lq1MdERjAwIeC2WJUmcnN/wFb7JpUFjQ72MD/QlaQDG0WlUf4gxzV+cKOMVTkfVv9payDkqtcSxpT3TIroJb6/up62GNILd2AlH40NSwcT2Jh9oMa6zEpkGdcOO0msjjGus2+nsk5zHzexb6TBFztL8FOGo3+xUj92vf1l7eJqHY3J4SJV0dI66nGc5dNvNIrp78BqVOYt7WatOZ7U+xa8Efg1KdDwh2aQeMBwP8vTSt6surySTDoT4iSKsBLJC2TYigR397ljM3PKo7qrJU2zh0EUkOkVFymZ2D4RGTS7bSpa4IeSzH3DfntGEhN40pFOvoxJOarAWSlfOtW+MGv1rHdMYMXQuLhjDT7WY7eDLo9htV+oG1EKn1BnHmBt6ig3ExVE0VFIzGamxNoSFacmeHqxPjyPTLTxOvqBAHnZ9zKnkiIfsUuukV7mV8LzIeG1H9YbXbn2T+gDuHNTXb79TKiwRi09RXg0ntAP9ZhNhS82piAs9vZn5aQBXesDx2ABTKsahd9ttjONM2D+vr5q9frP1PHkSfEqX2zhk5MuQhTFXET0IiaNAXL7WjPKN0yADzMXsRQe3LyZbDJGcMx81NfPKjmWyWWcwYDeF1BNAZ5YIOez3+u92tImtjdSh6yXI51Bj3VCkazquIvvSpMAT2VAxKRPOz+FIeCRGui2MdCZ9TuzclfpXktJah5O9XOyG+JCIs3QcwuIO7ant646D4sfTcz0GAnFQ2dQqmx/9xqj+d67ffK/Z3707fjs5fCBW9W2NKLUv5tqwKJAoQizKFQoI+yIJGhXtMlxlnG7IyDWwWOApgDLD1Pwmfhh1DSWqVFVdpiVBSj5JJFI/XQxOrTzAuaxUlktkIDgY15Vbh2xDOxE3caDH1md6lOAWfT3HCJIMYuCFK+LlCGhCpmTmJL/L7D0eS0cByPCKmkKgeJn05KgkI6gc8vxT/RFPpj0NGR7NGnTaLe8mmnohidRzJWQRhDLrqJaUIR6RUsBvmIzk3nFkCcRrnPegoqZJwuFNt6ePG2jREyKarVkmWXY0Y8uX7csmGn4WwPsAyHuZ/4WHy6rkrwtWS7STYHN9e3fz+s3o9av+9ViqFBKIGcARgb2gfK/rZAb5ZYkMSylzv4jZiJroZR5VbpbBfNa6y74GQDw061eAI480mDLi+O80XHj3xbtfn/4aCa3Jaoq5uc9I8HyGr+dqouHEfVwQ1EfcpemVNOykO+TBuW/0xAQpBZjkFeFvifEdup+RGVZ5eLbJaEv4oSyJz2WgmUJAxPgzF9SeQLc0AMdzX+n4slyUw85SLIiU/eSNzDUZDWzp9woTkIM+UfIKdw/r531th6PkIhACmDh+xIgf41SeJgVsMU8hh+mYIeeKlqjRgc/b/sPDkPQJKmgg7GxSxBoKV/oTuzu0zMUhhyS5mdq1aDM4XVRE5EuM22lfgorRP+yJCLPsoLOQAPwqwWzPyqgjl9AwtAu8FLEduZ/FjtwNFaUCmb500XnQUZLG81lTsIPZOr9fsMkMfMDvPg8ro7dFcwIZgZjB9ajzSgnMIi6ZtEvk7l+K2nH2c5+mcbEVsW6LtUNwkowC4jGO/+BAHiwBGjZYOw8NAWNK35iSJg7mS6jFPAqOeDGjsas8DEXnjm6Gj9MthQBWxBgtSMIF6urVx9f96y9e9V+3Rl8MLQNfxGF9dM7J9NNi8n759O188jB3irOxWEDfZJt2qr6lILb7baBluEL5IHXz4txN9qdSDK0rC1HJ5oyHy/anxyl6ISbFBJQd5ID02AGygBi6Wn3xGUMBWi07Szaq094ShpIRZkM8/bK88IHbnqWSjC+DsZg5XsrhGdY/YigpGuZrUQjIOk/9LqU8IWu3iY8OodFdyXhWBl+5wdg3O2/JLCBIdDbJfhHlMh178IIFcXIPRUFDpngXwyFGttUD6GmxpCbtdOVLk1H31cRPZPhd743VmO6fl4eJ8Q/SHJQUT3Kxjt8ScvFOAmvOpJZSzt9HCSFgAKY9S7Pg+kEGEz6MJlJLP08pNARA/D+cqdg2qnrK0mU+7AT1AXbBQppOO6E1REedixFbQh5BHOSE54vgiAYLX32QxpYTbaUoQ1u5ACZ94MwK/Afog0/JkYMMqPiUUATHZBgkrOMLCSUeSLJxUVms6K6YlpTwHzDydFBucK4NPvlPLCpVIvZMYVCBysQzguW5YQSLu8c5lcVKkz7bAgQYvUrEkgjkyEBdQtuALkRhXwzekGGYu9NL3Sis6XloMdeHHIpwyGtB/jKx+LTKCxkVOMgAw7ceVh/1B29evb579capiYPrJM+UKyorHennCwuREIZatxykFW+M/UweZpA/ukYoJrSEGz3LLue51g8TZkPKX2Rllji2XxAUzQqaDfvD73/vK0L+iy/eqfJgC6Y2FMxpzORUL6dtCpLsdk+zF/Go4Y3MzoG4GfEf9ZPKYm+kEi3n28XciQ7z2UuGgmZavRN3UYvyExTx/LS8sE+RzXl0oCvIklOemaTB6pIWrdv4dYqJk6FL8fYRtqn4gFWSi3YqHbNTQWaqNISmRTlc58rFZPU42w23VUPZAHWpf3g1bgsaaNxZIabYm8SLffC4ZEHzFed8Qey0nB4eH4BK6piuOG+KUt7q0SmQhUKTKB5ZavGMqNHirlIDmstzfXlqi9IgBJV7bhgWiu7vINqKmlXtaLJQwav0LApt2Zg8veg07uQlHy8AYSWRWi6UBGKryFRFKE7wigDIEmYbkWjIzK9ZSqsYuZRNJwnyhtpUGm6/1+cCljHn7E1mO6uCLu54Y+glL99jpe55kqqqwU1nN6/uF9W0xEn3hItWpPAv2T/RfyLpAxy2IH5+oheHJrkndUaGE6KiMlibWJBcpmLxnkNhCJ1LN6YIgge5g0LLLLeUXd/Wrr9q9d7UGzc15cruo8scd3xn0Ekzr25/0h7MPsw5pgkd47SGvEC6XIm4UjPNVE1K79ahj/UXGspkIYnSEKIC6ktsNHYCrnGelnpGC5Nir61jGktZHBHAFeE4BD0V05jpIl/5hywMFreKViIMjUyzWSX8q8jWGNKTWfVsXx5qOrsJYTYHmP1KDwOErHzT6jTOHG4iGqAUEmRnolGm6iZ5PGkCmHiIE4wo0sRWUlFo3PTMREKoM8wOj7Wyegt1OFecPxnV4biQtK2qIa5LrkjngwuiUGKYJn/6r7/+p+8fj7f1n/zkN1/95M3PH56xWhHZcoFcCxcE59D2AdErLhVm4HE0NUkujM8gFnlaF94MelLAeyJ5eBgn20muffoTerwgnTXJ2sRYCR3HLIdrSDiW4oVQTVXSE/pF0kQCqE2OATNJBZP8X+y2XCXlg7FfMDihv+gdhbwTQoYi6CrYarOLuoMKA3Au8QmSme2c/dYxJxSSF8CzTceAgDsAW/A1jBaI9UH6TQEivIxNAvz5LRAa9jGjMJTxboWuNvDNmjt4jCOIbwQFY3DRn8axHbUADDjdLtFyH6O/R6PEijg898uwPS906kv4Nr8jtGh8AaKMzH9lFf3ikmr9djC4HYyTPq9PWXdEzUcKjucgfLlr57PpstXSHC0VPQ5b4KaVRIsboxDHSOWXKSuShn8ZRrjV4xBT0rwKdBSRhhzxsgQPepHT2npdKne/U78ZDxeLdxf3C3U+OdpaqkoQWs0/Pd4/froXshEeSTxF3YtjMy26wEl6y/CibRdT+ZMvGowoKeBu1sJZ1A6fIDNz9Ry7k50h2IslmB1B5YHN+D0NVjFto1s/9nTaoRyUjlG6U/Gt6lnmILd9cgOgTz6TDwWX4jlNIDV6gMkI8nRVNspJQMRLmQZUiKuurgjOL3Xsq1KnpLtFR1AtZGzOpiVyMFyKVsmNWWu1plHRa5Pd4QQnHozBcFTbLPUysYyEbHbQ+Nk42XY62KZRXU5Oc02jk1IH8fB3QQ0KVzTCeAwS7jNgIiSUKB8uyf1FQqPNmNRhp6K6hCAQY7GW4vb0EWwRGgUF8ewKvSLRXOMrMin3BMQXHqCYh5MbbR6asBxAPMmutN9oOQ9KvrkHkawpQlK7RqEHd1xkfCtRRvMffTj391iMpnUD10jRV70WTvwMx/aMA9ZUYmjZ1oIJTB1h3xCW+WJ+4So6cm6o56bkQ3l2W10P9SJtjm/EcIjvq0bv1JRfZtzqd0aO+AY36irk07R6V+3FIyKI58tTaNs0C4CoN3qzD2iZ4zsKtSNfRf85V2Iu8BKZhBU3p7CGv7ACf09WMniBEXFUVgi42P7k3YD7wiFlo7KwhSXLfE24uIBsZSRQMUd8TGZOrTNoaiiVui83Q5h1OrtUxxjPgIqVKqvYfbOooXxQaFz40WNrWdQ8Jp5KGFLeVrmWKI6CUMPTO8k9s96IWBvOrMHZYVc61S8fDlvHulxJoNpecme91WXjNbv/9v/wP/jtv/erf/h/+sP3/3Ipv9unFANfCYYqleALiRlnoeMZK8m6VOcQSmK8VKm67GYusov2rrWhPElFaKU7MI1EUFpNsjUh+nPaMauKdoUNBd1MK5IeKQUEQ9SZXCDdVxpf0xIJLcp+SRdS/ywRmM2OMlBjWX8A7HLbLDRxWUHsBsbixrrAZYjS/xfQjCRAvT4Ax4l2QHxJXgqsh/iC0T6Zj9pt44+G7nLUkDeML0ufDc/uhwFxU9Hxgn65gMRipOz6rW0XsOTA3ThWHPzNYVe0n4xHmMEDKLgmSwYUaRLhjUKydbEC3JkPAjIYkl6uzKQysFBXeaTHx66u1N+Mx28cxTvWq3KghkrMJJ6Vam11tfDJONwEacjQ/b7Tk0Qbv5xP+iKicHMiBWSC4vHiIAoVZo2IMGviTpyLFwFATUqahleCPrw1XcXSqol749s71aDRQGyXzTkc1Ic5gP7m7vbbzmD6/IRKfIIRp9YiNi/jFL+LIMkCnk8e7z99+PRpvpinMXf6e2gE5rsJLh1ehPcS9Izeka/MLBEkC1TkPOK09Ugp6iRXKp2D127HZ0dxsELEsvEzNwKV/j1RomznhfLyAta2lQ4WVgzc1FaXhtU4O/Z4SIlpScPmgl7odh4V1NL7kqnMUdBxBPCBJbXd1w6bTuXQtVefj6qqrLUyEcfqniXMMDh0BEz3FqazHcSV1pRFsZMVWtu2quuOhMLgiBtkYMQqnYsYCBXHSUOx8q+H48IYIKGMQqQUpARRbZbFiDEeqtV02wt0b8DlM0gme/3ZsAvFeA2yRIzmK4zgGX7JQjUgKY9sGtVaOIZ9a6A/DJ4t0AS5nZ2aLluBZmaw0KD0792MPDUgsJMEEbey0sloiEgzLVLBz4zfl0fn6bDEpqa/ckgfFxW1Taw1zKzDRFjjMlgzIUokq3I1AYVVZTsRbTjIQu2wlAYpGQ7E9q56r1I4rX+qJANmU81B34u0SeCuodSgegulipasI8bqe8jrGM/Ukz59XMrBckiXyJZs3CSoMpFtbbz9IPqA6C0uwzLd3ygz8XrE8UG34Pwpuj88MPEsboZti5KvZdnJEWtGDfZLQpuF89ggijartR6/fZwXzoHJmpdCU5a5VDRCEi5YFvIxixYntdQockJDcP6UsoO2I2cJ1R21YXWtoNNNOFegiCRGn+UZR3Z8lOiDxkGThNbNpiA7YsvyCl2Il/BH/OD7b19++uk//fZPOsfR6jBrx4uVsbmrK6SrbvlpBKrQX5oPxsEusAm99/WTbh2sg+6uFR830oJ0l+4IJQHU4AUyjFMtQ0RqUCwR7GwGZqfopPbQ5+JdKHQaQrIm6NYNuXuSbRGjnvrqEJoNqk5HtuB2gNl/Pu3LZ8gV60AMYIoCCmgq7wSybYxL8mv0T9og9GVHrPbHpZqTuJKgIykcT0euKt/u4nczSt4iRVtydJFN5E/kljWKKhBV1JJaGQCNRMV5jd8Q4+BjsPETJAzA4yIanOyCjCAkX+FRInsAW+GJML7nGL97AiVz8wgvCnsVDsXRXjC2ojjgaIMstFG/GTkSR/dk6K6rCKW2yU51r3S0d8jjGlmkakVwlU4Mna3OZZ6WBKQ4b6VOaKfxsZBYJAS6g+QEGlOLkWna8FRfDNAMY4t8SkMYFySDx4GQp9OgemMJiwwwzPOdBLmXiRZDkuGnL8/xbHakWXdcSThaGHdO5s5i8fT0/O37b7/+8NGpnkNhas+QtqR/dqvWPQ19hu5W+rWTg7Jq8aX9DbxFKIXvfFsfVIXSKIoSedKMXsWHrYGOATbEEoerufC9Ifj4Gq2vbq/oCp+kwDMZJtppUpmU6rQ7Jw2mh6koqevgJ1WbOpFAHuRSrC8uJ5IimekwB7y8mPXTSmMWQWuHNgIL5FbHpUDUSsNOPEKDAYkXRdh6SqCQWL+vzrfnlp5E5gMcPCWbGsCn6eXkb1QVeYBdU4UqFiqkYFJgkyUQ4g9Rh7TTsoKPPlmNksGjd2dRXODN7zJB/Zm//cBqhduKZldkA66JJHHomAoDW9vvVjvcwxsIQ1bF6etTWnw4nZBmQXukFBM7JMZBF0IxUZASyYRuwzNI18iie5a4SPjJgscrIhzivEW1xbaJlMs78FKQjSqfE3cDr1F1LWG8b15wxis2sr0SMNU8bc/Lc2Na6xG+aJfkHgLurEdqS2+q20W9senw9F/1GXPn00xFXvz1HFbNrpqGcigcLz/Vb3+av8xjCtK/ihTEv3ykWYOcrKi+OO71oorZE6yoz/ZJIHr1pPJVc4+YBvKRqCnZ5czOV5TDssKWwPgSBOb50Yg0RoAnSfYS5IKdRk/zj9tH5pu6Ap4BXV2zlVxfSDzoZbNtZpbDTLOwMUa8EuMgi21V4yQhEBOHxPeSMnw02RMZiREAREOQkEAy5oibEhOihWTLSC+uhWDa5M/vb766/t5v3C2u9jfvhtNvnrJ/rFIh+mpbf5RN9pEmUmjdgxgp6VkNxDzJuFKDhqtAn31GAwwEzw29GX320afDrWFtCFelo4VEYB1jG7BG0zanzJ52SRZC0mgYcq7JAA0Y4jWPI4grLgqmNbhAMCz1BCBgKF6lYYfdUrAOW5M57XW/Zxw4JZDs4+DHS1dOI5+t6DBuV5bZnFxrXL4yOt9RZew78I72mdBHtJFy4LUFjNqPzAvNo+583ociRIgSMEAnIz2PSjrlnSKCyAC6imuyJNlsz7JN7hE2tssgzVcWr4gBA4n/lCOHkDOXeH3jW7K74K/89LoWV/QYWH8pWIYx4ftsti46TkuwUpaM3I6X0bxpSEF3rhInaJGpuhek3a7zrngtBqObNtehJN/sBR2acCzaK1XXqQH9fqXJv9eGkW6L4gi+TKLQPRvbvpkOm01BERihC/BL3d3eEeQITfgIuZg2Oakjue599x/vv/nltz/95hffvv+guYBiZgpQV6NQeR7pJGFRucPDFtkMifq7BP3KBll6NBIzz25SE+h1xBoPJzqMGhotxqctk43PEsjpV7osaxScFJqIAJjzAc+XslkQwlE/SE1yEyHp6plFuZGJ72mdRl+WxeTUPDjbRmBLAwgaHaJvVma7ytOppnupXoV1vffazZub106qTxGSbpHrZ3axsB+wt/HlKNmSlJEYAiEAPvSxWSyd9hITpp01h554Nsk5nAzFGEjeNUKK4hKCycaHvUmGKJ3FAvAU646AKK9cen6PfeTz1iJ4lOn639KXX4L+PONFM02trSlKxtB4rzfoilAyslwoiYFKAJs0AUX2aQOzUSqRyvKwEc1aKqS2OY22UjYEGrUq6gQvB3jzHPjDBClD9lfGHAYDiKCQRmirMLVDH/G/wAzeQDkxgLU5iBKFY2NC0N8tSpg0/iU/aguT3TiMonE9bXQ+nrrXjf5b8S12m56aQrrH2uDQEavGQ3FaN1uLY3ORIpFMXoWfRv8DPUfLIZQyiOiELW2fgA5/iZZHmqPwEVvxY0IAcXQk351ITQc6hVQvwr1XMQW4NTFkBJu1TRAlbsbETsOsZcJe8xveNyfrHNSM61eRc4Q17SL1SNYKO1oUPMT452WCcvaHc8VHsZKNLGx1pjCl3kFHX0pFICP7SUZ6ih2zwF7L1iYlzz6Yvgc6LyYpRnalfnQoY3fTtolxMhS5FVGiE0n33P/mD97/q1/87B/81/6d7/2DHz0/znULQ7G73YPeMYoi5A5pg61ZkhdxZUiqGrM1nw4OkgOxEhV0BZhoXXFeR+3yZtxX+BCuSco28eKusT0hdXfheouMQiiBhaKcxfohgPksLm1Ai4qW+0V3w/WACdMjc8/PB/G5WyFo9oRQj1aRen0cdJ2EpJlr5EVxMZaW8u4hgxSva1s6ETJkzXmXzoiGATTPwVFAy/1yT1oWYcalpaLN+O0UaVSkTzF1y+ZnIOHFALnh+GhMgFgH1AVmRuyGUD9HJXunPIORYqfq2qtrgk5c+CsKQSRAJE1UxmhkPmSDIs3TqcXdy0hlqyekEuKK9PMRslEeS3xlaU8VZ5FPGxRbrTe6QfDo1cC4UItmJTS6c1ZVdTaPZ22xVxNujxzns797lR2QqFNqqXnx0SLPPW09WmG7u9WFiQu2X8EjABrpXSSs55UBGZF/bSqSVdSjtrXdHQ92a42isbCBFdCONE9Fz0mIenf4+Pzy9cdPjpLAAIY9XS2SqFYajDEuDrU0Iucx5DO190gfsFtuPIkCuLZocsKwmbsmREmCjHKAH61jOKCI8gQl9CxPX1ktq2huqfzAJTxSy9U0yYOOHVrAOIZb4sl8tnXnOdYdknDTGQjP7nud6173eXGYKb+VxYQmgnY6yylHWomzsKqEBpIeqCLCzVtVnYexHo0ph4XGr4QlLEp+4ii2PMSn0qc12UqfeuLDDW14GlOjWdoVfRF3MUj8beOJ1nj/U9mAMuCSSFn2uWCNVfdCqiUxXiy8aGVIEOCVk6qsQygFzeRnREh5ChkRRMbVDmXr9IL9vKJNnn9YFBBJE0oWQpRtSVw5hRXSUUKkTuzpRZ7Dzgmto3FTivQHifF4ehBoxQ2ZeMg3z2JPCHErcuZfjveCEIvqFjedjaPRCoEaHC8dRR8MkoK8xgnt2KqU0+31nBGS2dOo562XD/XuuNV51Xs7fXV62+rdkMDye5071Vk2RQzovLq6xgdSp/uj1QCGagvhdXq41oz4PidZGrbAgeaJVt0+gUrrKqCQiJhNEUBQCOvwOiX2qBbd+UXkQCOAAvpmB99NMGRn2oVR/RJZGFEHNB2eIN0r7EeoXNjWsligxJRcITMopYeaWqQGS5EUXSc2VtQfOxyTnwJjJ2y9ZS7abBEzWXdih0ETDYfRaQOiOgQ+UCQtgbO0AFwy7VhaXvUDpISGMtgUahynn34xX1z94B//4Ld/93eUOf7L/9s/a3XuEJgzMSXYOKlSD6H1fME5eGpiup0TtGwIL7+yvJQ1x6ckzX9tTGXHgz1c17YWBVgWC0wRMSbgBkhDgvqXFFEB7EwLYkGEpG0myBZ6KLp63D6cJIkFm6g5RuIG89BxgNbi2NMoH1mmHJ9ngUv1Mc2n3pRUmghV4MMAIgXicqHzbmQ1SGxb75IRxYdXVqtQrr0Uh5QI4gHWKnCM2+XzqFJQTcUuaTXctn5ereQXYZYI4RgfQWT8aExhvQwvOcNl7tY9Kj2WjnsqTwj/8Ve7BuObi6lhniyL/wtkFR41Ndtl1xD+5eYXqWRx4//JY/K0Sn06fX58/FQOTSfCtJXR8NbZUowhEaeOVbgIN0OgtntCsx0Rq8k+zkbYHq8Tp+l6N2E+2cJZr4PwcY56WGj1sSFanXx5vqWqZsJoMnFVyiNyEni6bEdIGsdfrkDsMdu1dVNS6XluDrLTqJBRl5rLSmu5abSfUzGeosDMPnpgfAjUhnQe0fT2uAnMsJNRkWVk6OdNY05fT4A+3zgBQmWnyoz1CghaQDJWenHyFoBbYRPHD5NjykedhSb6V1DQ8wynMlvSA9LcT01fel6ZeVN7WGaA0zGdRf+6N+jZtPb+ptW4WeymDDiddgVM7M3Z4aPdj8f9L9erOetT4gt1gnQxx+thW1NBlM5xRu0g0ZnoSsqNPMSRnQtCJHdPnVPYhBdaIzePMt1EaMA+qg4+E/NBVgIj2+8dW5g14t5FL8WxGutUmNdLXqF4l7SRyEP2RsEjT/srhndl9MPQmdVB6ezzAImwFY3BMVXVTo0PAslRzBOqjesjtrfbK/YHNowG5sIGk1KEBegU5AehcoH/M1b0EB7A9twIeYzZQr5LVj7Eg5gZUSjHaGOy2XZUzTuIGGKkmjJacwcShnDgB6JH7JdFXq7QRW1ZH9Ra7Wm/v4uLvu2YHuJrTKcGKae27BoHltQa+3biQxqyFnzc7IVAm/XpbKOEzXgnTnBbX6Gk5oBfxhoGJgAlmrbAmIz1EfV7e77aOvcyPZVjC4BMOamRhTkHhnFvaswp0QwboL46HoUSA5Bjk8yfeP/tUNps6L/fUV3REw87Ovqhc6tYVv7M4byMuGBfimML2Xl8VAw3SrBBbZp2WtUd8A9+KM6iBvPgMMyYtolzwDN+T8sIXAzxKBIS+Z2jbNyXmzNKQygqFgNL7gIeiMmLaI/RdXcz/Pv/4Hfm3z79xT/7cNcazWYblQ8VRw+0WFWSIBRfgUr+Bz6NQ+tYV4dFZUk4IJBF17Xd2SlQ6AVUFfK1G/aSuLHR1saLxA+5mq9cX/5BzsGFCDa+4ZAKLSgiAPBTadOZD40CjMIGudYqm1sIJloejIykc4RU2/nhXT9JU/Z+o26EJohbwupoif7oieBOCpV33JJ0Q/24KfwQwA9PJe+JPy/rl9EyUPnHnS8ohwDPYPEOP3mtGTxxapkhh+mK6y/S12TzVITtYZ6LhOif3CwBRyNXCBWvIj8V6qq0Qil0EVwQ6onCkdAfayuDdSNvR7Mqd4uG5S5h3Sx67hg4qdTvHx/6mnN39TkSaTzv9dro9aQaIDzjh5sUiouUC2JEn0Q5+6uO2nF6a3s4HOmoDYIZOmwU97Xc9OU0cZ08ffz0QGZahfFwtNds9U7j1432Pv2j1P5u/ZCYrSQEe+7m+cLKVjsbZMMJPQ/ESlkJDA0mlPxyP9EvuAC2bzfbuQ5V62FXr8LjeDS4vR2xttCD5nByAGPtbDe2QGaGcHMhtoQxVACn+pfZMtNr/0lho6RTumPYjLhWvCh4wOpNKObgGMy5HCO+nlW6kZgjorHO/Ft8yjOHjj7PVBA5IAAQRQNJkbh2Jb0rjQgdH24B09Wt196PrbygtyQfRM+YX86v223WMq3URm8cHZYWPZ2xLNnqYW3py3kfDQznOHN2ENpDKmiMpzRnw/PsS+WLQAB5h2RJ5oBYZVnkKhrUFDo7bhVjziF0nwhRBP0RayEwhBBuinTgOPE2ZksGjj3wXdjyos9Eeli/0M936O+voo14gig96qeKSqAZacLBk6AENGY+61IWZvbRx/fgQ1KIdCh8m2QT+BRyZ3uF/yPn41Y26IzI040h2lQhiFJkFdnjs8wUIRFXWsgwG8KhHsa/WQ7cgb44v2QNyL1XOiT1b8n9vqzM55X5UjHtodI71DrbzmCX9PKrSec0uT2+6TXGjcZYMHAjHCZyUM6t5u6SXXvuv2qfxK06J0GByi6tavuj0Wy/UhoOLhlW2j47pE1ecbF7UGtls2JsWHYDg7Pn7fR4WOzlvGpTYaImbqesIZddErkC/V4RXA1fWhsWQFlts4s6TJpbxBjZ+rbuUlXHa59zx2i4ceML1jCCWCPOuXODBHJAWwAw9mLowWVAJpdbb0IymVZMEy4qABTS9yAUTuX1JsZLyCXb4k8IhDbc13PAbCy5QgakDPnROnyq/N//9/+xMwz//vU//NVf+cG/+aO/pApiEnpFwm4ohIxRCGHwZ6egaovoJV7HNOYBqUDN3cmloJ6JxPrmco7XpyGFyr9BBtBSIiX+iMQyUnQil4C+Ia5U3B3MSyQj6k9LJID5ky1EyUMx5ug9eSi6TfwAqeNMlJna/0aO3xp0lCCIBdUkzTCjc1UYpRAgiYTsiBoaWR4bxLJm1svKuJcv13oC0y8ijFAwixQPJ4cYpDqiPFG201myeLfRnPKK1OqOjeT42hHiCdrnGeFGBF8W/PK78Yv31h0+klgCqYXULRuz74o1YZqSCYsYzJZSEQkCNwpLCPxYhIgvOkL21Fe5s6Hnm7CNyvv+44djJelaqvJ127gZ3mii3+zfdEbDHAyhu02mAo4ShSIuDa8hKwkOilm2u4fxbaETAO0JcZVvT6uT3nrbzadPD3z0VG0MshyM9rOFMzpH69l6ew3+jruR1j1s56pKyWQKu03WHPH6AvqIwoiLZLW2QQWFMIC3ZaXG/uYj2x6Xc8dgTN9dkwig1Vr3paU6lmK+cNqHskl1bYwYgY7zAPGlk3jxKoZM7NEljERXbSv7xxyWNoYg1TUkSQCwOBxW8Ox405xWNE0MnNQT9HDsC0487Z3jro24TibIEQmgdfFUI+XyLFk2sBB1JSLLiYaeB/1xr6M9mdU6fnpC4b8Q49IzzBhcBaplygkNJs2HYngUUIHaNBqSgSMVrFkkHBN/lifosu6VZBnRPh3DEo2MRRB3j0+RxWYBZeKWYgrGTgyHfIZy07fOhWrC+RGzuCSKAvJ3mG7MoZSrMdXdHJAElP1EYWGi8AYTQlmcQ4Ta+scLbje1YyEAw1JkEgKLdRFuFtHlbUjR/JnTLWdwiKDLi1nJEXFACiKPrKUY2x1bE7UNI/hMZABizWBgZQZRBuD1rEApY6DqcOCKvxpWxpSzP1N26X5ECqGTHJAc/MJdRgBMZwIsutyfj8bdny+OP1sen26dYC/hdtTp2IE48Lp17TAOj+uDasjTsTNqdYat+rBe61+NTlezKRDfKsJwrMhsMotqmkakqMbJwHYwMMrT7hgi/R7ipc1ZF5vly34/k6iEdYoNGBjxFZDyxennT3aAVco+FLOg7J1fCxBn5hyHcmcawtFqKsQ3606hdRgEWmH30AzgEQ7FRkzfqKJIgNhNzhys5+I9KLZJIZcHYqg0W0YhEqyFwUSZ1DrUoz8IsSSCG9UP9bXSrCw5EKlCFFRJURYaKJTgH4nX7O3jblF9+5tvfvRv/8r24fj7f/FzaRFN9g9d6JjT0q1JSmrsTDnkhFJIQso5c3sglF8jCyMJaLMAny7cPBz5+9LxVlTd7OIljFZrroUoIoLCDTAv5BOciB8Q/VwyN+iLMXW8HxIvS2qjXBVRgqL4SEuxjOyttCpP5wmixpuRFBdfcJwaudSDPIlLAhan8jrSkfhwWRk3rop0dKEHIQQC1/J6AU9LnJLr6EwqqTYeQSwMd9s+a2MRuJquVc1rMlvVao+ULTxI1oYHrIo7ilbgInmTdNHdif0kvspedEEGGX70L80KYGSyQFjkJ0qREWUOIargsuH74QKPCD2FjUJ1rqg/vSziVjmepy/Tr56W33v19vburtXbGGh3fM3lyg0UZDRn/1JRMrYDhyk+14BJojt6yO5Ef9NpdyPNhaOMrJA2JIuCXHGO4359tW7UZxM1izBrzV28W073i5EWFE7tImmSSW3RUEqmni2yvcgj1s93K5oAOcaXjydRp1WTuvTu7St9ltZLzXm2mCDoFj3yHFG2XAaOOYkkcA/GgKQbInGsrgOyaWa5MyTXdfr28AYBe06sQUKBRA9gO8BkXZ3XlZ5XJ5TBvXOrmS8JVVLRecZCXEpZd7PVQm6Z+4mfpYwlDTFRmjcjQajg7BfbK6AWc7A27PI0s5AlP15NJrPkEQEtVpvYipM+AEJDg+SjNoDARLMfdzq0HQ165fAMl1poS8BDYTLxdYD+2hUVwYQk2Vx2B+v7jtpkq30n4yI+NCsKlwrZlFX1GX9ijujPKC1UjPnRTK65fKFl8/QzOJz/EU7o3qPIFQ4ZbKdgpX/dawi8eymnx2aMvPD4CV1RGdHlYbYR+5WOyWwGQNwaNHTavGI7aa54C/UgUdVDcOu7R3hghhJBYisjAzIGb+MLMCT7kQaYOL4n2bWDhCveJmdcQRKLKenRwYecLkB2r/fnrOI0wpdlkm/5Wk6Lc2WeyvxTdbptODNuNOpcO/sxzXsRY21YWQy0XjCTlMIS5/woAWvuZwil1d6CK+B0fT2K44lz98zDi4ajFLIj6QqGLuUyOZSbkh2aQXX4IKEMn1/saIsR8x2xm1PWhMvMFpcFDwiWLFdYgyYBllE1lJfkCIVUpqeKgn81D03+jq0Er9FqbCt+9PFgBPA3ci/REv0sSnSQCyRAnMBjdE8dClEKl0lsWHI/YTDgnc/Zu6PetYmkS2lEUjRNAkAqBKogZ81SB9DDaDT6R//eb03vf/bzP5462aujYa3Mhd2+dWjf9t7cXd8EwQ5XGviuDuKD8QzDU0n5F8iFL8bjSciV6uZMQuxTnqYNmLcy+gzYihHqiCqk7wPRcC1hZm1qBED+zQ+MgVrcDQggfAIxi1NWmkab+G7yp1JgJXMxAkBAOWqfXD9BI19cDBcJYn9yoyASQYCHbHGcYZ7v7zhePbFQpiUMi7kurIdnPO/CkhEGvObMjGaP84PirPqo3ewupbvAUf2o0w07BeW4z2eK4MkDy6PxhnB+7IxaSciU/pVELHMMvPvHT8zjwYZsnfJeGYMLEuOI+CsbXnjH7257kQAeVZfK6qCMzS8/PkymL7Pt7HH27s3z7ZsvaRs5XxR1SZsuS1Ommon53+BkM7LS0tQ+GJdcC76+Ij/TlMNbDnC7HvQTAhYDkOQihic3WuR48kI87QYrBVcyjbadGdW+1VVT0uGrKUZACJohk221IJDODxI+QQhNESR1a+6F30Rah7bz2B/F3ac9u0MBNMiaOT6UUq5xSKQhSXt9yw1FSWwoS6ViR4mXsNPuWRBxixiTCdlRIMp+2VjLSW9cLmvNrky9mXjD44TD5WWyiPtFDdPFFCsV7qYO+uXq9luNcW+gstpM3Uijw4rjj85L25AC+kpleK70+xAcRzdt1Wyy0wTU1nD9F8HF2UB+vLJf1lu1D11UJNWMO6X1Ch0Wbl1C1QR9/LXZDSI4rMO3HgnKHSNgKJE1LQvj8o82EpAJnRYZkItgkbUlwzLh/BFLPCwW8g7P+x1jyeaOHA48+XzcGmjHJ9wZXeiVpk9TT/q7lJPzhqbDCyiAhPEJOAseDQq8bxJK3M+ooDUeIUtH8S/KbljEKywpM/Dw4vC5PA7te1wGHRBkRknSY28IJEYSGISrDTZ0lxSBnDcSCzozJk6sJz9A6lY1YxHeWc6i+y+cAbARlJShed7wdIt4bc4HFLPZTfefTIvp16quBqMftNuvcrPuK2fhXU1/uTrN90oGeLRbAxxBC2rnEPEpHWMLAnsO/1U2O5JRGkkH+MJiwQqYbhbwKx0CDvPT6nk/e1gfV7yosUeJMReyDc0I+pNz+DEVbHm9eLbcIqt/lFyUOA8UT+3aeTVft/pcjKXhORAE3EFs8T5bm82k6GVDWaURHJwvEN3bdJ/jRsKC0xGC4dbUkcU+gjBCScQKn3N8STKP6WmenI5zKaNyJ2LPmjDhrKdzNNmFwdkIMFki+4/frv7P/9v/66++vv57f+/fX/69zr/5f/4rKc18ou7zun87+sL2Yfoao12N53w9437VcGXBF1vaYtBhC/ZHSUd8LBAsAOsxPZ8CvyFt2qRQCuuEyz/KMrCLs8OcgUGo9xIrDvYWvE6AIWTCJVpEiEQvVr7f0X4M6yTtBKccdI9Ywbo7c6mbIaIkN8218Ajusqa4JXAfgLMM+YYbdrE8I9LFSIwK3RY1ubxeNLskrFH3LBW/jSgNjGNtaG0jY7LUUrHOqWszrTE5CnOnyzYWPs1zbEOYkKdA+IGVYfplUyn+EcuWLh+xaMAVuhifq8siZBDZXO9jiGga3gioZrVyY2ulbWXAToRGrFN+A8XMItDtknUlcJEsP0miUt6EySixQQr3QG3um88bfOSQT1hnDMjzsHFkvHPXvnz3TmIFrY5CZFsjcTEvpJXEPnOCwmn+NNfHT3xc+L3t/JywUYdziyfV3ZTGBqTSlgrxiH4AApupswp1JEZ2ZJ5eGfJHT136guUnRhYrJq1z6ObOd9bMwvWOu0G9lH00lOHKm7asKarUdeesdbK7Um3iwyobGy9IQnHHY2/D2Gbk6ljDfaVf2/N844Sj+Bbp6cFNhGBUDsis3w1HyhbGg5G81f5Qz4E20cuDtFilJaxuc+jCOg2Hdz0lPE4RksW5pe0a4FWv1w+CrlJFbMpk08kZMok2iEKGj2zcrrpen9dL/1rsJNRsgsQ0BTt8xS2rgkEBh1V2TLle/52IGbcOesYCCN3mR3bK5/wRaVD+AtJRnWjV5bzAEo8Nb/ugfBlLHAr6fHFIETRdZACtHGwhiZq2b3pX8FMakCzEpCQWa8zlZCsgoevuqpJlt/ODzu8JMMt0FkUhtXOAOx3ebcNd5UF5XAHH+Pr5vSkOKaKIA+DCembGNybKLOjErGYZ8ELsebF5hbK1aBvhQFg+PDp+OU7HiTq62nnMhaech0i4cdkLTFbh+Lra/JZZd7Wf3lUON+1zn2+jgyaatUNfEwtDizkPUywTkua/4vGJ1oJQcwLlod4NvNLb8UnWJ1V+pBCcJEZxV2W/OO8WFA6CO1kKoddwqjWykxabzu4XKZ1xrJUXvRfrAiRgiKxJiB5b8J8XXW/rtFRqKx2yqVGgkdh/8lBo3RpE+HOfRGGmelOUk34aZUH8OYlkzC8PD1dCQKwkhINBBQ3BUciBI0ibHsLJxHnF8QRtPaSDaIw8ujjujMeD/oQStzwTg9/6h79194P+/Pf+eF9ZyFznfVOT0+lIEu+OhP7rQ/k7S/1xySDHsCxehOBeJs+T+eSSX0eHxOugChtYF1yGePB9WibhcHxHbMaxF8Az0wwkYPR5XP4BUwH/2INkZTDEa+4VpIr7JGCIGH3azAXNcRnYiq8rtyyPsL2JnYNETkzi25qUz+N2u5S7++bn8btXsubQKMgUZMVXXvBIX8Ev2qVagaUSVhVpxz09BtzX2+1+zLhYmkbqs7IVrKLddYdstMcGXFIlgIU9ESXY1TwlzbO4/zEC8DCd7OLFHPJkf16MAjO0Ki7wyWBj/ikj84rx5cvo8gvjtT2AvddOG+++vR6/GTrpfeQMVUTAB6KNV6873Ld2rWh7bgWMyqfdyIx9mTKPDJULf1pjQY+2Kub24foasvCAWRUGgTF7P8mGa5WHCiMPi92SaKw+T+Bts5tTiIRLmhpAp/2pLmyJzLgdqqTFQAB0DnhEmEMcZNZWEU42hIufZ59SrdsTyqiuPehE/3+eKSie5Jp0vJKX02OBMcNwSyyAbhcDxPOeCv1sFpiMhDGh2PBxhh+b22qjizVwMi9oskD3h2++/aVEC3LcY5iRZseJdT3ST+luZOlGt8PRtbPMBBLslyOtJfvMFpNP958M1eNe373b9lfiu3Zbxyv2e7vdFYLodfpnLuZ1YrfZ/3pLWrvoCBcckqDvtyv97tV2WdXERYALn4BMhMm8NwY+IzuMenAjikWytjdZTCSnGRLNaBKVZI9E2woMIhW7h+QsfKE89GRhjbpoonF+BnBDclixRIwCGNFYIxu8VZRhNSCt9m27feNEaaJIrKrRlRVTehkiFNTheclgmh2O8/N+mp4syVVvxDuNsbNxxh6Cjzih3MAqIOvbQzgZZLMKKxNFiCAKhu+wrC1vd5gfOaPJpBJWRpzYyshsnh/aR/oFdAgAFDEQ0cU8oq/EPR4QMXuArsx0NT08vd99bL5cK8joPw97nUN3TPgJ3kZZrKlw0Iu/7VfdSpz1CWiJG377FBKzCeT+neqKfqNksNaBFAmxXDA2xKM4m/QW4KCU2Wb8pF6cXxRtMzXqYlrlF98maxdYv2Xxw6U0MQjHO57emPJHpMbYePm+lqANs3WIxZs5Z4ozK2Ld5KLzZ+8iMAgabkuUAhiZYhvhDzHkffqWAELd8gmAVklgbfM5Uln99MBsiIZAiFwohLXQ4AdbSppbJMJHHERUW0wCn+k5kHPr6JLbm7f3i/Uf/LN/evPVu8afnMQ8dE53np0FU2p6ywvefUWTS1xGXcRGFvX8cTp5ePr0KA/x5UGShdJ+fmPmfrw8IT1789mdYeny0KBzVOC8GpdOIn3cpNYwkYPP0AaQkjJL4CjkEK7j4PLuRblIynckWNxGsQDSc1SaIDmWGu8sOwqL/HZP7OCZNiGQh14wWJ5reWBQ2CVbFthNpmVykF2XDQB0cBIrJ2CwmS294YSRCCMKy1UODgrcISesZkYJLSgUd6tyQ77E0KahYLQ8GtNluYvmkX1kWqfGJBEHnwmw+4ok8Icxh7ShcobiNpGbqCHj+vyFqv3lxl51Xf17r1/94Ks3t+/eXveGt6PRkEtej560bteOW1QoTeniTeTTLDGhLE9Bhoww60JiladRCkBLLBJe6Vpb42zNt7h0rFhIJVwRBYUs5BxxekKa+1ARyITdeTHPfpeiCdBPAJQDNQXLZJJ4uAHzgFJxLIipZpo0F1+SVtNoJutKEZPAtb+axVRUnjWZ+7EiT/ZtgMkT4amSk+bgg3BHWIyPimRWN2VvsHcuYiDiLNPN6ksskb5TOV6LY/Ao5djeqUi53H8qIGSTc82zNR6NXr26ffPmjY5545tX3b6IId2xaChXV2SApZZlpCxRVuhyMz2c3/DY6CuDy5QYWA6C3ljYnyKumRtkJ7aCZNG/bHal2tkpDtD2S139aVnkjl3GmFE0iCqKL3GmPYdc6wAlWEUiQUIbjVIKlme/8povtHv5HefQVcNp/D15ZpgjWxrSCkg5qjC0992XT7o6sV+nDtTkzQmw8GezV+r6FqpkrndbSryUprpJuoEtDzv1tI/b7eN2/rxfz5n8DrO0A7s0w9NCwa5KkwGJvqx7iNbzQq/hQ47GypWSunalw+AIx0QwRFEi0KjaCCuako/EPPdneqwW1EBX4gv8P5dzHyPYdFUzcgc0y+bpyBvHdyIvEuirx9nVS/X089OctsCScKs3N+uBBtdgkF1qee0IQG910TIGpok6xnlBidOYOeBS9PJw1WcQoF/GxMz5YyBHZ6lZhZ/JanA5MnsSU4iHjUoaH1fZmEgCL5qFb1mdtilkSAv1N0947HALILHtcNWp6KXI6HYr5CIFgeTPcZHZwdzM07FafEYlxSeKP4hZqUIw6SAwTo3NW7Rsx39hH4+n0SjOj/QhIZFCqqDifraDzjzUNAJWRT+N+p9UEzAiN9fZ7qTu7XH70//sX95Pv/zv/c/+B9+/+eK/+E/+1VW3tz1N6JESQiTSXQ8kv53laShSIyiRDI/Lu9VyMn/z/OJoqKfnl+f5cjqZvDgQSe61J1uI6Lb2Oyp2oL/gXEg4Jqblia0Q2McF5mK5giIAPd0JmmjTEfByLoZKFJMLTrAWJEseY0I0QD4iIEXk2QX53l6ms1eXre20Mdvv5lJZOO8kW4TLTFpJXl2yUFJ9MEpEia/U25LSifH6h1sq6lgkMCnjbUqWemTiLV5i6aDKwjiv0xkizCtmtVYq1+t7NoqN4ZH8EUKw0EFhhM+cYXeNvDiLg7gBfAtQfqL+8uWFwkBBySxZmBCJ2ahgKPi8cFkQwBuWjN77mz/+td/89R++/vJ7EpWG3YGTGOhXBQ3xlnMC0oAiS82by/OOAi+iJ6MJqSFN+OPpqbTj1BDgnyuRz8lw4t8RrjarrFeMHIvWbKmqCszKk0tjJiFQzpA1zVT0Tj75sdViU4EIVCJalHzlIvEzETQdpT8FG8o3O92BHZTfCan9gjT52Lyt/IN+AfMj37zhP9l1NmG1RBqG7H5tG+38S60IhGw7fOw6MGT/PCXC3bRst98jZxj6XerL8u7mzcsrsetu7Ux5MavixBOIfvPm7du712/4/4fjO0lfqCpTDZMpWz+Mpyiwpw+h2ggxfyLP4biJrmgnkmiYMmIZGvpIjJISm0Xl2QtAYEUCALZcVbscC3oRayq0lIioz4LmwglaKMx2wIVM6i3EdSCh3EGNJwPrQCTkaNVCN0miKIxj+7KCTAEfTk1xGMt1oaXsKKKJuQ2b6M4XVncTfmqfKr/E+98NIlNgZBxjq7h613vnuRNV+JH6Q+0p7ac0/H/ROv9wWla3E6cirIHmUgm5tJKrbbN3JQ2s6WgzhIkzBbYLRaHZ6IBGHsQ3kTTCJG+QbBFFOMrrztuKhyeH3jYkBSJ3Wn45TqHoUyzN9X4O/Zfx+0tU0BfQp1hCoX2W045Rd3T4nXRh2q0OaHT92ePx51frc+uTC5xfdnj9usG1lfwHeyC3x2CYORKRlxN0m+qreAIw1lEqzmfFmauczkPjjlaImevVTe2wOm2mm9XzdvnEG5OhejtXFAzNvuR3xROAFR3yAsVsC434AjVM0/qVvKnqgofP3p7ru/pmoQlIrTrIaXB22N7R1YyKkVtwkK6VXbY6CWfmLATgQSdNcYDdBVCIgn2VR7LfqQ0thXSxPBK65wjnCkczosJa4q73qSN2o8pu4Syy3EZ6WFQBDCNQwMZqVpbjcfPXf/d3/vy/+Om/+Df/HEnzpOujTcpM0623Nnk25SbTNE1hkhatZ3lzOGi/uumtXr9SAjmbOd/3RYTg5flllqobiRyqNxIrLp7uA1MyxHZBsyQ4YjJaAsKnp9lWUppXImMipcWjwo2317c37POhuCssQloWJ0IF1eMChGdzA08CKR6jgDBp/i/Leff5mYeIc/TT8wOM9lS2tFP9rvvjdzeveu2W2vZhu3M/mTG8aB+8EIOhoGecGJFAoVwiOAELARRLJdeIgmgY1NZgUkFFyYniVL1tr68qNWdT2UE9Wom1KDSFPALhRUPAoGHRMCnyhcnF4CjGAqjB4iGW/Mz2F7ZHYQWjw0n+D4+Xiy7w70KvAo3f/lu/9avf/17v+m48vut3h7IRNSx3KdOdqp7UfmdprPQlNgxrjwspxpleFtsT5CzySJsp17vTLvm8lYCtlhkgKkYCWeaIRL0FLAfDlUpk7d0LvCa59MxT5ESv+LbCn8ZfHhZ2p3JYkoutgI7j/mMNyz5CWalrjUoSYWn/s6g+jslpNMm9dW6jw3L5CNrS8COxjZMDqlqZRdQiL6pbDETB+BxAD+YFMJOhZ34IS5Aji58TDnUcuBm09qPh9u4OI47b9dQNhCJkEfVuX2um96Y/etO/vu6PxqwSLq980sik5oNzSY+rdQjN4dTpBXJ23oWQ2+i6jyztqkmYNX9/mBseqxchA5T3pAoczmRG5kcn3tSO8+NcQotsmTh1TNn9EJPK2BMXeCnZwBSs4wCm1QzegVNbD2ZoUhw+VsnMbEvcBfHQYPpIifCy/yPuvZ89CDUV6isU5ClMOT4ZuQFwSDeueO3qEm+vG7W+8I3djGqCX31OGiEIrCw5f87bp8P8YTOb6dw9W5yk6K6Wx3l9cjU6roadm/qpl+hQo35MSJVmGTUzmx+dLdZG7LuMj2CgICdcYeiRbpQ1DSuSeJoEAbkIyNBUyAZuduk0lFNRX0jh+kQLcis/kZkwl5QqxdhqeVuyiXVopmpPq7Pj+Zvqqnp+TMot94Myl27vClxl45KuH9WY/ylNv7GpF1SFdZXsWeGo43G/X+zzYqNIeXN24ml6FEbW/o8rpkzBVLJQZYkttcnGRwOGamkDYqMjy00EAyEz4geiqTo9T8/tUbP/drA6OpVFZutOaJrrrZKUNIaaJFQJWFxLHnOubjU8CkXRNsw/+iosFdplu8ad4r1wGyzmIbLtNg+kYNWYUZJhTB6r0aVRlnSrg07pzj5aLyuz0guat8Qy8p8yUk1Kn72l+f35n/7RoNv/8u7LH//t3/jX/8mfWEO5i6Jx04kOFsmi6wyeVUWNRuPb8Q0HEavGcYmaztxej5XbLWhI640AsbPBeY4kCy3Twzn93NKnN8nWsU/hSGq74mhLWlbUggJtQMC7UESxpZDD3c347u7u1as3w+E1B7AUPOSNnKFK8A38EJGFHWwkdQLWoC0NY26Wi/7gibdQF4IcGLZ2dreluuq1Bq9v3n7/ix/cDAZcF0/XT7fPz9wKnt7taJtwPR5fa4mWs6QYhSUWz3xiQ7AiLDqJ3hPxpNjiIYMGXSdqU4J9zBAuIvV6vFUF43WbziCpQTDcniKreL/CG4Vy4svF0AUp0VGYHDwXTS5M65OuzXQvX3klvJ2fgMibBWcDmPVf//GP37153RqOu6NrlhNsuKr0GanKubio1bm6OD6UEnuhl3KpcXcFZAzG366Ue6Pfx3LB5pYVz9FPW8g05ddSZYBGpsEaLXDN4+GjkMvyU5eE4Qlr9kN6NnGNYrG4/sXmS2KomWiLI7wYF4HJx4Cm0FnN9qo/GJmRjcm2WjZMhPuEk7v9Qa+/HwJd7OEF2pl8BxN3D9JtvWHMWjpQQwOwI922rkc6oepoxPmkLR620NoLB1ggrAP5CBvVvU5NIK7GnDF7bSSo5BoL9wYOsL+5G9zcdKT69ocCEswGIwTt0X9o92h3s3UHboiE02lzO/2c5aUveW4cxRa/mVAoW5NdqxIoqreDZmUxyd5Q/ZDMjzhPz5Xeed0Fl5WG7DkWgHXNIuJF3d/gMrLwUOBiF6PmFBeqOcSkyWFVtp1hxP4UT7GyABHL5xcNG7TwMwgUE/lbxEbIy5KGzjzhgsWcVARAapfIVlltI+jDmNE2JIlPrqb6cY5rvaYJ71ahy/Nh+eGweNhPH1ez/XxScZTNzIHsl4bym7mNqN5ypDQHSQUV2gZREbzmirdFgIP+F6y8xAbyJxIhipBJ/ONxT4UZ7CcO33XlA8Uk4tRy/mrOUEMwADBOlSK6DD5+Nqdu0mcblZVbmZqbrK5W+4Zy7UfKc+2F9EDVkzfLu9t+L9kQnWpPdcChh5VNnnQReSEFBN/V3lkxIiwrrQ9KlN+z2N9msts87ffPKmK2u4f9cRHB9t2S8jng6kBXsbS4gINlBmYwm0qT6OppfXbUOasjSyVMUDLM1VrEfyCcNUw9aFKDONw8XJu0+FlDAfxT1Cbh02CkUwudu+P02SWjMRljpfdqQqKiy1F3EIEa/3iAAKBTE5JiqLIw8ELaanrEMtvz9Xtb9XFqKcqJj8YvfYIO4mD7fFGXaGq/+Nmf/eP//j/+9/8b//Yf/Kd/8v/4j/+z6/3RyZVOB37/4Rc+WW/ft9qvhi2hsrvZzQ3dfHwz6rMCWU/1+oAKphHf8bS+jbeVpRgnnTA+JTrtXeKFJQRopf52mlcEADOV/pLDJAQqkHYYiTrU7/ToswJy1+O7G0kZfY7tHsUc1AQni74s/l0wKEwR15ldZ7hxDuzPXXZjpaGO7/5x+r79YVKdJGFZY95m63Z0/ebui7vxCN4MunT+oUYwOBCAeNrw+qYPSAkA6QKlw11Ou0wvGYqAwD/UicvZsOPzTEKfH9Fro2tEnYtMwpOQh3YaARHsLcKN4PsM9zjbjKPch1kDavktplhx3JSrw4mXzxVNLht0kQkXVoq8DLtGmam/evO2NxzwTgkHl6WI8lk+IPs3cX/JobEklVBFFjntXBgndoiL5PHmkOwFz8ZsOdEVZ7l6mXLoMvKI9dbOdtr1XG1+VBB7t3OQrmz6OPVro/GIbNvovKfJRtVRP3NXgHQEoUoHYRpi5DZlNTkgkSKMMZ5d+kljteZe763X7a2+yME0+wqs6dBi+8NOe6VomD83tkqc5HjNniESYGG5lS6o0VmnoTspVO9q4Dy+vrm+dSgIQZDyMZ4ly2HKSeNKBwgwNR6P2lfnzbCPJq2vyGMiER2NtMeqCFX5sil8RxMu+2VzonYTpjlWs2X6vZ4+Ayq4dJzWZklroBzuSr6gX2XASaQiHgPEdBuJ/3LpQ3maWNg5c+ieV91Kv3nq4MMUV5oLHoxFyPOSPL/wbYQWK5iW5xNcDoF5upFdSFyjKH6uSaDUlZmky+GwCTG1i/8x9GOLzCFfLiq6P6RPznlaMlR11df+rd0bth1iTX/B/9ZKpgDiRM7rhV5cp/XH9e7hNP+0nj1tof80afg5S3adDhbah/B3OLlnPmq/RvY0hVpFLmcI2sgtfLglfpvSUQixxSsFb2Mn5iflhTpD/aTvpr7AKiRiHOdRXOu8pYmyeh2kQv9WZElCF+Ukg2RkEWPeDLLFVtiwayHAqsYLeS+QJUlltv/wuLp9271xaJ4D6W46rwbfG9cG4J5ywBEv5tJ0FKUiQmukb0roL+oCG5rKlISojai94uP7/fYJp2dryvaAS1p3punA9CBBReQzdsAlNUfQW5OPU6X0E/Qw3n2qRCwLR9uf1rNDs8t3S4ghea78BMH5DIheXmjEwzhHlqklzMQSgVc+xmJEs5QwLGKasewlLSWbj7FoLX06BVdpSkTXqLXIv1SvbGUd0PD0XidTHPmj3EYWx4woZSm7NMueo8fwmYLAyqvh8ONfPv9f/nf/5PHDg9YKQkB0nZPy/8P24UVnJT0x1p3m4Oll9lpAeT2dLMbDcXzPeCenukf5q4Gj3vUwwVrJbcQpJzD3/MahITkhSgse8oBJwMyL0yfzTrVdQoteCmieednHXccbjmWZ88cwvdFLbLb4P2EeYjdL+kNgGkvg8zCSyHqrK8RiVhrfUSLp9dR29IMU7RyJockhTucpCRaGZY7dTQwL/p/BYDS+ue2x63u9NO+UGqOqwzbwiy+XNGlWTEqjDJItxXDwnS4D/GMODFzxjpgphdlBZ7F3i+nt5wX2ja/o74Fx71yoOqxCdCG+MHH+B25YvwiHosfBvpLrkY98VutyGxcXzs4/F2U7LUeSQ8SbCn+ii2kQt2WB8Zync4Kzp1ud/phI2Ai6Uj3M3Ei4ejT94bR7fnh4vr+fTSde4TlKQuTh1j5Cr3RUUAoTsa0+DCVsrFt6fdL9CYH6VX+A55Rxvcym/EebKrvLJARnqO4tBTo9W0yHbveVbS5a69VVUyPuZK4yzUiBzor6kPCV9ba+xgVbJZcOel3+tQhe4iXmvO5eckySPZNUsv3OCpEQjprx1gu/40Rq8pwUuL29scmtLtIp4sNVSKtE27zavG6gV9IsOioZTb8hA0rf6bIHkRk2oNAU3bIGExkWtpy2JT016QhxiMmtEAJfUWTYBO16aznb3Kip3urPrvlPIggBJuFMLU4wPwnMvj/XetXt4GrcOw+W56m4NnKIsgz1eUFPmo2UHEKIV1IgAeXF7GHY22lX+QoHhG9CBDY8aJsFko6Tn3y/IYCAUS6AB54LN6Hw5RuACjMQc3KUkmMk6b/HDBKAwYd4jHqCOB3QeT7PHTLSOInizFmIG2n40yTjq4WlQm63wIn2qoj5KFS/OnR2qYMO+ieuG29XsJJSm+/cMAo7Z2rIPaLLm0Ujil2MurNgXiA5IRbq8L+irYSvw0FF98+wiwso4849i+8wLBB/SAbtfzqlBW+cH2rvF/vnp223tx/cbW8bixtl77/R+PHrX3ur1AOrWptmFt1NkaqUIDp1HE0ei+QsqvsySfVMWa+vlqtkfZoCoLWkMedd8Rn9U9uxq6iMYP/GbWX9Yeu20ttUBsIj9Rq/ZLpryl1Laka7RZFy+Fx9LXkak8gEwAsUbVQXQ8eCEAdx61ssIlESnebicZ+jVntjktEM9MOKrwfTJ5IUMRtvj5mE/QOqaIP3mgVAN4hmrO4BC38WADyQhGfye62kexozAdDdVxcfVx+q91/+6M2vfP+Lzdf7T7+8v3I8X1YllCwwxx21aCzmG91XHkdPnKZxm2AQitd4JA1FwijY9d3utwZGn/3BaHAjFR0qc4JIfMLcXzSzAuRhJRNTsOkpRpIdPQlS6b/DqUuogFQZ9E5RWsfPEos5WgLPGo8pFwXxiU3E66Au1gRrZhzM0bQ7Jwdk/EldDywGdZy8QFRbpdA6rwu4Zv2xCuFOcTnADRvjdQJAfY4lPukbEB+5GGkKH/zvGHJBDqfE0p6nIoHzZMXEacwHF5cJapAc5xkWgGWJWrxXxEJWJHoNXvZqIdxwQ/lmDuPy7HwhZzsTn1543G+uKK/m3/JrXhEl0tOu1zl28LMZ8z5TXASjhWWns7XiV9477fygdXeImTrCWuLs5WBSuGECq9nLw/tvP/zylw8fPzg+TG+sdrO2GfSzOsdde8c/yy/JyUrc4XSZPzxL7dH4Wm+rXn8st8EerDYcTbXplFaw5OGDQgm7kM3eFVTRhZGaybR39JYeSg3BeY2otyC7eAeQrKwOgf7U4FNibETxqcWnnpy79LnUFg4s2kn6VDYoSKiUjFaeMuvQ52w/QWHRS+Y8gMNmb05COeamWML4KvZacguZ4K2B38Ih2CToEaDFf8nNRpdF+UZOohvZT/7p3sCj9dzWDwAtyrlFGuvd6sPHb51FrmH+mi/Ced4ANHXwsd/tIbzYOqVYzyEPR2bRvq+6tcHgfDOq3i0Oc6FgjRTQSPQmPUiSBaQjXIgDBXAloR+w5NcYFrEVE/WFhugULYcGUraeEIrZ0EtCboVGYhAU0oJW9oXif3GdFwzNuSCJdfUljFBjHXN+ZnOlXAHSCDx6MrPvUD8uj4fn8+ox+76sLPmIuX2cZ3moLJNHGJ2KjsQsxlQMfT7isKZHpAjFd3wk8dIxAxF8/Blx5viDoUwHp7HEz5M9LlzCw4UZ7bfEawd1HCprJ1N6UBYyM2RC0fdzy3w2LGGnXLA8BnxpyJo5iQokbxu37BrOgzm9ULP3dUdAXm1HPG+Nx9PvHv/WkNGC4qi91b3AXtpIinPR/jV6VCRo6xiG0OnlcHo+7N7vxMBtJHLOfDKXeIr8Bj1Niu6P6TZZHJLA78wRR9LzAlG0+a/UItQ7B85hqmrjtNEE93T9rl/tJjJnIZzCZhFUPRsGHEN/ODUnkoM4dyKJYi1LxiIeAxLuwjxVlqCRgQTPOKAttG0W+K2o4ecHwnv7LKvt4epVxYFnhDmLMxunlNEKqxDM2voSTPRfmoaf5w7gnXy4+7dG/53/6X84+ebTH/zTP4n9idLa8jKYvAgsuRg8+1fzhX7AL9PW+08fIfXtjWMJ5Yneja9v37579/r127jFeRKdz0YyAbF2fb+tMx+wwW5TFdhzW4PlNEbNVtSOmCH1n9cLu6jVi/JG4UdH1qD0/IXgojRcyO5H97eeDFeeZtdGJbI0ZVfcSc7Oy8un55dvJ7P79S6FnCjLzlmD6fzl06dv9BrjrdEeeDrTK3zPhcD+IJjp7kg0wQS5YaILWAFla4op92OmodiUminYDQuVKIF9VmbUYoY38fb5mBp4EkIp6IyDQyf5x3/GEY3NO9l63Oo3It/FUWfCvEXFsx9USAprxKMXoy2VJNp8tlwe5Sm/FMFSn0+e07deI9+O0wpPRhSr5Pll/jR13O7k+VHfOvmLPEWqFmwMqRjhRk6sV45teXAi1y+/+ebrb1+eH4A7qURjIQYM2ty6/ZWFpS9L7Jot1EMtTZWol7pzc33H2aJPQzxfiQJUb17Jw+ItcXaAoOxAT7pyFHdOFacEN88Optt1OGSdKv7Io5yn68WpVSfN1T3ZYMn3FRST+cV+Y8GQtFzLPIkOtc5sfV3p5RvOIQPgltZdfBo1VppSbFkhmxldXfufwVBMUyYZsCthOKiBT2RbK+LuVFVwMDgsK0sJJQY9/SK+ZsH9wReT4Ie0WYtMOZD8oAocqzUbEf/x6NdohU6zeWSaTJZTjo43o67Eh+tO3xFiuU802iT8LM+LgTaqhC5L/VRvV7uD2nhcuVs6rERet4D2lTA1p3uvdZKdxJr1Qd/RBAyQMAh/FEUA+lufkIf4AYrwckigUIm/ElxHLJf2gagJuYQOL8q2HTDIEgAo7JKZHvGwAGRn2Gj3Nf73QHpLSmgkO56X1c3jnvNn/rKey/wNukENeMfWiHETKwMCg2Pu5ySr5Ewt9M39LvGp6P6GmqfHDxjgjI0ex4/ipJT45NyhXA50rHgc2+gdp8IEHvio/x4HYamPZJ6ZEsx+WpkwU3AW2koQcsChZKHlPNmiwWIfNDUpYkqF4S2oOFwt6odVO6GfYzLOmunuJsRqSwwpUj71kwn2WFLVCRKiziTd9Fy535++XZ+f/JnQdKaQb8ue5SRCilpH8ScAeMiV15JD0JebiwUgfO2tc/tw1RCnkOJ5ToF51kMeuIoB08XldP9xx0k/Vgq1EeIrUiP5MmYYOXtaSrwmIxCsLDuLLc0f8yU/VX1V/N4XT2bCAamQgC2sJ1wY4eHjet/PDuupxi0FoLiUeAFk0EaeGX/bNravhkJIlqNTOX7Zbf/09//kf/Mf/R94sV6mWym0x7Nq3213IIK1xZyiEVaJ9rM9qdbnf4ElNYe/MgTurp/fLN+xXekFxBL8xGS8DUEq9M+7oW/imuu1kKWPKpRPDanrYhtR22n1xkO5QTMmwqRFURr9ch7x5708PS+VNYEm7twiX0RkcXhCsO4T1gGtdsJ4l/dOmvr4y6enD2KbWCRv5YDYjZKFn31Tf355oJJJYuSyoDl5rrjjY7d7s1jcTqbDoaNPxAuSP8mxI4VFcPtpMnueTD/cPzxNJo7FNpLSjj6lZmQPMLKDfjXgRM6Lvol88Um0TEQc2g5DeAv0G6x1sy4F4O1hEQs+nxeMtcBOsgiThRAo8FEPuHz5w1/5cN6oz14+aYR23GmOLqX3MF8vnqcv9/dPD9rsPzws5i9E2nDT54eUJsPod5QVunO2MsB6eHl6fJ7cf/zw+PQssipwTYzqXUnws29gCGcdVdMazNar+5dU59JQvzydb968uTVJfIAvS+ojzbo9GFwfXpmy9MpeX8ckx+o6pZFLPTLCFjXo8nUmcKJbrIk9ebJagS31xprzMCYKoeu9VGWlhxpKjfNyNyNli0UB47hTuWUgCYhOfbIqqEZTmLbRLDmp5DgDzUIS8JtoBp7PoABGzjJUu9HtHfSw0waBUh3li1JDvKEMajsy2TRWLiHPqB4qnMnLmGACwuVAuHOSNHA9zj0TBbTzt997d7NvrKdaTNJo7HGUAQaNy1CGU9nXpy2R3KpvIItW42cJUFej3vm2rz/FecasxUIaGLRKXiaMjllIVcixebYC0SasFD6z1yGgvOsnyggxYJnApjcCScUaSH0WjHYdEnFD2igVs3j/VWn3rXNpZ6s8gRZ5aAwazT7duuBwWpWl4dcOXjyeFvfr9Qs3J0ACrEH/uIkyAjFYj5TUSkQRioOUElgqJpNOZ4aMIYrTKaMrlArvfDboHR4nxsRB2VcMBTVLLpVRTpLVI5UAe5z7mMPIM/gk1EeQmKEfxIAFit69r6zWjtMp3/PqbFOdH0uhlPVQG8y6ijPMrXKMnfBStdsb//pv/a3h7Q2xfq7L7nR4sGZybcdJCnzwLkW7Jj04eTW7eVhvPu7m71fLT6vto2Ax6uPbMX3Dkxjm1lEVhSg4WeA+AcAtRvwwQbyCnesZIblf7QLWkzPmum2tjpBUn5fmIEMIwcmOjanL96l1lFOPAaH4Q6Xu1AMkkEqAoEp0kng0qMZEa3g/ESMJb1oSEJzpYMp4k9aUzlKiStFeONnoNLI5touTbl7c4pRnlikl2BQcyUZu6CZhfRi6vF+pa0qH+kVzdXr79uarH/+a86H6p8G//hf/3FHjtoZUHg0Z0ym91VoCrkUViACX81Aa6240VE9pkJYD2vql+vl47G8HFD44YMHKiRwqxbhs17xRcNApzeJuDnoWRZOtHionhtF1eDL96SwCpzO/mPxr2vbDA/j98PQ8Aeig36lRaVxCAQUKdFssQh9xhuJOA+DNh/unT0+Th4cHwqPYwxwGavG3Hx8e9B3nmybuN8C9HOFo1bmBR4PezXI+EdcesmecsSWIGHWQi2W1Wj08z5+n02/1Xmb1J8NVHleyVx2mxNltEwIV6NNM44ultdoyq3Dx3EFWoJHkT7OzYa40zwL1wf58G31wPZeEvfI7tpGKV0ggb/pM+P/yWR/LC4Di6eGeNYxRrSY+mq/nKjI+vv/49de//PD+W/V6/Y4Obney4WYQVqW4s3uS67/kMX+eTZY5Q3evpVG7P6KVyLbhVZMQK7sSZzoRUnaXA3ufFrP3jyo9FsZu1d+JHGzXw72IAm1F0bn55mRt8XqDBOVc/xSV9Nrl0PEfU05AuMGTnvTGOFcxiyTDmdJBJZfLRXuRVE5Sl8foUB2Mr0G7u5IQpD8pqvQwUFZQIKWBbhvfX1EkhMIQcl2b8qucVKtTxXpL8wsb4dkiQGMPC/gNBknPMmQnIjhCTxw2WUV0BpHtNetC/rF4WbPTT/4rsmUMuDdQCVlmy+K445HkDJSYHbl7Gg361LYVTVS+hl4PmCIeWGB3WPOg1xbb2vpIswGWeN2RZ5VDT0uhSn96EjyZCdgh4OICohfzBCeKDEGz2wk2mHJUaROnAsQ6MKkoCPYhFGRhfGdJKXzoLtBvsPkqGMrvFBgV+O3WVS7zszUaPf5eJ6o3nKlbG2hLmWAIa8Ba8ohpupZGYTsIFh0RJEK0oo/nF/hbtiDmtjzRTpW5mO55XNVSdSKKxMESqm0Bx/g/0yI/uEmK0AyINL8HPaL9GCMJDfYiolR2+kT8IcmzzawZP/F35addD1/48iFKYvG2J56pUGChXru22J0xpPCf473Apu/sFyHKl3K1dWjt8G//5O/++Ce/XR0Pk4BC8RcMaZ2cH69wKnXs2dWscdpy8BvtxJDPk+lhNttJ7IpHPtAft1vhwEjpkr/CNrVgRqJZKR8U0PdNRQXcdeM0m3mlM+IOOq6HYgz0iq6Er3PbVtwyic+LPQPRHCsST2QqxHurb0lMixwfhshUMJpWDIZEbAzD9jsY7QB3LBzrN/XmFs4ysvASR0sAMqmiMoGILIiUxrCgyNhpbEfM6uQidTqQpORoKZPfheVybNmgVul+/PbD91u729vOh+yLZn/HnYrpSo1vX9ocKubmtWUSK2C89YJx1BTrfZJpKl3g+SGldUmGAILXqwXloMchjo83SmnW6SJLIYxxLm9aKIpD0unicDwMXfaZAEDMcFTUghmeXiXpQaAI5fnx4WUy8cx1vb6RapIgCk0iCiZKQvemy7pZbPdPs+XDZCXUYOZFfwgHW5zpkjxwLBpZrzVg+pj4UKJWV7Wnl+bjy+OnXm/Y74+HMr07IB1J67TJ7njW+GK2uNdSmEUi4S/abwn5Xh3lzBllYr/pEp9iMFa056LCIJB3/RdQDw373+wKLZd/cDUewA15PSZ/CvwAEU6LJgWwL+7czMIFF6by+RB46Kxaf3x+KmV9WIowrqWTPnTn0PnwgXtnJ4dg0CPcxFunTy/MdrdVzi9yPU302inX7iKQO6BSl5SWcqYOTGItpAJW64KDs8F0QZ9vt2CSVq1G9/H55eb2Rdpyf9eXS68zhORMrhpEqbqS/0eOcBLz00o5PsCAi2NT2mf1Ahx7USSLkox2BatBgonTcaxcfJdx8dNK92p9OxSERpOxkpwx12Vhpde5H5sYNLgymJFQv3UDkSAGjgQG3SM3lcagGoWUIwmcUnwNu3e7wXBL05cbRRKkmGtFHk45fgPQKL1/LWRNgIe+ECZCqFNzpFG4zSZBiePp8enh4fF5MZksJ0v5J/ROur8woUttTkZgnWtrSZPz42RQHV/XRqEYxuqp3a31h7VXy+NydTXXsBQcMWOKx5ZJgkqtRg6aAErxfQOn0EtUA/xWHO9R8IOG+aco3H4L+gYgGCxJrLOrnEURHm4ScC2lQmgNXYktnp2o4mQSzgYt9jTDgX1MF9C6EjOSCnB/VPrEsJLPyh2/rWjHPz9UVuVuaDWcKq7ZVhnqeHYHhjnNJH4qL5tCDA490eK+Ik3iIYk6HDmUkweIOzQB7MgVgY4Tl5w/YzvxXSQXkPUHjaNjFtOBNLCtmSEM9iL016UPzi4ZqAIAtRVlzlkLWn4cNdzVZYHNlOVKyMT8upvb37z58X/4X/9Hv/Frbw+d83JCt0xvIFo/v3b4Lx5i/Y75mjmJD4fJ7jDZLj7tOMFUFwBR8/V063kxZQwmpoLEiNIRit8/p9bnm8/HB7ZhZthWra5ONb4+kfP+cdDfrzv7zmFxGDWHkmWZMWTQ6LbvOGlqdaaeelRj5i2lvGQpYRtXmVIdTUzMm+2WyKJ9l2513DrCzTZoinJxNVAfMBU5xfih8h8oQ0zRZCfnO9HLw1oz7U11QUzydgUBTw5nlj216tcG5skKUuwroe1nf/SXj3/5OP/WE4n2ymSjz61ca+1P7MFpyJXGUOO3go9hNgIQUiP57WI5+/QQ1ibGtM8aPj/KCGrVu9qUTfHwiuos9HV2hPmb1691C0DHUkVIAL4cfBYiL1o3toXR6AGu0yztC86jMpboWlQIZG/2KnxjwxNeAc/CckdnbR9XqX2Ty76lksSNY81iNtEEo/ClKqBGANJrIsS8iVosXilcWD3Xtb92embOfSLG3Bk0wTawOuM14ZUO+hsarAjA6LQAQ7BV9o+VnPZRhkmweMVng20ZXlF28jN8jGmLTmNc/kBPeT8XFTGQyYSR8iIViDIUJMj4zftyr3KPfJKiJBgxGsB1/WR8hqfnkjCXlbF0ya7lEtzul9PljKfPAVS1qni8vzhgCOWY5GCO0i6rEV0wZ2w1xTdh0XNTHGm7YrSYi8kYk1HAhefnx4/f9jT6kwVAa2ZSyvotsdz2kNYV7YKkIOFRDh+fqdB/y4TQfevA9tt2VskUaM7JjYwwB4WpJNa6B1WE5cTF+BV883jW500m5lZNOlp25BErXq5F6VIX10eAXuKI+5APxYEetQB2I4q8KwtuxbbP0bb+5e238wfF2+5tf3QfVRi8nD6TE/ZF/lh/e+CD4hRmpLJr4BXEs82xFWhEW1dvCdcP7z/iK9stze6G90snLLI7qA3EEziR34z/Z+eX3mk8ro87rSEyl6LXObSGtd66PpxWVNvvJIo0BdpobZFfLHkE7ksOJVU6uaJBfVyPliF6qUG3GWjOvIkZMBlStGQhIU+HD9EEC2zBNhSEcFwauiVc3a/ufD+PHHXkRDqY17BTW6dLkWLOx83xcT/7QIlSAiPrP99OYtlW9JDxqAJucdFUeTAcw9AMkF5xbydusm3LcGXiEztFACgvApQUk3CZuVEWiYHM0sAFfOVicijvt4q7uHXsvEUu5a5kEQPRXEwpBlDYKbOIy+WShEr9JwBWVUlXSGKni5FrsgQRQEw2UEpxbFZ3/VHti//q7/yj3/6dnwxeNaeaui03zg+L52TQvBrwQRkJFQIJHpz6e/i0W369WvzFYvoXy9NL8d1G2sUlVVY1ksk3IZQatOL84e6n/nuFcDJCDgoDICywjKTcBJmK0FKTe9Wrtsdylp0Pm7AkSZhYbjmzz+dcLYXBDJx/5hw533xVKC9YYiFIRIKGLS3bO0iheAlqERrJ6QA5HBoWDAdQsneqf44tDfypo+q2ZQM6wWpaWazSUE94D5dYbPsi/qQJHC1wyRGbBIuKkprmqXX+9/67/+7+59X/9f/yP1cswLWg0p2iwOWCqo8Vp39rche8sZPibwvnai/UW7GMN5l/BZhuHmaTQV+mSPy7wgg06OmMZrGQjf32zTuK0PjuFVLM0RO62cWHU3bCrhecyzJGqYlKneTLzM479FfoAEyCi4GVyzf8tY2BW/gRmZQ/o+xYKM463BTbmfcl0BKD3rMKmuZmeSVG9OmsciG+tvPZ+D0CiuhZYEcwJOpwBXeAWknbj8SyAPQYD+Mxd8c8E/MLRcb3g8DzAP+iRyTkA37SSoLufs8dLmPMZdgY3YbevX4ZdUblhj6bkfFXX96N7Ag9lM9m+gBuL4Ugeqf4qLy+WJnKaDu319ePs2fFf9y+CRqyTJoyUlKAoc/ay0aoQBm0IFidQ63f1cN7Z7ZcWDFEOdWEZYTk8GSEr12QpKJ3oZBRTc8e2756eXy0n/efpH4QehRr3rDBeAxlSG+6Fwh3oV/NIU6a6MX2LyHCvMlLL/G8UZcpkajNYj5PtZcWpkrteBsxPaW1NpSQOh6DdkKI+UX8TmZLfgzvd+F9Sd7CISSueckrJfvtRY5xS/U/MrEaNU7ZeKzX1hyjC2hqMbwxpvSfPx9WqhY3rKFJMr2pAk4HqXc3RCCutwT4zWvNOneksLlEABWxQuzsWcdEdHpLqfDLpGony8egI/vtDkTx2eSnxwhYnTXwnR1r1yYENHvtgUOtupVF93gtQFj3DK40hBJ0za6DMzRUKETUgbKGDjBE1hJZEW7w0C/oMqZlXL8eBpsQCcJwlwt7uI4xRelOy02zIL3RQrPfdtC9dqeOTnS+b1HHa1K16epV1rnw70zXz3RZ5l0pJ3DpWhCNuwDcZyiE4/Gd5Czh1M6TkpE0DD71Env6LC+wYRfmSOpWJJdvHUDEHYydLNInNZ29zZlFQr+m0IFAtE0AxtdEr4uPwsTDFsm7j0FQtOzPqSxJs9EXrbweHZ2zyM8wt9kakFPBeu3j7Q9Hv/Fv/ei/PBoK1rjnuSHxp6fbw7mZXkgCp0VPNlYBtOlp9X43+enm8c8X63tbxPomfiwyfIgF4BlWWDik5B0J+fLOBPp9U/wDAa4Of/ufPxsL8XjK+U/ctjvqtq473be95qhe7TsdmdUhir3W86wsE0+Mx+UsNLsUkqYRreVWIVzeKp0cidHosHFsxShF5RQhupOmihAxdROghDkd8slCUEHYSgc6TwqwtM1OYhUVx9Hy0BAJuSb0k+hO6pA39cp1KlV2q1rr/Kd//Af3//nUCQs5L1sON5eo77iFUzNtcZN8Y6/iIdmngR95csUHdAKd2r/Ur2Y8rnIAE/c/Xy33kv4ob2ui8O717fXdXVL5KNlpIZzq/Vg+HJwFNlENKSNZNCbDVG53ugJPGRdJajdyLBJItND5xd/l1xBVrMd81jZgA2sYbM1X+Apfl40xa49CCJDWnubTXin3SEnOOvugLe4eyzB/OlraRJeN1kK3lp5FtcndjCKvFTwGVR4cvg0Pxl8d5gTqnhKKCEXmB1IvYtP2RJcz0XBrxpf/LpLIvYI3XgsxYYy8j8Tj3yjIkg/4zkeNwc7DNJtMC1VQlbYrIaATqZpc/uGAACWBuWXHKh2SPGColO2143A/vrysHGJC+Da0b4vnh9NeUpfddWCYwIwtNhXnf3KiIBVg3aqJ7TpCVZO5NrGYxN7JDOTNOYB2ah2bY3m+0LrGF8sC2w11ERw4WDH5z1jChKOHi74rC6EtpDZE1kMsOwtqGOiAipvnIGoGhzSFVudmPI5Poat7jAMIFix1A6qtg+X7ttPJ6wwuT1/wULlzwceR4v/UunSK+wZQddkbLmMSES8q12X0WGBjkVhmHEXFwOT2J5aTfUy9OQgMgxCgwuaMWo4iSWAvj+8/PImHb3Y//LVf+cFXP/nTP/7Fh93H1WTOhRbZj/MoHQE9JEhtECyez8/P89r14mo5ru7a2tNVro/NK1LhujLmYo0jKx5eu14IxloAf3OOuydEUOjAUKJDlOAHZGSTITPXJysHy3DHRoeO1mzZ3ItKcKV4SoMYsfLib+UzgEWcP1e1Yf2s6gDjUuBd5+J2i/GsqUeV03mt83B6LaTlQ2VZfB0iNpEu8enEsWMAWk92e021lORg4njOa4eQiDfol4sitwLnGZL/vUiuy8LJLiuOdV5CkMosMC4YFvDAIjHa4sYIredBADjMWbjA696kZfORJy8fcqXuzcuRG35gOCRrMbkT2s39oL8bjk+v/ks3v/qbr941BpVN28Jy+luFtB+UH2qjmGxGzg0j3XN5X5l82D9/u1rPKAYRup5iIgbgKdEw84vngsvL7wQS1ZQQgq0JkkfXKaKuISnv1BmcBsPKSLxHfKs76tQHmgBRWnQn5QVPIjsTRUqa+bOjVAPwTW2TxXolq1CJLiNYmDLqduoTBeTwNlNEjJVCw9sIxwKIVKn43JHtfp+oGyqk9KAGoVbNEfbO9mU5kd8kFgeJk6niB4ZIBpy2imLX50035WCnXs6vf/6j3/u91TdPo8278bD3YTsJHB/OhOWw1yPpLZr0a/ndHonXdRym6XHe8itEDatUpXYEn6h68roL0kUptom4D5nT+Tup3ecq1kcirv+Ck/gxHAqdlnzsoGHFRy2J8eH+4/2njw9P9NUFNfwC5OgMO2Ay2wLIQzFgF/7DEto+xgu4gvnwFNLwhXVAkN2MiueJYRU6R8wF1xUaTVk+3Z3EKqZVOkjZEuyDUQCSVTNTM3C10frIJfxAkKAGV+aGZmlZoRBi9FTU6+/8g5wo6KUchDJcCNpzyc18lrZ3oWDC1RZfSDkDjyPBBYbvh+yo8DrWICUuSCXQdVK7NXkRgzj0lzk+dy8zTuBWCthJO72KIGWjeZ2quBxeQ6hxez7Nqspwk8YaZC9JWAgSBBiicB7U1DdDKCdrJp0gdALWuSOQl2CysCfdlzZAzonm5sx1aUJpJVKVA7lQgX/Yv+YtGQx3m9FmNXL4atsiRAZyNdjbNAvUlpZTUmEI1R8poh9ZNEQdAFC/RyplxoRws+Gs4OTz93tQ9eHjJx1GfEqEaNPYquAyxETzt7vZJi1K0TzrxSoJfibmKV5cb+jV3L+5i/1hZ1EBz3r6h0ulM5qt3QBYXH7wC1E62pfUgUwuIyw3jmskVq4oazmEeDKdyEj45ptfPi433/+13/jBD7/SLPdP/s2fBCx0n8CdofqoctHf80iHRCxmVw9PCfyO3px1mubvHAH9zZVj+GI4kUMB4SCL0WFNLIZGIDQ4TQiF1qeNcFwaUTqKHkGvQm+UrvTn8MF80yGsIKBCP2KnoCLD8E1TjLmFtNMuy6ENrojLhRNfEb/BSuZfHVYfNrtH2S/r/ZP9TBe20olThJMHGuDaQNVkXAKxdOhD9atRp3ndbQ5l01Me+FRZfpjMCOPFSpjRWC7MhRPoTmBCC9Y0kgTswi3Ui4C/QQGMHBhiXLow4U0cjRpivFtY7xbyCfqzd/mcdVtyypU/L9fm7WjcQcfiNtHqoWW1R6fR28rt97pqOwGtU9e5RPS7jsjgm6RoBD1l7aGmx9P+/Xb+5+uXP50uv15vnjSZcFYii4GCXE6/KTiCIvCsbzaKBS/o76ezIdakkZsRK4nnn6TXyjUb3FRuRpXhTeum2xo0HJAogYhYJFFMQ7J/jyxyAA7klcjMW8+3WYQ0+xHI0Jccv6MrSYkNowj5Aekll+BCSDOTNtscuxtvLSDJ6rlazwLdI553apiPiypBEmSNlGLGLfmKLShORCQWAiDydbrE51QhWnh5FL/xW7/6P/qf/I/f1X/0H/3P/xcKh/hCbAR/rqZscYpCGjHr9G+idzjEaXU+P/f7uwm3k0OjGS4UKFsL1NIWgDwUMY6FR/AnPQSLacEqcTNAnHyMOF08XrFa+FFyvqST6XwmS3zy8iSb8ZP/7z990omqNBoQuUHU4D26Pt4oAiTcRoJScC2k3gRGEEIsinPi1FglWkthCT+LVhIczhgiSOxDoVS/4SVKM95BXKrwUVShV0+KXm6BHEPGYGmR2rH2EEbxQLg1S6rgvyeRwnixvO2Hr3ByDQLHrcRJHgGggClmgrG4yeVO1srvZVC5gNDkxAi1eIiPhOfzsvtlTtmvFIJp054Su2lrEgFAfYhDMNk7lhyWjTvt1zejJDcpq2u0nmdzRzvA1+L1TNTCEMgsYhe5R2YFH2OSxZFOOlAv4AflTUjIobg6aDg0yy00/9KxxLrvWXzq63KHS0MoZ0XI2p1dj1+/fn376i3XSk+iUYvr0PFSUpC4C5XOzVO5q2ngMpUajqCxwZF80uPbwgPlGBuHVhmMvJWC2/vrGwbntAI1Q2ccOZK/KY5JKt1tXzabBQmQEHEjaSaCRGSZ/LIUJfT5L5EKlRohyo5TelL0+6O8JBIAuApb5toOn9OQOUTkQrPYS7QXzTUq/Ev+k/670vv8ZTZ7eJp9/Dj/4//Pz6Yz6UmRHzbZWrItVFyiJruX/yjmV/vV1WJafXk+PSxO/dHVzYDv5Koj3YQCVd+eJ6cJwY/+Qg7ReQE2VSm5zTZCvwlMz/fIbVbgNDQT2QAPtIaH+sVowfWitSESQFcZNfm/aAcqDHg66DMQICqeMTYpNq1erfea+s5QtBCCItXVy1L6//Zlu35eLV+kV64mya/XOVI+uw+7MdI0EjXnuvFIXOk0rhydNmDGe50cAgYCvJ16Z1ldOznKmchRoiHeZ7shHFgMMvzAabJBOViK0uoaCrXEm3Aoqgyp53P5aBwvn62g6EkZiWnGBURuFMy9GADGhkr1ZxVO11KJGtsbVoajyk2ncjOdVX/5YfbqYVTTJtqK9KM/S4pKW7k40a4A5fJh//KL5Yc/m87fr7cTaiwox2thvWJdFJyJKLI/5JBHi2yn1Et823jAa2Ecnhhn8jp5oz2s9G8q16MKC6DfFeUmbDuV/utm+0v1Hoea4rRRv25nrhig6Ry4nUv6IWaPdULHti6dvyOWa/q6YziIAOXqqoJa0yUQKMTpU3x6SChOh0JwBJbTytIDgh7EgzXfr14Oy+lmcXCY2qWUTxFflFeTykyIoYCcHiFmaoPQx/B01f7mTz78H/9X/6S2HM4W8mU7+Btj4kJW+mAw7g+tnaTmNnWX/HZQLM+y2MLL+thZ716ifcYZg/YThXNPSaokW+nmlQSb8SjaoznATdHjxibiXuXEnjpIJ50+3z86ZEaUcTp5cSLIE3PbP5OXdLQszhU1ZG5PVbXlcZBFD/W0KP5+S0yxRGPDTXblsjLhkgu2fSYsrj2vwJUoEUCf8m49kGL8QheLQMAqH8ltyZuop0Fm0CgryoO1nAwKo0s8GzkSY9b1l/FEOhhTKMZ/Hl/gVOSM98yfYD18nF2ImuQSul0ZcKRU4M53FMiokBmOJ8JCJSJ5TNg8ssBrulnpS7TbvcxWclpk2CBSRpZyOZFPclgQdaATin56WnZ0+yQaZ/X4enF7O+lP5s75iO8uSityijPJ2LCy0ixkHiqL+4bFCZBgEJ3EB8qKReKadsS6JUgulqWxjgnmqnbkXTgfqfg5Hr3qSK3BcJkKrCqfAv1drGt6f/9x8vLMDJHrhb1k1sovliqmK5Hs0YGETWbGcKSSS6KYUJnYhn5v1bu7fq9Lcohg6zEoJo8B/GayHISCxNSJDaF1JTu9e324RR61jtbTHN4pAiPNLArKVwJiJ1NNU2Rplhm+JuAcacFNhLpcyAHPqIh161J2afySCy0npAFHym5ODx++5q3vDAcwJd302ewJ2kow5ZFNLZ99oquuz4vn47R+vL/ZiYndNq9edSujtxqA1RVYOs9Y/0oFl1ReVcMorSizVGU7k5223diTnkdNChLT3aXv6HrlH2QYAx+EVw4U+7iuEj1m+Uesh7xwO0LmyJTW1q307nrtsbU8U0jJF+Cscdd6ul19XC6/Xa4/LpaPC1FWrn++dXG3EpJFa+AY3tBGeXWhGR6QuTHUSpSOoYKj229JZGcM6vHi0tB0lHfL77dkqRTdS6SPYuFeiW8GbsBLnGW4Lxpg0nCS3Z+yXiMPJwSVQEnEl7IoZtg5aqxOBmro9IUl0qJ0kx+Rkcf0iZNj6fiBbmUg13ZQGQhUfPp6+vv/4g9/VHn7xT8cjX7UbXfxKzDlsT7rkq/L2+zr1fNPd09/9jz7drl6nBcGg8aBhfJQfBc6KhPPdPhSjJPTv7QAIi3EmBAQjKYTdfR6GlW6t5Ux5w8joF8Za56jT4Jll2RTlxOvYSM/co5ZV41sR1MIW7KI0K4EGuawvJ+AWtxb5DMNhCEQ25x25CnQl+IeWAH0wQrDC9ZxaNC1klUnIiWjIt3YknXJfZc6PqVqwbhIWbuQ0qUgSqQs7ENkMXcW52pfE37Fb4vVwy9XNGrn1jQ8z7OO1cFIkxXaP4PK8WlJLpVJaVmWu+PVyxyyScSIyhg3kX+FhKLw5nAovoecTl/jROo5hwKNy9CcL6SuT1dH6QO4mEviRVjx+eHTh4/3D590FGUBqBYiFLAgJy1zPCjO7ZWQL3qxbJkC1Me/6Pzid8fgXk/vF6wXjTazLeqzuRegJczMCnOYcw7liNco3ALxUC5aL4CeACK6DNDmbtFLPC6wZ7U5U2FtES6U9OpV3H9sDlsT4A6TWlGPDm7bIfIbUOY8maxJ8rWYPq5yRRYwY89OlMsE+jw4y5tbaBlJoCj5NqjIGwtQTJsiOfIcLtyWQ9W38FAN1Np2M8CIBU1vrLvWFqq0osRz6NOMHRQTr/ntZv3lYfesyOITTwb8NRWT4xShk0IwVimWkyUGXuJz5U9gpuHGxmqjropu7MkMORTg2PhIKddIJbJK0rlj6XBWCdFKP5g93kv2f5lwF6dzYQ5nJwFo0M8vT35JxrU2O2ZciQGxrGymk5lTnvv95e14c70/lYxSycKMR/pS4/9L0589Wbpm52Ff5s69c89DzlnzdMY+3X16AkA0RJAgRVISKVEhWQr6D1Dowg7bV773jX3hcITD8o3DF7LlCFqSZTJEAhJJgSAJoolGj+g+3Wceaq6cc8+5d+4c/Hu+gqur61Rl7vyG913vGp71rLWUpVD6CoXLlWOdJNISXpuaKf8pAiK8sD1SEGlPI9UgGLWHyUBgmqUuOOVdVtA8yJgtiabV6yn3K1AQeVAoakGtFoYxe2dD2X6iBg2XZhVfkrDAoZrQ6UI3u2i3tjc3egID5RQ+cM1Zj0DGY825ctKAtLHe4pGL6aW65/JLF7/uVC+2qjoMrWqWsjNfnhxrp3Pe96j5NKWXNLkVZo6T2HNXkQuUXJDA689RwuOykMhMLJkozNGNqclJZh34p1RSvJLAKUmbIcBaOnkgPXVLnbrjXO/qgqqNa1nvJaygweB8cjodHo/mFm4JWZAWDnfTGES3iKYpqoiTnzE9K+3kap1KSr0brEqjXq7B28z90uoIUC2pBIjnZ6TONghKzk2WI+lUSXHJxuR4yEyaRwdOcVCDYvEsAqkXD8/2UL7MhvewA74b5mXRyEwy01PFKsZrEhUlzSiotrMoSWoEqeAm+/R65gGq0snl2a9+8XyM2lC9/aZSk1t4chaGXV6+OLmY7V2Nnp71v5wMnw2n+8Ag93VTB84t4nt5xnw6sI+tvH5d8Qt9YqWKsi8+hPXXS0ElbrO71PN7bYlH0KovqaFqayRSU1l6o13dqMoBlGvXGVfHHSaAfARFZxpucycMa9HtWY9ajgBxS1eCwCOUgkw5MrDUBgsfRKKeqWLEQLyJixlCEgdwSomtyNxELSL5Q/qMSxZU8Fk4SMnlaOIEpyJHMKQk5Nw9cppfGRHhxOrzUV7dXNJK+2L+6OsP//J//p/89Ac/+Ad//7+SFjy7GFuH4DcaJsqJOYyo6spH0kgLUU7ZlNayiaDNcrLX1Bd00ZGT6NUznfGyVeJsSqMmduXtw3lw3Dxr2jBBrWUlhwcHr/aPDl++fCXGlvdNFRiT4txl/BfpoeziJps5pwuhJip05WtBcEwLTZ0dsiiRmJiEuOeFQqZPIysu4X8Og8fBOvLmFC9fGVIl4EOJ5VszAH4wMFtwNa/IPpNfnlB0f+Q1V87/c0lrF3Q+X4+djmHgKEV2PJw/cnYKg0APpQCSN0sE+NKcnyJ+8Lw0hwfORfK4hcVwzVzfVfNFNj/2ydPkU76e7xSXZQuuy721tetLs3jOAPVp2CCQ1zG4utCjj7RfwPx9nYZL0YYZa+3WamP98npwvthcH4xp/xXdMC5YapCKKMAhJ/TOLtsXcr0niuXLcImxhm8r85TiypFfXA6GAaQZDLV9ksnyM17X2Wfh2PyGSjLbrp/EaKQ3g2x+CDdMjHPPj45+PqP6JZK8jdVkCJ2CLG0m3JaaqPmkZHHZ4+cvXagv60g3qthxos4XK5r5cOG0byydgvxWMiEPshmr6LyyQFTbKvy/7re+NyYNA/brSGxpK3ilVlBNfeIwuAUHH0uC3rPEnr3R9KKWL4ig69jyoGApTfcLCazU6epTAUVhk+Qwo+QZ9GzHKsc91rwSdlJYOXEQOLq0hyVMQKAmfXh4Ua4v2u1FRyK40tgF6zQqbZ1LV87dy1KItXgnHlS6yP3IdbrMu77XIjHkLiGhVFhZpQDdXppxwlgHAi+GYzaCg2eGAY+YG1GIF9EVk1RqHbWT6i79rVTryofqExnmz9VwPtmbjA+5Whn0qrYWIoJhWfwec3Itqqu5uMCfVy4VVF+qtEurbdNVYiyXGT6N7BbauKHdZ/EVO52JUkRjefHsiXNBU3uLoIApRmSFvVFkOsYhGq9oqMli0PtsgDPOHnC3tbiifKFsxEDjdnjBAmK+VCKMZmiJdsgoiFJhg6QrG0DtVpWWo6imsomuSEYBQfHxh6+WagtzIm+u9qo9GqN0PricPV+Mvzw//fh09GQ62VM1ywhZTLLglXPYUPW9PiNUGIASjS8ZPl46ZyMHIciOzlaUqjpaK9XL1c51a22pvbG03kobOAO02ihAFVzbNfmIMhlNmdqUItB4sxrGU3RVSe79aiyAvTRqN6sliEOq04DeellM0ZqElUVXqFe3kVxsLqPfZDRKgASSLZlDKCLPhsugGZK2vIsxettEXkwHp8JwTgUu6jncoHJdDc80Wsvag5RsLkyPPl6dCGb0JQErXSj3GX/x7EsV/FF5LEY6WBSgd6qTPD3vxqOw3zwSpyyZM/aBjy9A5j+J3dWC0gOtOrQwsVxiAkmOq2uEHrfm/zmbFDLl5AAe909V71L9uhJoQ14QvllBH8zhsyUeOPlIUhR/3tnCSidRxS+CVRxRC+SQkCui56eiu2loG5rNtKsJCIqvWTaOdv4RP986WMxgljJXedvXWLybuYLDTBsI1dw55Ly8u2u4wuvL5+IURCxB7pAHycLmrESSrDKTIJ7wm2Zz5BlCv4QpHBx+AN43tLZ4XjrGaUm2ziO5e9RhDLU3di68kDv4nQvnxb0tlbGzsS3xSyMvj64HkySTADuMf/ouKAtYKcmnjDraXp/3bCL0mWlaWXl1oi4YkN/AZIdyuZRjxJtwU9RN1QSCAItl2bNedJmQCmXeh8cpghiv6o+/TOEJGHjQRDCucnx/8mpwbxxu+iYohuTgXCeJuYTzxKgvLqvOoqiiKzpECUiK4LDY3kQeqbSSc9OpJfB7lEUqF1IPgjkQ8pGiUw0sM3reX5rLxid5SKtIAsYS9hj1ipA7Bvzu3thZ31rrrhm919RcKLNiAkmueA0AEdMScJ/euVygOQ3GI3ez95iuLg5nNf1ZeU72g0XKW2p/ZmDZcqtbv3l7RwUYmyatOBsMA7sp4C2wYjJu++x1Yd6JU7xfwsPvEr5fLE/7snaISBLqksNX4+XlRh8DFoIVy2iV/8IHKIQoK1pILsmKGYkiJaNZ7fmyqWsYkJeUCh9f9i1+K4nT3V8VLj2YlnqJKYWdEYIwgTDb6vhe19UW4Uw/87O+XOHS6cv+5HSkA5umvzpAa2oG3S66LMC4U94c+5b0r5mO/uQfJBOgchxglsmtcpsN6EvcKByiBCMOOqa9elMWqDhuxRFzkTQ8QwtJsi44V9LCDJ4ltvKh9ARep9uo4ByjyH1kHU0Ff3BZcFB43Plu4WP6gwvCSpfqAqMQ4ED/niYPpEiNIWRjpDdFQg6vjvMvPz3a/3hr87ZKaOSKy9Hz6eiTycmH4+mXo7OXE6BEzpSNKY4emMsNogHcJlFI6Fap1S3CFFp1tsQ6MkzmAJsfXW1dtyH+fP+W2Dja36SFNpLUyjoawyqtLl0T3j89XhMB8NQ57ITRUb0qo82dXUFO0Yk5DzlgnHnrpWYkMkdy4ehxMui3Zdmi2I50DfUW/iatKGN9TreD1mIbM0hBry0B8VyLgCUJgKH8EOjsell9Ab1DdTIYcZa8n4X2mrImwiaN/Kbj+faN9V//8Gd/9A9/eX49vLGxfdDfp4BstfaakzGxApqw9VU2vnCUos4EqR0zOWr9Vh00Fy2cRCMeIZ2X3WI5iKPzfD4fCKCngmaQQTxzsDDKwUzjyiHIHxBEU0XnRssT+ULJRbcWCiYfz5nwbSAKfVjsjg8V5jpvlAOXNyqcDgcgbmkUaHbR6Sx0mjULoko1uZavOeexFbEFQfq4La6Yi2tX5ci5T2D32BCWJYsVOCeH0ctRXfkel9nRZiPz4cTvxdWd6EKz8umSf/Tp3CaCG0saI+QRApZZ3zyjNYojmMf3JlkD5yIxh/tnOQo7l1f2GtEreW1Danqt5uUwJHVBjP6Iyc34IUVrUqbGSwgIMYC2Nm5ZC8xnZF5B0IY5a9qlrVRG9A6EK75m9pWrxrxbiSjLJKADKmc7UBK8vhtmPspF2WyrxDGBcEkh7WUNIqfXaXnlS1mzQnuJjCh8qd5TaWpQFTidaVm6bmtI2cTR1xfGPb06RC+G3r34YclgQSCGUQZySRl0jWfilTNgUaVAvduOag7OrnrLCwvE1TNfX6nj1hB6e2tTT8KNzUyVQPrUmyi2yIJHFJOoCECVhkgzA4P0dQVJ+TcLhzrE//Y2/Hy9o20YdLJAIBkmAYPHweZpyn7Wl2a/891H48nyj37+UajVTvIlF5S3VmUrBciptnezHJFCLCk+yWHUiaVjCyxgO7w8hQ8wdQNUWy20IPVAm1BbUNJtZWg8EZuQRKkOHV6ikaTuEUNmlcxCIIHay89CIRlxeH3TneIcBkjirzmJEjdpt4XqyxNDO1mm/jPnR0P8ZUmNaX9+esICmuUkrTGX+40vEZ0bgDuyHg9RkpBubRXEGHABblmnVulWVDRLIvsQDno6t0g109zOupRNHjtcptiMQtHHlWao3bccw+iUcDsoQfqLiEfj+6tA21q6O1alL1LcjpJYB9hC86YmGfLuYwTf0SzOOOdYFzOcVAmAWmXJsB1+dzKx1iAHOQUE1sQvDkv54nj54nl5PlwancD9h/3Phmd7F4MXk0hEnoEGIOKun7+Qlljk14a3SL0oFZgEGVMX3V+o8w0hs1pZ6BZL9XfXwvnR5WltdalV8yQKQ9Kq86rRKtXXV6oyA5ui71qpwQlchkgRd9N6z05mK6xu/0LrvXNa2qaFynQNMOaJXvFCzFhlJT2IGEBNFqG6sozxQ6X5PCKXVF+SyynX71oTVJ6FWebeiHNTQHlJq6DzKuaI4xzB4GVadarRG0BmNetpWT2TratXlU6p8+Xhp513b/6H/7O/9/Nf/uyTX/wc0LcsK016L+X1MsrUrnDz9PmiyOw7BzdTnOaLnc1NOqtWNjo5danuQQ6cU/iWGCNl1bY1GWK4i8enavh5sF+HIDAsjyyasFBvBNgbx/xGwoqP5+yStUIh561juHw3n4l6pKyiiv2TqoUsiAudGPC1WxQVFPz6QnHGxgdcJauE0i+fJFHE3a3opvi7RCbaP+BMBKKwAJ6tWDpwdyIatwmaVJTIkhcfzIepzaj/LG8WGOxClOjGODsxhcW/8r3iA5SvR/KvKIn8Pd+x1UWoIRCI2SsUo0fIY8RK+Um/fNjl/VlW90fp57CRRu/rM8kwoKBriFimvHT4tCGqvy8d19W4t75vjNZWb/11gQV4BnFARJk98awF1ZWbJ/VhT7LITJ7Lu6jADTUNVmRxuMbFSzAA0cweRR2uHjtcO9suKIKpXen/l0o+gLwMbXq/8TzDuok5pJSSmZUiwqCidrKe6TaAmCagwS41fGE802ZN4AXaYM7ZWd3UMuTBRcSbF+eNa2ViqJDIo3OlKqtrmyYVGSRqnNxa/rex0Wx3RA9iughJIAlUC9qcvRR3IqFK646VraMGoSSkQNOb0/TNFraGp2OW3J9kJmZQT6PZ0HAqg/b1N2797l/62tmi/vnnT18+fs61w2wTOmUWh+5mhI46Nl3EXgXEF15RUfIKCn+nR0uHwpzh+bh83bJSljESmP69VjtW0CPCeRMp8hrD/0lg9drdKGxSxmdojeIu3V7z1ts32uv3Bkev9j7bMxGXEVusKHCYlBTtZUpdTZatUmrphwanLy00ZKquzGBm57OT2enL41kfQofhyqWlfmAv8ihSyiKaoATOD6kqHPWgBMQ49P9Ks6GGp26eYbnRZTKzfVyX0mwhFpIFttowVoxLdPicKPISQAYkmOMJlmHgo4zyp0Z0LpssGgm3LJRswasRjsKCHEQYIAPgL/HG2Iniw/xudE6mLt6vlqaUfkkOYKnV5Hdn4KVdzAF2pHNSqcyl5U61pYPM2VcXGjkO9oenzweDAy6AtWJL6VOflE92BPP3/MtZjMj4I542y4R2xvdXFy2tKoLPEN5FrRnQf83v3tJ6e6nnn1kwUsw70aNEq7VeqbpVbt1cae6u1lr5prN5NTkfH0503LuaXM1p/5OzlNQ4HAIWNMNUVldWVdm1kNMAqyKAICzBvQpXzathwmkpJ5MhtNN26ly3lInWb5AfyTAEhYuBv2JXLJ0NYwCE0vM0aWNeC03E4Dnv9re2VG/ld6hKNYnclWuTGD97/nQwPHn73Qd/9s//iMt4sTJIs3nw6VyN4CmsxM4b244uIbVGOYETep3oCYDPyfHhcAoV1n/Fi+aPiLXShKKJHCpncBSximeELfOrosjyKyc0HqB/xr13DF9bAOfAZvBEfYYRiDdMR0Zz2qCorMJnpiwxVmniqH79VUM0ipCRGA6KTaToOZz0sLAg9sPWuKJTRj5cv0ArfMqjpaVLJOG1Qo7JiZZ+rX+pLhpSTl7jnORXC4vkuIttPWeml+TpHN4o4liZvFhI08XjeFguYRT564vmHXwAJBoFyCJ6HtL6ehVCQOJLWQaP4kKArVjHPGNxBVlKivnlq8Ow4IfINWlSQzw4kcGSy0LGFOLiwgNlYAMGcMfyck0NK2o0tra2jTPYOz6+vj6wS5GGIhxJqxZrFIKQQC9tBIt7xuQ4T543y2exBQz+D9RlXy1i8gGWOl5XsHUDQqepEOHFUOU6VA+mM736wZsUWSnN/5KLEQbiKRVL44FdIFaa7rEzvIMw3CBCGfUJGTaGZ7KuNquLVhHo0DOm6qVRxSuTWIEW8XO7m+ud3ga6AiCou5bpbjqowHwEXdx3xfTSbZx+hH4zZI6Pjwcn9F/aE5LU6fJkZSitucoXYr+kjD0ZCZc2lS8EuXCNg5OcX6xvd3/7rXc7K+XTV8P1rplSET6LkibN2WuRL5HwElYia8Z0FSo1jjEa+1khpcxK5ULFeYuWX+U2xYXJ5kZGiAIRuaTCi4wk7cOlIxmExcFZnox1mFk5RbtGeP/aw51/6z94v7P7/T/+g5/sPx5dL9cPn7ycHU2vT6n0Cbxcj7QyxdRYuzpbOxdvjzoy2LpYH/b7/VFfJyQpOJR/Uw0kfvFeXqs8+51Dk1+eiq8EZskx6dYFQA1kjtIqm3KlvFy1KxSZMCjzQO6X5saLAfeusDwLqJO1Z8l0hLdGwIecfwPF7LBrej/KOrz+fCUT1Kh7m80OpWopNkCCXjgSZIbGL/7CBqTkyvEmKRQ9GprfnHH8H2RLBoAWLdAqDx/lI/RorlY7pfr5q8Wr0TGto7MXtqtkPgNfXD8OdSHdMTlRLzEh/nRxB9Dz6P1gmLNpaH2tooXVDuSqrm6F47++tCn36+8cf6YOTXF6Ndb4SIy0dmu1sTVf3bxqbpuOtKBJVLzocj49nJ4PFpcDzZcmZ6ez0fEUEI53pkUpXZG+ihsdGQu/FcSrulbeYixMom7W6ELmh5AwC6aknGuopOXs+Xh+Ob6aHpvpfXU2ks4ZTZK2C443g7KIphn9qzPKtrCLcUoYZoZTtrwpX82hWm4NWaxK6/J89c7uPV0lX7w8vXPj3vMXv1pMzjX7lZVVbaOCB6UByttqzlr1NjXBVEm0YRtqozntrW2v9Q5PT48zG17ZvqokRybhHksQkCHHOsYn3QUi63SYR3Ik+LsEhU512OQug6tHlfpSIfl0KsmxgHaFNYiLlfgaW8WfwMXoFftNQ/K0tPiAUfLFi3DDzSPM1FFsDSkkS1RV5Do/4otuEV/N6WSeC8jHUcud6Dt/+mRMRZxQUD6fNXuSQpLUBRdK0MeEDDz96OziYQoD4K3ix/sS5RClz/Dk+nlxN4tv7cPJhPIl8p04f946b0RXFxiU29syz+v+TAPfOQrFg2VlSuWnz59i/Gv3od+H8U0UGV8/3xCXVUvtRgX/Bgsy3COOrS5TnilddKqKdNOzLYR+WJ4VTHIcWzJkSXiuDGT4xIEZPUgCMveMl+YVk3+B0/FAs2be1LVj9xxMyTWnBR/zYhQfn5tWCjlQzW/KbeG8fvyCjiycgKymnfbnX1jFYuld1X2yNlGG10j//f4AYcrDJ2d7NlbYxSPmMxdN+DR5Nxe+5QeUp7Q31sw5VJ2Kr6b8y0lyB6/mwkTPpQYDxSU4qC8P9l+inCnuVQvMMSp2mTmTnB7NprVFDb/CMPqubEbF8EAWi38/LuUVVgWz1/Xqykavt3cQ0qCktxOWdckDexBeAsSJIbNRBZ6ZSNCGemknwfsR7VWUFe456SFYMRB+MGtMWALR0l/WRYxvk22YuA1y7vnmpeHzs8/7S3s8eY0wzkqN5xenX40Od28u3/8bbz+Q/sexmZ4tny2XBgL39LozXyW5ppXSaCpyODm7GOrrjW7x4vHpmYkMQ6QvXmEF6x/ObkMLVibAJ7yvv9iK6GhvlvI6Z76YA2516/WevHqAirSbmF80OqtnSqhKDDMsEg9IrKFDBrCb8Dl7QkbAB20etU5wCt8/l+XyA53cGuxT+PjOhi+a9KIMjSwkUs5ZzuMRuQS4jq2vWzVpbCiTuu9KiDdtaIw8cJCZAs5lSZlhe1iMB6xeThenA0gLOUrZONDPpQp1FFEucDN/iY/s70wHTRFtkyx0aJSaqYHU9fizlUyaSV+tpUZvqb2VmgORh3pHUJX58Tww9JjlzdvlzUel2vp5ZaNU61ljZZUUoD4qDoEuCiEYz0SCJygwGV6Qeg9HsN4uYcu0mnjFaTRsmFIjNo6ekDwjxNx2D7iQjRulKedCN3IjHObXbICmPLPJNVRzNGerSGXq+KZLfZGVdtlJynj0KFFraNGkK9baSxttsNV1WwglZrw4b9eXe4dHh//j//CHZGe7fetiqb52tS5NPVbOMh8PFqOzwYz/2zFO2xTF3uZGd0N6rpjKWtI37Ww8bPe2Wu391f29+cWrcco+NekNJBEspVCqUamc2/jogZEjH36ldsUJSLLNQYm3U+j0aBbxZWRIRjr6scByopIIRg5O3OQoyfj+UOXkTpygBBZSrtfnabhNXKIvAw7RqJzplDaSJ2fPI0VbF9aAKrTvLp2Nz5f9WdiHePTOJNhrxSq5vqSMGALTEvhKjFYzCSD+d14lWh2KF8sUne+hcU2TgvbENIYLRn7pB546WmWMOpvGcy/4TpF4Ho9X9j+rk4Uo/gdayk9G52YJYrxK5b3DI3oE9Qehk3qibGUAjDgESKhqRfzsCM9knz2Fcs+zQVCgqCq6iALXg0HSUCW/yr5SqyGPU2+l4Etz9svRcHw8mWoKKWa3Odm46NFUb4g94pRT2x7G4xZ18/5aBAFeZYWY20zrnWR3rD1hz3UosQKJc1K8soDJdqZ80bchPg7mKF1FYwmzitkBClFX5ZF2QTgq/eFoXZMj09vDOqhSi9S7dDNiieajTT0eVlWZpEM9eCl2yTEOhS9ek6mezgV28eHx4Z7G4kd7g/7R5WxSZezqOrKDUrmKqnL07tXxbU5IeCEy2SmvvwKdI7CtnA1nB0fPz47HX/QGGzur24/eXmn+6CyRi7p9GnRWrXRC9QT1XOm6VexbfJZ0v4kXENDcrley3ZRAWEN8VSA7ec2hjM9DZ9llgwUFsy5FUP0raV5kv+PaxtJ33n+788a3m73lrY1WY3u7ajb3jcZK56KxtWQgzkxCW/G/pVYQqoWiuruxXCD2GRZVy86Y2tDZqnbfXH7zt83UKx88OegfHE3x7k6Hqu5P+vssBGXsaLFScH8NwrSIAQ9weVfL60uVJmznCt9yFVkJY6ACt7CN5yS+w/UlIazfUrvauTg5w0a+cXNrOkTXvRxf6+U0lV1yjjwe55oHJL6DNRUutheMXvcLOhEWaSSLaLyW//zdtyL48c3z2z+5sVR/7Zr97/aWtjBwtpd6tZQrs0jsTYhS6tfRwQQn2h1JmRSMcjKMK8fuhaRUWBcXRzRCgqEUWBQqNodQCOIrxMds9qJgqQzMzmTZ9HMrt5c6m8F8shYoYvK2Z0klp3sE+d6513n0O7vNhysXrenqZmWlrdnDirG4Su3Ojk0xXUwPJ4M+mnvYjrAvp12jjGaTBQDeen9nroatBtl1gpwJBRIELaVPNAWsD2f0Qmt3OgcVyWMmTOQeTSekcVmMWPTwgG6J6tJ9NBFpRKnAMAir0i4YcVpYJezAHZClpkBb5d7Juclo0/d/6zd3b9/76Kdfzhbd4Xh/MJrqzNtXCKl5omFgy5VRA62DgpPL63Y1fVYlsKr3dVkxb2vUx8aQrSNI0hOj6CRKR56MVBUQB7XrcLNj0Wm0YpRpfB0OUCxuvOi8XlRzwXkt9K8dh6dyLokFD8ub+00x+xFnjYKinbmzMQMuTKG6i42NTYnuckRdjczH5PspUaWdSuhAsdNVPu0qSmQFalG7HDaayL2IAv/FCUVZRaHFhNUHgcbMreK8UlJJAVbtGdWveqpAN6L7C+A8xA0AMpghaHKxVYGu4v5ihYZNWJd5u9CfDBUeI87PeWw2JA/BBhRrkuUqVsNzxnDmdaNfyhig2smfZVQ7kXAYOaTlrtm37dW1uvkTFalM2v8C93JwaDTAkqgNMU69Z197f9j3ORSv2yvRqLDz7V5nTYxvq7VYSAfU8SFqUawupqYaa5yVqf6jk4I9aYGSPHNKk5QPr6AwABr+qB6Jk2/D4kbx1bNlWSNfsT0Wxt8vlGxjKgiNlgzYAscPB4BtWaasY8Aj4ZXPCgVtgxFEfLb+GOl+yNcQvSgp1C2a9+8B0tG4EKV0I7CzfGVrfoaXgh2V9UoPIoOd01YK4K83rVsN9b0qL2mBx9CsXqzqu5kIHZixRHeDfGEDynhtu6RP6i9VkF4My/uKN+fD4Ysnx8NvRCKSFXOHldBtl621f/Ctouk1YlPXieBDPiA69B1dQt/Fu5SX5e4FogP9E3bCGZvuE46Bl3ZI2ObAG/7q9aH4fO3Z5fTe27t/9z/7KysP1ZHinc744WeD0ldfPj442a+imS8vOagnh4OzoSoMw2iu+ofjF1/2dbltd3fX1prns9P+3nFx8fmd22vtDWOQOAnL3Qftt373zWH/hhkijFDKB2aX8xezwauzo6ML/YE4KtCwLsEoLzVa5cZGud66oPlUZlhL4jEQpVFbNfDKYufW2o3m2vy0re6fANQfquzuXJUmw6NTtvPo8HD/SBEHggrHn7alLhkbKpd+UJnJ/SIoTnXqzqxIlEcoQKAsUsSFtJBy/rs1RAABAABJREFU0QB7IIiyZznMxu7SdndpZ7NkLrPJBqsRSl3jDSB0ujiDVbBUptxzRp0EJUW0f1HQa3qXu0cCWQKKvogGRBWsTeIAB9/NpFUcGSndItPeNrBFesvfC9wf26erQSaVTuEWyoutnNx/b/fG97crDy7PW/PV9cVqk7Sfn51cTfbPxnuzyckl8Of0xVEaofTP7Pt8SgbqtXW6RSZqRhVXNksrPRDheWerRTiF9ozX1aSi1heXZ3Q4vUAdiHt/PjwcHx1MS+dlwq6w+PK6kykoeReUHYQzj3qNS7fAbk76k//B044qJNO1gi+LZSrAouKAjssr2tZ1VwaO7Pitd3b3nz552b9oldpC9UNluUOdBDKeZXqJvikwLXd7PdWC8BH070arY/bs3ID4NPkh/Nc6zNoCRe8rbB2eAZDcasvvWHX5G/5b/iD3UchumQ1wSuL2xgVnGzRK5I++JhRRgrSjT3FBoxzBOUTitYKMxyCmjkp9DfS7YHwsd0fBjvuFSAUZTJWSbYWT0LGCb8VqfiDHq5ABDJYV/Cp+qzR7fBK5dL64p06gDkdRYNXha/KtIY4KdDgvedw006bR4S7wIR/LM8R5oe5pRQ4HplM64vFxfZhU+0CAvmjaoCAefjLXUWxyPBqeX2hvHpMVTRA/xP+JKEXhDnlmGiPXj2FYLg+miPMS/1Qs63hlSXu96u3t7laz0YarJwnCzeXJ97HI8O6pL+bgZDR8tfeKL0wsLZlnljK9cfPWjfWNHWnUta4O3SybeEKFgX4NAc7V32rIqUXHePWoPyxPrS23itdckjyNeYoRtiGZw5fpIA5rsY2stD2yPvm+F2HbLDdVy+J6bA6T/6Z+ERQhF2siYD5sMTF+2JFESKntpgkuJovr/tkF7mSnNVkbjLUJwvNE5ux0JGepTtmZOkvoLvKt7PrlPEGl26lySC+H0WA2GipFk0EzlhSxkcWGjjn/BCI9tb0Ik5+KSgiBbtnj2nyagT8roiKDoyjM1q1u9frlfPLy2Se/+NnoevXlyxcokXOlqeQp1Lbq6qUr4oWqF6WjzB0jJJ7Bpidyi7OPt51qYYdQbj0ukcPA6uF02Vm+rbot5qhw++T48ik2eDA9eXr14vAXL/v/j8Ptrz/YubnW7bI8q7PR8uDYEKTpnTe3bz64cf8RImtarbnyfDjl1w+OwM2yKSpwF33T8J6vETWjL64up8+P91bGpaNX+052pd1BFzGs2Jq3q1u313be7N7cubV179GNRruxeWervYVeWTo5GOm7X26hgThLzktpZX1FyfbbzTXkJmHmcLgY75989sGXk8F+9Wr96d5pe6e2s7Nbq111thrqOTbf7X5ztXqG/Xo2P0ZHXq44FYeHLzFr9aE1bH5s0vw1akwWJPFAHFdrRE5QemgVX9DGwbI5BGg/682lzUZlq768VllJf7EE6eUVo/HofVbDIZGhC7NcpxqRSCYrOoLx/V0IyOPyr+n/gP5IZ4hP+KMyNSya0l31V8lOi4TmS1WjhjlZPtBZ2kC69WCdspiv2dJNY3aysVXf+fbO3d9e336vs6r10NVw0Viud9QVVi+mmUBUuZz0GrqFuL6M7PYGapjcVX25vbG+yjOrrNx5s2rwUudmu31Dk59Mh6y0rxudlaBWZxrQrg2+GB5+cbK2tTY7HlfrXdJy9NXe1mBw+8YuYsOTD/f+8J98Mli88syKjikhDQE9pBhl6i/xMwiYICzdDXj9ieNSAYBEmx5J8l5Ge6wsljvL9S9//usPfvjDWnMzRqHUmE7N8DIoULhLjgo0bmmiaQtXkkMogA/L13waGbfV1mq7sqhcO3xTOoDzAnA+atAe+lKHsSH0CimWHx2Ui0sRtEOWDOYcOtAM0FNQQdOPs1WrpgMRM2HDmSkNMtQICA/8PTqGexTn0l/9nfsX9Z/8Aa/LiYaM0KYejpZRL7OMhSsCiJdOV6aa12dDW/ElvkYBrQPa0aQZQ4Ii750rRb053dKpfKAOncMBZQJ0Rg6lTfWVWcvOsVCF9k8tVByKJBWCnUcBZyoJXK4ymSyXSH3qVWn/TrO1ySnTMRseDK+dT8274RcuTk4u4oOyUHnlaAB0Emxz6k0ZXu5DUcT0WYSyxG/cTk9KpSJzNVe21us73Zp4rKqUCFttcZ3Zx1oyzLg9uvrR6lzpEZjv5HQwtqNLl731jc2dnZu3bt/evbG7syWRmjCmaHBsuQeGoR0f9X2+etBIVxqHAJyTymytlZORiE631YE1SKrEC3/FiU0OlKDZ3yK9EzevsF0yv3iZpm7KAaeUEFvI+IVVLQuTrUfZ9jPpp2QjCatIiw6kEln+THCwnhOcBPOH/JYnhjrqQLGezoMJx9AlSgYIwJ5jKW0aO4KGfSlddi7ZeXFh37pInlftDJSQR43NoijIf6ItZtt9Uqw2r1fGpy6n73ohLkWl++Xi7nZvq/HOR58N/82/+eGL8Vlff9ISXvclP4XDQVkXKj7DMFcVaspr2saQpFgAYsG9jr/vXAemIPW5eWy9zwhFQV8kxymlemIXQIqg5nT0WvSXTZe67l+f/+mPP+n8un9vd/eb7z+sr1031rf/8u/95nLrYrlxbkZXGc8rCdCkdDrX7Y2rGqcZEY8ksKIrpbewn9Taw/d0Vq00Npbnq5MnBz/6wx/99Ke/4i957vnk8kTq5eDouHJQK3e2tnc73UbroH73zm6v2dE6tdbtbm5uXLevpivXJycjb3/RlIrX4rEkLrl/q11Z2fxe484f/nd/8j/+wY8/ePy89Hyp9qpmCGEN6ddM8NrK2kZLugwVrVxu3trallnu3traLW+bFFJbbXHyJkOOoyasl6vKyfvHJrZxnBhkp4fIJUE8ntJrECo5zJ3qev1SBvaiV7uq1eaIxQqUk5FWVKtPrrknc73wR2AqSEjkNGwLEQBZY5JpSdvjqEUFcFoo99pSaWNFowugaGtjrbPRa6eBHuglWRU02IasBxdY4x49IdrCauQ256S6sv219p3fvbW8iyF0KYw+X5THiHDj6dVl7fx05Qy6dgT610Ht+vTgcL5w+DALypen5xKsvY2NV3uDl/uNk+EhfI8Po3MGUdPHfG2zasxJtb3y8Nsr5cboePYVh0Pn7daqtmX12u3lW++0bz2obGzd/O7Vzb/zv/udX/7zn/3R//dPP//FEwUdVzFgVHyDqSiQjMQ63pw4hrBQMKYEXpzS/Lo6l0OaXCg5q337d94t1a7/9CefmBZbNhdXzwZ5exEKCxCRFftrOBZSv/nYujWbq2GYEkZY1LBcUbdlas10wY7H6WmvrA6rteOTVV11nVbLLougCTEVkEhYTYN7Fz2NBzaIDxhLtdJq1DY73fWOVKbzbERgbISu79iEtH8c/AJcoBRyfG0hnzmCH70Zre0hYRQBmhnTIEwwGzimG1JKUlD0Vlwuz+uw2WCrLhmqYY6fz8dZvoCNxePo4lBtaFHTNS6zGy54y9xAkeVSJ+ouXCYP7GWi9qObVUkAQqKDPKnkTatzZm54+SSJcfGc1mp87q2NTS32NMjw3DI4rU5/2byUOP99q+E/9CfP0S9gE5RDulH5lF+el/+vDQOlk/yG96M6+BjN1upGt7bZawB/sOPZa+wKS64c/KIyxJBuyEcYE6FGhG8kA0nP43N1O5ubO+vbN3u7N7s725CVVit6D3YPqPbSUvxeTyyjY1N19axUGmkp5oisNWR6UWWiZC2T+EanfJ1BNTdgCOJgFfovbkehBW2N+MgyUf2pillt+Ae4RxsjTlKl4sqsdyglZNRPpILJjf14sIAwhQChWK2CKZ2GMJSIYnfejMm5uKprLtIwWrIRu+6Hw+JxWTK2mmCM3J6bfofuINm1dlF3fGuXcfMRFeJoszp2ndhIpVyfTcqjikhc0rx+cdXomNrV6h8dmzbdKy8/fP+9xv3lD//hP//qq5PllRYCvIeO/sg5ijL3itZHZxh5gYK2qNQ82beAm4WYIXTI3KTAP+o+6p8s+uHECVAgIBIuA/OQ1LH06CV/6ko5kfoC/tu01q1033vw/lZjDXRWXevCp+s6PKdhR4a3gfyCQCnni7mZEwwd8qi9sse8uCo3K5vd9d5Fd6HJ2Hxt8KUmeoftC3kk6kxdmcVKOVXvurHba9y6/4BzcNQ/ZpwurxvTq7IZiehU7dKi2fOppc6G1uCrCOyfv3r18tcvv/z8KQijUVva3V2b9Ge7u3fuv/PNg73j070jhCPtk8SMfW1ITvTSmVoMfvjS02ls5jLIy0jhZikqSURGLDptI7M0IVtmICiBtWZnw711EOKaK+zGCmHq1QQ2TBXz/M267H9GXylmWL5WsI3BtlyrcnKI40pDU2XUZiuiY1zyLuQjiqpIb0N9ZxbPIqX473oi3YL5bqQ6EHdwuTyMryPWwTpw2lSGGyUjDDJ7dBmJEoors3A2bd/farrl3sFKkytvGm5r3J8cHU2nx8dOjorrxeBkConkeVZKJ8OjKxml9Ma42tCwtl29dfvBySs9HDjC5xubMj4X133aqyRzg285HA3vfeve3/1f1Hv3MEqr54f07QCNbXgye/zZi5NBv7dWXRO43ehu3X50/96D/+X//n/9yQ+e/bf/xT9+cvC5lk/gcP4+T6DQ+wQrgQ4nQ/2E3LU/iSsHi6yq1bqcUbbt48NxuXXV6fZOcKXU4Hm0anz/OHO8HIYH8ZkFWTZuTD3NRKNchle/Zjkz3iPNWQ9Dryu8wj6sX12bgiMXy89FQYYCq83BJOWm8jWdAPie/iqrZ3AV3CbYrK7AjS2AxMb6RruDmULFcPkQ+KrlyYpBQKGYFnmFULRR5KjpnGBBsXeLHwfvskWSJ+I9Z4921v2EXwYkEQsFlPB5eome55glIZBcBFWqsYdpEhRCA3MpUxHl0qh0j1o0GMaq0d6Cb6AUhrnEMeTMxZt4/YvBif+r7jPsT6oLLmC+h8FT0+rZRLOBpuKjM7jLimymQqWtza12u+PJVMMJkFXcMQBerD8c+KninbiNGoclGNJwA++CkoyrSj3IFnkz7jjMAKhV1nS2vdpslR0dHNXJxaKPH0y455fpfqj5lU761mGl2mm0YtxooZPy9JKWgyVkNPMqRW9ne9rUpEjC/lg+HxRINUbNyqAKzD4LDd0tZVoqLWOumrUWon0xvpLzPpzPjzUDVVkkTzBb4RjRqi5lDYlO1oM7L0hie5MoT4iT/8USBwtzHe8XvgCzXhi/oH2sdHJ/tLO0b3xmC2ONjfKy1SEWixkXF/Wq4nIBVVFcEFiLbME5C7BNCtfOhphvArgvNmi/xXxFX9C0r4YxL4pizdza/WB2iHxC4pV6ahmuako0L1dfPXlRHp+sti5f7Y1Ol7uXej5qVCr7Zxh6gKokufG06Xjyr19L5aqqZre0DBrmrwgvYgW91mtJk7MAgEZNc2QDdkM8fDeilGWJLwNBIo+iQcxRvI4ByJfPu9Hb3WrePHk+fvkp13r5xmh57+VhpXdx/72dm29v9LYbejXQUoZXuLCbhHwQfomrqzQTli3qV9U07h2VzvfHez/96st/88V0/1IRU7qhBHUprzW7775599Gbu0ZkH+8NdJtdOa/dqN6+9cad+cVYLRe6p80wDmb3Rr3Va8I33//Ntw6fTZ58dPg//X9+/NkPP/po8IG+muWl5tbGHZjSOw/u3fjWbrtXOnl5eHC0L0dx0NfmcaYJpk5iaOuZ81yqSRgqjLMCpHux1HcmHVU+nSaml3uxjoV3ximzwKyAwywf0WxftNurPVXu6+0urtY1mv6QGeUwEhXEYf0B0ZLnhhZRT1eldIgKgCBPJCEggAT3O7PlZc0sGNCY48LIXQDeAlXKUsvSYvjVV6/raiTcubY01/AZObM0LVe6VyWd9SrLT4ejuQxVf3bvhg7opq0t09EC2BAhdEtomeTOPpUuhtOTwdFybbGz295d7WW0hgx6vfzw3ft/qbf5xYdPj/aGrc2r93/7bYOpPv3p0XTY/vjXz9UQvnPv4QROVCt/7fvvSRMgK2ibspjWpseXRwezysXS4MXgq08/+4Pf/1mn+rO/+ze/f2tn9+5G5dODE1qRf9xYbs2MevAPYTWYMZUZeRcnDw5eNdfT33AILwQL7XZl45MPPjm7On746O3b7d6z4WloLElMGxRuyCxdpM2KQVItobyj1x/2W2nbXkGYVhOGVBIVu0AD0+wEybl+XW+WeumzwimLHWKhtRFPi8bw9d058cT5ea1xpjKodj51ejjaN2/c2FpbS0rScyoZm0zq9ZbOoBfXJ8AHyG4qZug9Yy+ixeM1RomLsSlHkA8M2CKx3YgJgdyTIEiSMHrf8zmqdvu1lskPOpueRgKvAKZSzwigw3IoFaPC4rZSLfB/XXbEAevrSQVo9ko8WZ2C88PRBGQDzFNbwgAEFHLPANHYifBks2abio8mEz+gq3JnbW1ta6tlDBtai3EODZ6YDl0iBMD+spY5fG52CucQn9qiW0xPSEsIhki3DwnOLjBJ3F6nF2nRna361qZJVSV96lFCjqdyttxp+qC0ej5uzCrdZmOzU9dbB0u7P956dXz46nAvAdHZWNJQoyZBnC69UUnpSkn/CxyBHMm7wZBOz1LTi71m6TwKsu26sS8KjPWGWzZs8qJxNlUjJHaTQFYKYFxc6t3TriSaXDQEc6NjERrULazOC2KaDs85oHCaUB8EhTF8iQLTOEgbwZzmggMb/eiX7zm79vByMYylIAjnrcmZ7LfkWVpQSdFIDxttmRbArKN/Nmhki07REvScagbzmjYszc6X0/gYEFZaQQ3Ba9BqijoHQF0ptoIQYOgNFkeH04Onhzu1pduPtk6HpQ/2Xx4NhjwAWXE7LHPgkKc3XZk5RU9FWBNuMjXQIdmUomLTg4OwCcpyWhsQaMdAkoCH5K8cBiUQONCOqGZqSZDw27TP02VHqu9icLYAYjBTNSMURxfTkkqv2byz2bkcCQpSOjTbX5qvXV/WQ8KBTixVksmifJ34EHtZTfGyS8oDhRl1LSF5+EF/9HRYUs1UWd/sXm7HdjZa651NqA+CsFq7XvfBxs7WjVvno7mDOXh5XMOtbeJ9hnSrP2VG5fQdxWWNe1VQfP2d9a//r/7uy1/99j/9f//BZz//XPXb/Hihs3R//7D6w/pmtacd1R1jdO7uLDZFXdVjZHwytRidXyOrYFmiNDptXAf9bJCxZiIeDw6YjuIWLKE/xpQSyxx+rGYWtH5eM1jYo1+/TBVCg4k/c3y0o4D0CxmU0WltIuYo3l40mHgr9vBM74XVQHIkmYZQgGVv4P1Wn7aGANlBLL8WyFB7CQHqZWWzvSlqO1+c1XRVKl2MRsevJgcnki2GKPdP9dm7t7bze7/9xm/9tfd33lo/PdjnIV+cl8bj67PpNQ7yy+cHX3z08ouPrxrN6ne/98bmbre92Z3Xrw76Iw2vvvne2zce7QpRrnsmVla0DpkutX72L/e33pScP7hIEhvguKbDs9yqwFkeptq+7rVW13dTfdP4+oPf+2sP//bv/tWf/dEHP/pvfzC8HH3x8gnRlmm37Xrkve7tQQiB/lGC5EGEmv5BC5XmhI2548NlVrB1TmBeGZxCQbGg9T251E2xZZKSAaaYMHVtxXizPE2uucyBIamH0PD2cIBHgqhNhyJNKPMFp3A+HGqqFcWVMuLYir1CNkwAEDCYK2RPwUsAECd3M6e00qUbd3b0NBMn0KBUxnJ1qJOLdFsNr+16RD04o1SUb1KAqVUt3CvnmwJJQM7hqQl6ipjR3SMjFGnSBIyQE0YjvfY/89+IRDBq389jQeCiEDjhkAa0K/LJezDrYZXLUV9fb29vKjOCyfts2OZhTkpHwgJnXhNKxWektcQb7kutcekas7PqsM/Nx9knwMKH8KdardWWNIcxdZfgCu5/ilJDkKENDCJMfYwGxRqvMwD0Lf+YO8lnh7d4BZSmpLR41Noy9jo1HR44RwPFJcPFfv/8xJ4w3dCk0iXwaL2pi+/K+noH4WcZaf5iu7O2rrGL8H0CnDo8PtvYXDTROxDnqsCJwPqoBUH6zgShcoVP9vdO+sc8Io+SkEpEkl5Q8bwtPvKl0+McORzRvuZHlqtwTkWBugU72BA2RhIV72wW7EOgd6nvfTouoM9BKFK5xkwXpiIMPELJCFNeCcy8s9VJdJBts9mMPpsBwRGlqDYQj8bkSskJSswuA/4YuJqokKTVxDthsgSnS4FCEgoyM5PZ6eT8ZMwThN8TTMdft4L0fUufCQz2OCOmUc4+/eTV5GR83aoNt9e37mzMnpzCPcK5dQPPFeQmDMKsltHkAZbJn7eFM1DmKg3IKCklnFq/kFn3SuABTvHj9HEAH79sKfsY3gL8IqT4OSNYGp/Mj4Qkfqqxsq7q52x1orMY75Jjel4cTN4LRTM81J/gvNS6NMuu1imtdmSbs1j4caQkkZOKKzfHjB4uzQ+WBs/mp6/OzsYsRnVr+0ats9ro1GWSA+841ipRMa2qrepGZxkDqT8bnU37Z2OOVM1wSVqhrSG0Y+c94uDYogu2a3Vx93ubf+Xqry2vtD//xUvrUUfPWFpVbVSZt0rz2vGH56cfPlPDqrnT2vpWZ3mrcd21l+rCl+oScygicc9Rzs+vpkJz3Jfh4vh4eih8QzXhj5joeen9KQ2+Fetzxswu397dMerTQId7b95VBajnuEwXpqO6ZdUIxk4IRhlaeZZavUU4KXuR+unorMgcRj1hFtXLTY08pkOt5zN5ncjaAN4OCcSnPLsaP176UJnLaOnkZOkIrEq3etyEfoH/LtevSt958/bD796fl68fPz45eNE/H5xfTjK+XLrq5OmTr756vH80pFFOh6Pqz1be/0vvtG9stNZq+kbz0mRmKpuBVmobekc3DAx6IF331ennH718693t3d7KpnMpMtqXdF3ocW5uIbmKH9Zks6AOIyj9xrv1r42/d/jBF5//6mS0XBume+a8tqTeUC9F4DuRZVZz+LjORJRyW+jzkr50Cbeg8jA6QrvWWR+WKsZDVC6Ib0KzVKcvLbfXexZrY30N14ei5L/z55T6nyAYjEa1k2PDR7bg9vVWQnYN1XFFwc5AMFcPvY9EOi85N3Hxim5rFC8yTp02VRnjMCOma+K10etuqOjEk0nOH/4DPlbJSfwbLX5vvBlZAI4UW+7Hi8AizjhtHI9W44q5NgjSxOQeopHB5+EnpQrVD4EQeKEOh8DY6QGixyQakaFjO9+HdrPpKdxYnmrdraCCb8A6Uj+GWap7pvUq+E6mDep4B/oHLoJkFgYczEplK2f60rnF4ZJCjuAa8dHVzjTrU3MQpy0hgpdKrRID0gBkesd8Zq17PlvfQKVNYSBnh8O4fNVprDKDbUzu2OigHfAvboz4QPmsqrliQJ9DJrN2eXHYxza67g8uDk8XYhEzLl3YmZrI2S6gptfgyU63W270FJFQw+kWOkp//elwpIPgYqMI9mDGViYpCJdc4Ktp1n386tXxiXlR0wxyZo5aTj3GvfKgmAp6mRJ0IrQ0MA8AUZ+OtckBdRw3zjd9Fu8928+I5S00reNZpCoxTYVzET6ecFrLThmMaMQo0vxMKqJoaH+jcfKbYkvW1ojZWCiptDIllS0EZ55NBQQwLYaXmaCHGQAMhbRjrWTKiqCTD+kWo9BhpUW9IiA3fdau1L1X0aXM+k09oS5uHtxCYUMln1jqjVW3DgRL+rdEqvnuVDhZJ4tK44Vvl6uUQuodLUh0fuRK2pe68vLWgbQJX3BM58JpWeiwMkJt9Ll8Ul5Rh1rJvmXFeGZmXI9OL16dXr7C7l+51Cwo8Avs1vMrnJjOxrPxsNoEx1Xno9KsOePJLs81JhZSyFlihcG7QjqLGSDlCcScPzHQigQRELu8wCsolzvV1W5J04I33r/T3dHWRa2TyEqKnN5TxVsxael65Zzvr4NUdb3S2jVS2DIVRZvUEA2RDLeIQ53oOWG++/bd7/9bK4vjP3v61R5fDHLFNQB1UbJOigO/et2qzzsXe1csC0/dinnZ5EgKayrpreuOVeK+mUpPZxU+gMSAk1TdrK6xoex7owY8rfZ2ekYaWN33fvMhH+nGmzutzdZXn3z15fGTM+1iFwyGox7gKGVj11cTKe6AIkwrjJcq9Mt93QstVaFvMldwuIJ6Zm+jB4rZL6ZjTk+XTpQE4whNlvrTlbGfMQqVN1lbdNeXth/23ri/fb8pO7ZcPx0DP3v8UjpWs9DqhZxo+XyEEBKCqdc8OZicnk5uglzKtTt3egJqQGaG7/oB3t14oKBTYu63/xroaeWzX3w+PR2/9a23OFpUVLPTWdUotFK/4G5o6qs6zBk8ux7tjxf75Vd/vvf4V8/1LALds5TFQQFbqefoXqSNXQLcqKtiteNYkbrFzK6J5Mixp1sQPgrw/LLWaDP6JNbI1WUsuDUBf1cTl/X1dXUlzpOrYDiW8ODOFTWMJsNpqtKmV4vmXPmpKzsEqIZSjnim6ZRQlP+4E09Q63riyJ9wtAViTqUOklT5anO1aYJCW6YV5buV54vMCihS31mdVktj3IzLZgCKoApQINEQ6xTnvYqUF0DWsGJDJYX5zLgl59rDuCncTptyD0mCwbD9ybi6vEVwOIEtxVwoBgD+QWgucJX5DRwk0AXfW9mjM+okeSbuPe9fk2IGW8GML8J8uN/oRVA06hwMH4+PPhNOiBJ8ZkllTHkSMCqMJ9X9okr9rxxqts+H2fJ6zSP6X7fTSb8vm3R1YaFhLKIuW5T6FqJsohK+zHwB4U2G2IwnI2kxc8ajSymGo6PzgZYggRNo0yhS2Nz07NLk9SkH8vJshqB8LYpcoqZltfXOxHppdXp2tLBjeixjOSSxiXaLS0X1Sf/AhYQqNPGayT7dbrfdlQDQbAHKQOEhTioawwmbnRkNmf95Z9Osr87mySRQ7toI6Yooa5JKCmKcCvK0XUsUSZdzr9kUzaVVMeplJ9KhqHL+fAtWkv/nF31OOcW5YJpicogwd5BXY9HZMy3SUq0mEWdeGAFwhTSqcwuaH3LJABAWP80xAUNhUCpcPgdCWelEGqboBv+SFKkQFahbubImIyXavFh+86133vnu9z754OPHn78gXgVZhwbxFGFYyEA2i2CP/0FmVOxLxuovaDwZucdGkPUsSSyEFuHlYBgzWpp1Zm1y9KKqvWQCAu8JSKLEz0vqOQ1N46PFKTeeT1HwmebZ5MAxHXAc+Z5Q6o50tHfjtOhdgR4p4SazxkHO8NvXeQCmLFVFMUmemOFMx7Drc7q50V5tm534qL313sbm3XVJ+eHxYLg/NlLq9ITeowv0JZPyUOqzunarU10n1nSnwNaqxkLHCjtSMv+JriEOK51ba/ce3e0/Nye6EMG0eUhklPdY0plItzMZGfqG8cO8dBKy27SVXSgaf/qLwHA2KNrvIP4wqNrvaPbQODP1Zbk+Kyvq6C5tNne7zunpMVhyv1m7evzZM7nyvf2D470pF09mO/lPjMrUHHCWvAd3L/4Iz1AtQpKGS1UZUQaYO4+g6bwksC64x8THQmuVcbp0PFw67q8ccwkLXGdykdovn70AjbSva+9s3PsrX//Ow52dypTqVqOFcrHa2W5c7Th70/Hh8ub9LUZg8dGr49npZmmDKrPwOkZIBgLQGXewnUgimoJjNqZSPW9981H3t2udWrvNIZzOV9pXla31roqcRKoOko9XV8Wm4uLhgUrBpdnLs/3HhxzZ1qL55PpgSUQYxicDwG3olJaag6XT6WV6QgCF/K6YUKyrRXyq5D+gI2yh4hj9laZHp1tbt+cZ+aJgebXaaG1tA+SD/Gxtbr5uGsD910jqqn9iJeAEUTqohqQCqHtWqENDfNKpch4ivIGwUcci7cD04cSxhPmzpImkzL6kQBOwDr9tt+RZU4efwMwJVpETB4kHEy4kMIe2lXosDnWcK0W5PD+hA0wpiOyFPh9eRroVdEGqyJYQU9XC+nrP5SkRrjNsx8nwTWaEa8CrgNjETVRTQXSmU/EEIqmsrcEKLs7gAC2CNV2Aprkg7E1wLIr7tQHgs/M13Y6NVSjhItFYTq3PBSwx4yHFAlQ9ZalnF8WWVpbBeZLXynPIUyo3S35FcFFPL4aLuQxevNZ8Il5SIPSkq+AWUhRyfib0hLgPtCgNJ1enxwwAEMmqIg2lPiqFbZKlHN6JMYxGWh2hsUI3Qy2V667Vbt64RfvU2t1GZ00Jn7QkZRe9C6GQkFAguVypNbtbu7cn6UZ1sbOpCLyd/YGygB+5WekirN3P6Hx0bSqcX7aNyXY+KMgYLtbZ27qjq0topF+0BLL6szSOloZyu/m83r7QoB9fanUwXWUAGQ1vW8QMaY0EyHAlzrWlKhSliCGKPPpH1ZCl5uEWqWYrFPCI1o3nIPkXA23hWQKAnYNDB7kuXRPeqk1Ak1WPiXRzdaV1XMMHLV72IUy1erV3Y3P99Gz5a289evvBrfHJSfS2/BUFaOuyZwCdKxyS6eVYKUBKra8XRq6fXYzUwCaQYkujV6hiAAyl5IFGzAx3gjvMhmVQR7Q+vVSEA6hr3tS1C1SM5YoBMDIaV4ZABMSEEV2N54PJvsZb46X57upVFz3x8opqzfBV7YUqDTM3aNQUOLBVOWgeNMtgY0kLUGR0WZqYs7B+s7X+oNN7o928UV5ZC9OFMVlG01xZ9EdchrHXYeKYwdZGub2uEhjbL3uRZ48Jjt/OYUzlVSBlHsOk0lm6++7NkxeDLz/6SvrBofCy/sJPQTvxZgwkJWshg+cVatdliLdmqEVbOsZEe6IJ99/MwVn5LHNA4pOkTtYiK7+PL5QMVam13uze7In9zcE6eqG18FQKIWSgtBd1ZEgHjZ9KtcABYccX22F0WnAIf09dWJEkoJTiNnk8fyksUHrA9ZcwtI+Oy/vj6kDaKLWkNodQX1bal53e5eZbm+/83ne+/2BrFyvkUjlE2NHLwvaEhmYBbK7U1+qt3Rtr9zpb92588qMvdeNwvj2wvdCyBURY6PL4BW6b2NWG4TsA+korO496v7v+LZTtEsytoWwCYeuynJNB9QFJ/S5PhmfjI9mG8/7To8Mvn4gMTGsJ4bQk2onHYcW4yMwAoLSe8uBl7SuaK9hjdS4kEo4zHF2cKhVIf7nQZc4QZ062hr+p5L6efF+tvrauZHRTro3AAj3Cg7g6X+3Ts9dswPWZbqXeaLlew5dKPp1rqI9Q+lNTWc6qbeHI2kgJF7my5AOUaakh43mbOd6qUklaDjIJsrtOA1GVmMD2ILAmP11d0RpaERWgDq2uAyFRZApSg+ufVp5om0Ey06B3qL1XVRcUXn+r3V4P232bAfBp61cwPuioIidIU8TNjHvK1vjW9YljhhJ4rnqUluGv9trNta6uIpQektGCOBFY4mR98pQuFLYKeNTcgzBEM3pIq236BseB+o4CFyxrpNukAa6XNEI1CFG6OMwhh8j9sVxVrVrY/FCtBlKgohNLROU5WwG9oQxFwQQc6EK/h+V2g/2kVfEXL/UrGY2W57OUESPKiVpoGrhHmhGoCiidT6bmbb6SEoXEQ3BAue6krDa9B437kdYPj15WHZ6dZGYMY1iVZZnv3d2b8qnww40tPagzoquQ1OTK55OpEW7MNG7z9XhCjhM1JFUbuAHkivN7WddtMCTWTIyxnHX0NtpVzj3GvXhnjoMSZP5ZmJzTquWx8QkfojtcLdiXQxIGmDWTXk6/0gQCESmXsCNe3DvT6STHn+F6iOXiauZMMuixQLY4nw4kJflM12YyAMmyXXGX3I1BFgUoalvgp3rVR7e3Lqrth5328slYyuburTtgGuDe/t4zno17xzO/vhqqwV1esPVBHIzZKRt2b05pWjeTskLQInV0MnceciBX4jFTqGChbZXjQEvHOyJ8aFGJPwT3Xl1ls0vCFCmN9KgmBbQ7pwWr8mgahGHWm51359cqM6MojdVR6k9iwEWp9kE2CTQqXPb6UoYGF8NFZsuofq369qPu+ltr9burtQ29NWInPCseC1Z9c1SCfQmoV5srje2qnsbcA/e1aUnGMMoacUgRosdcViyi2cJ25Ww4Bsb2bnTMlpr0zw9f9SlT4IIAwbPQ71wZVg/pPjYuhyeq33dR9eE/mDn8bvCTKtOsTEJ2ulRbzCLRk5kHncaSuTqNzR6wunv7wc1Gr6oHZf94eLFS618egwz1OuSV2GU+vq5nzK0z6XY4uSqDQrSMHjQ3jSS4bCHr+UAEI05xpCDHW+ci5oE1KjrlKfsgJ048wnalMWtvLt241334jTvf3e7exSQdi9ZYcQ+LTYE2W7sodyTMV1u96rmw6WH3xqMb63c3Pv7pVxl1q6whAwAUOl9moBwlXYEji4XoRLq9Kg9C5ElwcxNGV8EvoG0YN+JAhc7LXGn6oDQ5nckMayk6ezV8/NGLvcNjrEX6OG/AxPIhYjilZQXrlU1bXiudng26K92WXoQXTaqCsYzqypheR6pyPlpZEE9bkxyVvXZeudbSPtKWPfp/bW2DT0uexCJ+As4NDy+gF9qQdJ4b/M0eMJD0Kv0gmeocxxdO2CjTUIacZEghCN1vMQVivfIqfHPXSVrVR2U2xYBQ9wVQYarhpULO6dipbQgOCiJmegPnjAj9SUnQJHG7LbSuztb0YiEpXTuKS89QtD36hsZFyk38VIw4Jo21fe2b0Ac0Qfy6mr4+bAOxXh7M8P+Yn6t2vbq9uX5jd2t7a02BOxES7YpxFlJIfmbVh6Nyaaj48FEk+HfwerootBYga2DwYMWsRtpI+aJcL12wSLEGJFyNTCidcAH6JCXrhY5I0OAsMvQUIIfVk1F/8XkZg+i08s0bQaHYbe3SJ0a3ja6Knl85VMGl7CldJ6Ftk3HDV7i60/HoaAyKAg+cz+BtDBL1EI/IevOLLcMFXmPolqQ+74OcUy7BpIgRs8+adXu67qQVrNdwC/Z53miQIe3C2z2WfkbwkqNRcu4Rs/5a0aQKDy6f3HHqr2NnKUXHhXBEFYs8bUjhDNLOMVr6KcqleOmIMk3gLJQNvWAgeXN+RkjB8U4PSgEEMaffkwKKsXUv2jaSB3zMpN5cxGoyij5ceF7OeRZUlT3ICEDgJsUWahYZcCTuAXXkKJJSk/jKGrs3W0ulvS/3/+zPf6EJK/305u2v/fbX/9bh/snjx19iXMxLZ5rvcYOHmrbZLX0YA+RgDoRMBBeoUD6yv9Jv/Hd3vmqhDngMrmmhB4M+F1C6h884EMUfRPpypbdSak0uDpk8E8cY5sU5ljp2aSLGuKJL8/4p67G8imrWXZqcnsMISeCaxBpRdGnxgyU0YJ4mFf06MI2Vxmate9tcr7JwfuPNXvNGu7LGXRFY8PgoTdpArvGShaptGv/RaPXq7RuNUg+mcLVCXpxjr2fDqO2gjxB2lSDAe9mJK6EFH1CPsDtv7J6dzCcHH4/SDx4II8kb8rsfKi01/M2tHAzJIvdjJBgAf+K5+WekovgRYJGAm29aSY2Cvv/wCUMfu3fu362buXKjqTKC8ZQPsmQAPM4v6If9oOKj1pjy3MUa8AogHZ6XpEWhp7Fz1D0zzEH2MH6RBdwBJ4iTKrurlG6ltURFtsyBZhoZJ0sN1W/PzXxfv7366P762/XV3f5E4nYVVsa8yOQzwgRKUtOqXsLYeD3r1Q4C3s2l1q3V3r3G409eBhWsr2BM426ZbwfPpadpMWeQJKscVmRCGxS1ozQTAXeecu4LZ4hPlzcA/evUdtm/uNifn3x2cvT4pRl88KfR0jgZijimdjP7Lleo8mu9vn2NjKOv7krPGEvIobMji8PrY2uK3ivpoOLIOKPwB60T4CJROTpuJShEWZT3LBgWwQguwTJe1ZnzeesLaVisIqnGubd8DiV3gYKBeFWv7A/FDk7IzEA6gcdf1yjE0WIHmq0CC0hVKO3hobjZdBH3kk7UNAPPanTad2BeN6TtFNM+6k256AK/EyvRGSRGeRQFunI9GE8hKdxU3wgBiJ2R/dQtuG1agyMXbzrqNLySlNN6C55rdNrltcpBrjArRcodRcDR1ub6LiOg0UKN2woYIJPyC2nboMYkxZ1Rnv6VLYr2ywVJXCF3+QsUQNTDmfV1X4xa910l3q7i8wSUrrDu9ltaEkfFdShvj04UXfUS5SlSHPKMZYxPxJ7cuw0A1WDq/Oj0QunAfJCOCrSKTAjVHA0RvzetjTNYQnwaZ32ggxz9tlwekeQrWr3Ra/UWzYtF9XLRA49TT4U1F+h6Fa3jPTnpA9kDphSOZcCWRZBY9V6OhOm6K3UZZRWrAlKNCyfDfn+lj+3jBFlQ2W/YYTj6Me2GA2etbazsUND+mLui9Qo/PoV4r62nGq509KHauZ+xqubhcRt9xvJT7OnEU6hsx0ACh8tVVOIZd8IAFDZT11yBHB9CQE4R59ZGlYpaGCRmlXUA7Slz1r5cuxSmN7FC0oVIexUFIPM5UaBNElIuzmiwtZPj+eVq43g83D95cXZZ/ujXv3752f5OB/j77/2179ae7X1+dLL35cufzRcjEZ60QyiwBEw7wuwsb+qC7dJtpCoYE/4yThm2LPAMWa0IaQKFiEgEEFRP5v7R3ppOWlMrxCCZAHkOkn9tsBKlONX+tJhEi/q8zKtcXYzOp1oOHFEvCvnpK9aHQxOY22F9HWyt3+osXd6Z3b1Q2N7dbq0Y7GWlWddYIaUfsQJqykpN6Vppx6pBwJUG/VRYWrNAKGi7GMzKVnKTGDyuGvEDUBDXZXCvR4Hpbu12t7Y781f8aI6Mq3tHP3klWPX32PYoZW+avxceQHAr/6S1g4PIHFuLwK9cPZZHhOYcrCjJv/POra5Zuy0OlDzmJZRBxw9uPYBMMX0xOJ6cBB20pJzfIk4XhTiM+B/MAKsT/UhrMWEkKs+S78oES1yzCLwoaGGahij56i63BgvAApxbRZxEoWZwN2903m5WtqfT65UGbmZ1odYtuHKuB0ljUMVr8JqVbsee61WNy03/3m6sN7Yrs7MLPgmZTpQT7cELVWYVxya/wQs8oUbRMBBCb4AzZyIOZnDOLHS6l3DC9dxZXpxeTV5OD77aHx31BVhQvcM5QoCA0onKfDT4D82Bl1zHYnGEMcSmvM4GbMOa0yy6bYXxhGNSK6MNJULErCFu83G8+LlJQmWt16lQSoBbS6twZASpDjiVzaWjH+DUCblpQavIIBRJXbDY6xZEce2lEkA9kBqYQ0u5KnOSZj+sAfeQuuO/RRDCr6CY+cixeBcLfEizDY9MDYuSqDTXJIFEAdpXtogmNwZ4Q1dHsBSa6X4WNr9SHJJPB9phYptOMeyA35pQ8E8geIGPLQAtF4lMIaDXstugg/ow7HPZZQhwfXd3e3t7s9vLhEH4qvt5U1orXAseMsXBcQgY4V8kKk/C8WUSKbRAEwEcfI1s+W8wcJYtVUjFTWXRYWS8TmtIM9pcoBl/l663LI41v110wA65Srac8yzbAX+fn5exUfegwH3EIXkPPxvj4AM5SwGMjK2IemEqEuJdl0QJS0vj/mhWORpICxUzKJRurK1v38ANXdvccvTlE+ydm7Ey9L+0bDp38ZFkvZX3Wfh2CxYRLeV+NGwQsaULxDUU0vb8SoZK7xldYClztj+tbVWJJ7nNpFpQlst5luw9Or1ianGBPKqHc+XEBxJy1GRe1tnhDF0BD9VWSJXA9Sl5z0ThJZzJgY3GYPgZ5NcX9+SRPaOUimxBQKBEP7JDXI2WQQ4xAjJLVuXycjwe6Yuwf3rcgBXK6poNEN2KtHc1GJ831EJ2y+kl0OeGXdzd2tR3vdltameJ++BGZ1f6ey3G/ZOvPv9ZvdS6d+vWt9586zcfvjGYnR4eHx3PTuDnp9OBUjvNhUgyh5dgOpNWh0KhXx17DN3UK3JZ4y0EuopNJZk0l/NYgLboSRwxodN4ruNVsjTZGq1NCu1PW1CTYhtk99kIOJCoishhn/EHrs9rVWQB3RKAr7WkuOlhe1dfq2rSYzgLANqeJN0iqRT5pTRlunJ8G22lVtQwH4r5EB84NDyKeP6uL0x2VOOnyfqozxaTwKxZatdCli98B++32rl8+LVtw0QOTwb8Irq4YKYvw2FoYTtdWIU4QH5bIXLqFUTygQKLP0HS7hOWb/FbALNbbt3YqW9uLa/t+FoS0eQPyZvCnELcXiHAqLURRsgMi41dCuIEBWNFYTv8GQ/umn4xwP772k4QpvwitQzMefzlpE6YWMagoyXqdXdyvTG5MhfMKq02ltY3KzfWqjc5tvGBL5b1V/SNquoLa5zeMTwvroj2NUbJFAM8C0c77mdlabvVTZOa0Jd045Soi6LiDmohxKzm1GLV2gZBs4XhlLFirKSG6xY2EzJVRmXBMbbMN56fzAbP+qPnp4Y2eZ31TmPSX5ssYGUtzVxrejFcOlfMQJlEkNXWekv0cwG4E8y4JfctXpluIsjcyF320g+7sdE1c+8gEej2Oc+J6MMS9vdILxu5qoMp1ZBZsM1Ocz6eldMyrV5HuOmgXWY2PNpgCn9tkZSfea6mwSI1CnZk7XiyQgzepBDIIwTr0LzXSRSi5fTzLM51oJ6oQTrRngud2xeJHQ0EIWik3DOun7WhBywiV9uMHB2IXBh+h90Ra0I1Elqf4S7FGff8xDjIerRlJI6ahHkg7zsQnHmuDVG4pJR7PdUIbRFKs8EX0jyRdgncwMEH4htzbn3UUSeJ5H4uGLCy4EImIRHgAUclsUFWLYg6MoNe4giiXFKhiUJqii5Ts9C0PSvPxItEkdsuF8r/iZKgK7J5NlPKgtU+vVxUp5Xyzlb3dDQINIRve8aLiHtHvOlJr5lTHROacMM/4ZcjLXEvzljt8cEAaBOQY6WqHk0XfOiQ7PT1YuhtC9iG1QmbajpGwLhit1F2bLMUDW3qaGQR43japMBEVpCecBS9v53IDf3Ohjp/QcK8awA/URXtYHrUisaliF5WhJfqTfOPsAxtKS8+bxsHn09qlTXy1C5UyagsEHMAefRaICE+iJuwRE4JIfQbNuWeWTM/TkTzPLKXQk3Zm7aqe4Ed/yO+wsVCgyrDrQo60jHPAn9TClpYeDa5OD45M2xQkXa7PL86WVrv7d55eE8RiPl9B4MDlSizcFJCaaqimhvaPVt6evz4+fETpBw+w+bGzr3d9wwlaBdZoy7A1LwmyL3ONPPZ468ef/r5U7PoqVavkYeJa5y/eGYdy/AGuKWEySw+mh7jM5xNYGO9u9k1rqwNVzKe0jJxhzR6QFXVefTs7OjsxWBzd10PHakIOmm1tCvKc0xrcDPCiFWAR1SPdw2kRHO6roXIKgDDz5Jy5dyy58IXELyokQq2XHQZ96qAfQrOBtvkOV2e7eJg813waKOWgOsYjAGl9O2w8cxJFG1jubNVu/Vwi+99OGQDcsoLrzzQkdfOTgV4IQUJ4b2mrc8DsjiZ85UVjeqJzlV/mxkmt26pWtM5U6UhBpW1Yp4cpiaD3enNndjx3ijEoVw5Hhk2USGIbu10/0WfUdYF+yiGNtEAbezFaALBjacSk0WCXdYD8CkAQR5ME1AmhLRea4S6jBO5rnKee0bmteJ3qAt+ghof2UizVVZra8vl7uV166KsUVKbIhANWHhpuUgt/a55VxYzHr0AABar/woRIAu+dqEdtHA10IGv0COGaBU2iRVGEVQel2hveqWH3/Hh5PDlKTJ39BoPZjjd6Wy/OlZOxreowi+BZkWTD1AFNWStKivdpanmbHQOP0P6Bi2Qoq4xECOxvFgDNoEMiu6FcSCC1JlTayQo3gx0nNqmuHEe3vNx8gT4zhGQhc1qqSP020i+rfVmEB4+NM2vF5STZ2EsD7uW2DTGLW5/dp6P7sWpYO8OdpgjlKp/n6FpawbV177XsBuYAUggIYHUQ0giwic4iWCE+ERpFrLjoUCCjD6oUfyQaIzHTUalONAvrSyRijEFqOcV4qD7g9G1zLCXcDsiBDwmuV8NSugt+h/4kRphuoyOzW6xNmBiClCDO8VSBX5AugVeHF2KR1q7At6LUWAmE9t5yqg1si3n3XToJOmCi1JUHhCWg4oCskiYIPoiH1QZnxgEDQwWXXlqCWZXgY3rL62zS29ts1I9QSnR2RiTRnTBmnEGE3N4B3gnPzIzORKMJBByw+Q9LYNq6qCINUm/6bhFz09NS1HbOZvDvwA16d9wrduM96JVMajss0SxBfA6Fp3Kh/omUSsBmXw2XZ2uKK9VtPaLuT7VIniprJ5p64VqI6pbSYKWlNMYgkdU0hZYTWfnRmKEat1vRoaQSBDSL0IJZFwugG6eCJs6QSEaaECV/8/PJik1sPw5VuEZ0f9e3luK3agMEanQlOiJP9qtNVZAX+Ki/jykI89mBIKPWBbSElIw2G1QmiaDpWgf62W+NbzUH+v6rPLWrTfvP3xDeGaKClQRUcZdEl6UMS1BTKi4K5V2KwNTL7Qtm4+Pnn/1Yg8CXC031mrtu+tbvbaiD2Arxbm47DujjTghpJcmKGpwUg1AKDkTpPJ6UuhtxCTBAIxwSriZqO7K8sjf55oSNM3TDvhZWp2YaRPqCAO9BlYdHh7Ozio7D29cn7f7+2M0FXJjqdqGVcIblBHoPWViBA8psD3DnfOh3eNsEjg0HtPijIKANrV7rQj5lVph0E/sKUfL5wMzRreTbAJTMLqlbqOMaKWUsXkV54nIcQXqGzxA1gTHeXXlUwTNwWRp7F2KaIBbG9NXKFxv7zDk4PrNvkUCYgMARPZoqbHU3qxvbN/ebK01m5sdXpxcxPSsJB3ur68vBxAXou7e3ADoLQ7P+x7Q+8XBd4vXf4oGOHc0uy30Bp6UPykSjiRZKF6/z0vkFN9iIyJPlLSl1jKz6J5mvi+u4np3Y233/qa3dDk/WanXJ4Cw8KVC6F3l4K6VezdqjY2l6vZSe1cd5hW8fTUURPpGInsF9H+uowPxIUm4dkCrccLmaCScTNnysD00L+JrFlnzcx5boWyAXUYsGWg2dl6v+ydne3tHh/1DhCXKj9JwBjfWdjorm2TJRlUhoAloikOloyIUAYCqnI+dv7iG7A3mI6SqM977tQxWf3B1HC6A2W1KigoB5b4fHp0dHl9sbdW19Qwtss6LFyM4xNx7iIQCO80uFGAC9iEzpsJsp3VaU6cx/68Xlix2Q1orKUDajWPhXaPtoJT0Kc3upsgqiUhkXEZjc/teTeQs9a48MmSsP56c6/5BDXAC400RScsVXNMFXMyiJYwmxFHMfHLa0A18xyfYDYIbeJCvR6qTX3fPxLb5OfcXD8ShRVTFHw1f9eKSz6tQg/5o6LO22hC6xFSxWH4U9w++zGIYuhSVlEIxVsHmFktSrc7kRls2IAAfvwMKz1cNKQO2nPlul40oAXiUV+D0mlZCZbL7ds3iS4JzEpiSJFxTTgzZBpPAY1eNfbBqMaZXV83rpV55eVBVvK3tU1jOPKcA+eJnf3otLiZinR+ec9hSP2YlWK3cKOtmLQSYqPDaooFnli9nY0LPxF0qfsoMRM9aqWzORHadanO9RlzZEl7jhblKvj+RVcB01gRuOoqfrnH0RLsLfCYrDL63HssT1m95lIlaNRwZoVDC8qAMShwwi3gOndR9dCrNDhYwAyACKCyWbbObbhUSGMqU/87SDlA1tTHzwzPts1UeaJpRjC/LOY+VS12CN5EBS3gYGi4HRYBBLjsCT+uJkpq315NB5jK9XlStm3mttjf5WWuEn3E25C61Vld6x6fzZ2cnzaVPHz68Ix4aTVDepdSJFt0QGZYYq652HLylBYRBbW5DssXRoKIkZNO5S9e29N0yFHOCoThCFb+o8f+EZcId6TInIA5FOCeAVXAxwebAYPSgxGiolK7xcAHPphuAkYSnkF/dQfGB+hC4Sy+2095xEOgDANfV2dnLD6cIub3N1mi8Wj4286G2tWAEdYsqmpdZRlEoFQjEPLs8H0PQNc/RBO+saJ2wrOv7+kZHN01Pp6jT+Ul8UqhRgkG0vLoVDHYKs4FQCx0NokUE5wNYH8mbFf0ZFKhVIMvVTrm33Mmye0s9M15dnap3KxxtGrYwACTCDXIWjcvJYczf44DTg75hNs9Wc/PR1x61b3auGSNJ+TCb3dRdoXxqdoAhF15ElQRPRLjQrLSdd4so5Vu8ANXouFGz/vAGjqJfsRBFBBBD9v9/pNQfeAaeWIJn+qLw/XW2qC+Vu0vdzebG7Xfvbj3c2H5jcxButawdm4EYXJ2lIIYO0dAB++BqtVtu76zWtpbra4j353LCSkMc3cJ4Sizwqk1wDpE6uqwoyKWeuDSvEwnxCWAvPD+bj4HthaOfMHjprss5mES+fXhx9HJw8PJE6xj1E37a210s9buX3dZS26gwL2jkS9yiwozRDlj9HXMsb2yVB6NVvaquV41xECHKQ0/nE9NRNWcR5DMNGKbiKijWcL///JPh092hUTqdFtfJrqVBZHgaOJzx8DWHaHMJnSWN0hQKYd20BQEpaWoqgKL6pSKpNCtvAaizQjdbDVSmABcenJb2f9aQEI2c79HoZHh6pJvgwcth32BZHRQ4dwBp/wt72/8p6RJvIS58urt4x2Ty6HkawIGMsXULt/MrepbCs0DhB+b4Rx8WvwsbUajLaBotIt0hBCevr82g/HQwbAkLrrs7kZvozeyiI5feYbzf2Rm7yAliBeRUeLCG5HQJZ4521p54afXGGaamASQUYqnRisxMp+iRTIZuNaDpUj9ebzAuP2KVEi3JOfPIksTM68wvdNHwv3KtOS0fHWIBgsygac0ScIXLldciPzlDHLT8WwgX6qgYncL3lkVehMCmTM3cQQcJeqBXKU8HIXiRylyKRwUE7MUQ2TM1BRX9lNZ2ZmqwV6V2E6z5EQ0nTgwKoIZARQxI5sRInZrzImsa5S/JKxLQPSCjZ8dnQwiaaJFJ4zhgAZAbbjsupL5t3i6OhPfystIsdEdomNlRxpBkONVcdDtrVyy0KZiznja0GosNx36PhorFaSkGI+YeVmF/bDON3oAqZjUIA2jIytPMgcVQMLgmtGyALG4vl8ASOTymqsZgSvVVlpuNld5Xxy8meoE+OX787Hh/evLy5FStsO0EChC1VTEZJIp/TS2p65T7IcuCncIOWf2rymIOVtUxRfRspiCXQGpPgz+8NUfILO5l8RYZyZOTWm/tGNs3z2uPuArMxWI+6Kyv3rpVp3TRbMS1J9aA71ELW6C00RiNnv/q6fPqFRfzSq7j/s17i2fDwWltUW9sPrjdq2wfH4y1odUUf90EMct6vjw506l4yTxxQ1+X1ZRI8tTKQr4wn5ptkJvWgir06XvOlm1wkCxsnKYcuNeoFWcdrsFG69KRtikhNSBYWhD4GIBL2qCwbpW0KVzplbFZsSWXyy8Hx5eD4izlcPBEBQEubqO8uz9TOcKRSd7S7K16b2PtxsPdjXubqxs1tdaewWrp02CWMOQKBmUldPzGp4xnQ/qDXXU8T0570gAc7Kyvo+Ev0ZGxATG3vuaffjM9hT7IOzp/l1qt84I4lxz6NO4IMdQEAtN6737z1o33Nps3Gs3bK1ovrmUO4vl0ID2fTpfDqRGtLqu7nMld86Z1s4ImZ4ikmTbOlW0u3jMKRMyRyqIVt4ynSgnGpgYKth65t8PG1UhKOBgGXIaHkqk2kjvTy+n+bH60OP7q8OyoH28+Jx4homRA8Olkf/Wq0lxquQTeFItY7BpTwJFYkQvsIJU1VoZ6F0xHV02DfieZSabv3jCqVSOclZoGehliUtEhpH6/Ub7/8Z8Pfv3BF+9+rfON796hZbnJfHmukIML7J+3mvROOq/xs3QEqmqao+JITKCfv1S205dcTlQ+pWzXI05Zbf92YqOmcSUAMwURT1w7mAxfvNp/9uzZ4d4LyELSpLgsVVF7aJ2AVlcilNHEZCeUIecO7GPhqICkBum32Fv3zH+SqyCVsBR4StCf/BRvPiW7+XknrljoAowZ0zFMgKoh9NGennSACpAOm5izrUFsbLEfLyIGYwzOx0NtsXl3KT+kWaFAGmLynv0ugCgnU6cq9djJpXmcwnzWhAP0PmcRPt9EXbDeMpE0UopTUFCiGHyY16o+uLCjST6Px0oDO6Z7lz/96Pnhi9NMGS0gI8zMoB+B0nJX6tJR5KhZGtqfeYLlOV82ALqIDonPbPkhT9p3BjzKdlyB4aPaZDcWc5OGhyqNHJuT+tbRkfgadn+tb+OSAjnUrFPtd10tCRdOWtj9NbV8GiLhKlvyub7QXmmuKUX690flhw0kMaSWOwyvBqtYKetOYlnRktqOfaJVYafNtVb+LPBBXrYGzgSgfAEe53C7giZg2GNT8H54BXXNAl2SFieatp8pcgNLwXLAdGq12SpaO8JnRf/CBW0dG0n16u7aapqrqI73DOGYLVygMp5rSh/sTUyv/9RZpbu69eTgi188e3p8OZzQJ2wToc3SOqkiHZGls8sSGKbMOhJMR5bdIlViRS4dq0kJ5Hk4c3DMdHxjA+wtQU0io1CpQelcNcXdOSDxyZxWcLxyspPl6uxo+EInI0aahFd74V4gOo7G/f2Tpxvd5qCpncdZdxlM1/joyeNe+a5J6Ds7t+9dl2eTlTv3tubojOfqyIwzD3QqB0gBxSkI5EitLNhfixlqN7upTijcQN2pUkTiU8g2ntIJKpwLUWqMAp0VPer9YR+0uGWIoYWACgFKSn4lvMIdUhHVQGusbyz1Imjc2pfXqnxdgwKP2YtWLBazcMl8hfsvuVNVsIp7fn977cF651az1NbcwGqb4imWKAoSXD75O3UZJFG+jTFWAoF7UjV3YeWsMkv/g0wYph9f6968duyNp4+HYY8LTeSe3sk/OYnQZbIS7Ftw7g+Vp2kl3txYe3Sz8+ZG5UFt9U6tvL3SWNFwDCCLs1+ZnJZxcEvj0OuYQxPhlLClpcsZCisj7+jqlmx9AvJZyZxtfySEsrBUVZ7HE9oKJ5ZJSGqNMxfGihPMyaT1SZMBlYheF+f9i3n/Yu+pho4HAFeqE9LD25dnnXOKlk7L1+srS404Ejp3Lxm4sTyBHjMnS1fTvaOr6uj+92+W3+3+0z/4E6P+tBDWv/rg+uR4dXx09bKhFbqKEw9Va1W7D77zzb/+sNP70U/+dP/stNG8WN9e2b6hUYOxI/xWOkEFUUseyJbDslZSy+ucp1dakROk4aOFCbb/etVCIef8eH+OVP7rzeOpOjTx9pye6J/5xdERjvWzg8OXebnlMrYi4Uq2uZVuZHEbGaBoiniJFi0qw+Hyoah+yt03qbxkFZCt6DchZjL2xN+3ogVjAPLjkQz6gMil2dRkOB70pR8mbe5/mgi1KBvZDBlvD6ptI+yneFB6kpo18QsqMR4OholNFvDYSnle0bQaDhJOJxU4myThedVOOwxpGdx9z8cn5fNGZCVoBTTpulZrjrjjqJGuH8QMZEYj06rIlPKvyT8vCUd8WGK0/PnnT+g9sA/N3agbiStdXDi8mNAyqDiGaXrkhMY+Mv1F7sLSg3GEuOKVtBay7BZAHDOYz8U79fqoXWMOVkZDyXhDpz2+IGPlZf2ZruH6oGDFWnPevdJfeyZGEhyZRnItUUwTYwk1Gx1A4WJ22h4Y5Jumv84kVIfCipjHy+PKl3g9NsPKi1DURlOjaYUqpdiqXrY5pLD8HD/nOs+fFSnwKoenwNEQxS5rl43YchrHTeM4BTFiWYRl4gTVKCFXkyjGOOjR2cRpjz9CIRWAX3zXlNsiEZluKtartzVtnVU5P1HTTABw6WJ1Y/3R/vH+i5O9SZkWLbtcfI3w5/JQDisztyqb7TXx7aDCYq9oNIdPGs4nqXUi6NWTOOXNJWrNaUhEVqj/CLF/0TQA5NDY6FGzZl0EUFyaKCkazQbasDRq7QCKLkn3K/ScnTZqs8320r/9e2+/8c0Hm73KyfHxh0+PP/jzgbFcX764evXs8MNnn7xx7xsP925/8/13tu51VvT+1eRHMJ2GqahBuH6L4CcSyRZLu89mPd6HxQfDOIn2ON6jeKQ4v4VjHlXvtCZDEdrwa+qfV/ApB4qWkTR2ZBHrSqZXxrCjDaUjmYBGQ7byRW35vFw+qo7CxD/T8bQ4uhbEaaTvKEbeoliKIllrba/VNk26ALxX+QgWaQyz4ihKXZwJOBifbLOAOZnapPCcarpHg084EaEPrl4YGIEMHWEHsid+u03xT0KYsVlxAzkMSULE6w+1ypUWquyVHRiWd//B/Qe3373XeaO9eru0tHm13LmECWcWEJfr/LI1rUxOyo3+Zet0CUGc5qm0CjKvutMr7cxod+k4TqvjKPqkv8hJniHybSNggbxFm0smiDsBjYY0nIq8B9VwCyGqoOdS09T+/GxwPjwZD47oqVH8PeJ6Xbm1cxdX5en8U5tiMYsKOHmUZlABVoRfmWkTWhHMv/ziaPn29Xf+3W//vTf/3qcf/vrzzz8uX28sLW10Gle/++BvrDdXQLLlxvr0dOX05fnxk8mXf/7LvSdPR5vm1PREsSfDAXe8oVWl0RfptgX5t3FlYRDFmwkYihMFZs42KcZB8EVYErQn+pqq9VI5FtH22fHg+AnfeaQW35gSbBBZ/dY6FqEie8AMShOJkIYN05sshrAn2xTnxP5S6qTAcYtfJy+TJA+3JjbF1a1PgdZnNkpFtzs3hV2R1qSgC4tAqtPGxxPlMA/1tFdLbMxDgIq0n4BVcBaDw8ZKK8dNGRcVCHCCd5/2R8cnIKtRMgeym6BvdTnV2AXFa5iUpubIcZ7PTTdo0bpXqvHqdWnegFRCtHS4gPPjwkpclmk02eBsv8kEpYa3spN6yRWoiafgWbA5mok1yvvYnHL6yaukxCnHN6T/ROuqf6C8DLLVofeTsFXZTTkWITptSk1SYqnOLEp+huNp6VSit6y0AkLhO3bFGVNZxh8sLVZOT444nSxL+WrGiSe3CDviv0YKxKkSbt3VpT6xtfp6q7XR0zb6bK07Mq0CtcZtk1jwi97h4McGq5RKlkB2dzToM+a1ZrvXXZvN184X63WFymrHgnwJ9OIe+MVSORtBDNmBgA78dNTKi2RW+ANOFa3g0oVyFwdQ+UJYSopYEA70oaXB0ursDJcJzJVggcWAfs90u9OtJO1VfSMNoSrl00mIWkybLnkYmL36drN5Y6VykuO6NIyq9ih5D+xhB9QBz+GVXM79g91FdaP1ejIkLh9OdiYwbwaflJZaK1favYUGGunNiXBd78nt5fxQEYCBVQE1fDS2UfOfKobOdHQ27C9OuA9c9UTyS2ZJH27eXPn+732j1u0fX/yKJb7zl7bu/5W7/9Hf2/zsF4M/+8P9P/2jZzvN7f7xR1+++OL07Nd3T7/xxuyNm7dUZqgCYwn4pACfNUVuUTtUeazLtSSJUCyFC/GmEmcXdEjSGrpCHjr5OoUD8GjoHKcmSsxvkS2dmQkRsrfobjiS3RWFWiExY4AqqsbkwS45r5fEfTOhjbq1BZOBTxSM1rFla4oGPrqDNjWe2F3ffrDburNa2a5cr10zXmyKJNFF340N6HKGUbKBAteOB4IDBTQbIlYX5AQJFM+ZLfNsjIM//YqvyYBRiMU/4/5DSKQcfJBOIm2i2TQ29Z5eIvhJc331zsP777z59YA/tful5Y1ZWUt1ejXFGhantNpcXm0vaU+nkcliIg3LwdJS7UrzBsc3YARSoh5BdtkwIKBIoiL3jx0iuZLYwABOgrBH8sC8MQ0Z9EBMJCGKxOqKjgzFgPoIOKFl9mR+fHh8Ouj7WtHqmZN0XeW7gLtmWqwbfpcYyEsVrZY4v1Gtq1fLUjF0hATfl//yw7O9V7/x77/7rW/f+6t/++1Zo/nlV49fPX22fFkVubz8ZPD811/293ADzpiQ66XDrsCq25Z6Ozi9uNfUcXHUuWyrOU++TbjaVAyUp6VgICLL+hyexepcl7pxURmeZI8iUDnQREiipBD9bICzV3j/Tox4Qku3lO52tm7ffCgw99N7e895GaJmtAr+G5+RupEGsU4c+Zy5cOh5K2w4GXaoSGhgM6qC5UGl8TW5A31hIzE1uyKtmkRjtsHiOph0fKoQePRA5qQZU6wrgxqAiKsXKMI25niEciCOy4MXH6bouflJOcUuaNWc9tFLpfGEQx0OywUgTUMhRTquFBnwlBEDWSDunwcC9CYpADkiKjqxOdda0sYDobeByYyPrwPJodb0Eo2yqIDpxBnK7lxNSwEVFWpimka/+CnPCgUKMgVhzpnkR6R2xEwYgI/uKhfSLMHg7Jf3yIvwx/gm56Oz5ZPRVOyuOiPHxHHwV0tYtaIuie+Dki/EEeYn4FhtaRHA/BTibK8Za4aB4apVjY9n12yYNACUParS/5N6hhR7Nq1BOLr8W0tMNBEkGr3u6cZ0k9lsTadMpX5PIgpKxRPmXNqs+EaEipU2FINqDB+AZ2+xfMt2MtWAC4sVJJ1KZttsorK64h+z8CpnlbNgkR4okeHsegLuC541DOeBUkDKKS07oZ2GbkUN5M1SIpKWMldrkeIourFSw8YoBDm5hpQrhW/H7PMxHbFAQPY1W5rm/tx9mJ729VPTgp0ECy2JFjqC8x9AJ0SWwBf6txkoQLpivqnaxBIyexxk5g6D17l3TuKMox6H0HC+tV1rdesvT1/8yU+efvVMhrjcu9WGb92uVv/yb/4VwMeNu627xnz2bp6ND6GLXz77+MMvPmqsXHTbvU5vc2ttXWl/aiT1dtInFtWBMa9b8yDHAmzLntKBAFqRaQbcGYkgcO+0GMpA6gzMItfpfMnDJErhOWGYJ7Wj4Gi1BRPApuRq6PW9Wp4tdW41jKZYGV8vTqGZo0FRcxsJiPbPb7q4qRE/qmWvvn5nff1ur3YTnRQyj0ZLd4SXyIq2PWy5ZAevzlTAeRzKXrP+zI2VluVXmEtH2OE/8PE8YW7hhf7iF4Gyob7uixx//kn00JJWJMI4hJlE+964pufE8s79N9599LUHW49W1+/WK1vLK+v0HsTl2oRRV1B3SgyktHjxss8GGaSDTjgIiHhRVo4yfeecJEPEZBj0kIS3lwYJFJov9WBpKhW5ZSv5D04s/SWdmRo3c919Q7YDQ2UxOR2ZoSBJejYbGtGTSNEAszx55eXxc6J3cH6irwRfvkznRPm6EeOa9xWOx9e9xtgadq/qR88H//wf/mn/7OVSbXo4Wz4RIoOXRhaiu72y1bxotB2IJZtm91dnF/OV6bU+ZWoejpJ7XJiQ3jURqkDfyCRastwSh0AHVpyornLIculMSYaKesAnVyd+EV1LkPjw8c9zfCwzV5QT5Rnj/Th99Y3uulWzEHx+hcNffVE/OtoHLVnzJECiAMa8IDUZYTMkVeSl7KxlTDEtuIx/R7PDTDxXlhK2YC7XaBSLQbfaapvHnchPxWP2NDSlJyLV0AG4DbsbjNeH4Wg5+zEU0E3hvVNMIXuP4J/Fr5BUaBoYa1K4MUM+EQAe0UKMUTxcOov5ec6qZ1DAliibGHgCCo4C8ZSuwXzq2yY/F02jJjgqOs8YlcvR9cvVPIvTxiKqsZZeq6+9HlWpw2C6L1g6Kj3hTfHJwnt4XRzAZafOcf3AgTkpIhj3Tj6d10qj5dJOdWgTaT4j2NKzSokNA+PhU/Ahvc0tF4eJsZFkmV5rSYZpNJCplKcT5nRaWVqMMnMW5iF00reEOZN8eWeiJ5Lol1SxaKcIfV10Omma/lGEvymOtSc0jwWjKq1O8BQJ0RwJS8TZU4kd1qmUs2NE4xQlbB5RgkB/iyit7Inb8SICMUlYJOjg+7sQtIWi4OOisTJIE1O3PRplCyNSbTUrNcvXvcbqiyONSddYWGdPKMCfcHQFvGj3DBHBZUX4yjrGpGH41Yy6D17iaeI5+AvHU1U/OYKRphwMfcuG0vskip3wYdgQh9TZ53zg6hdZ5BgHH44dD2gUZmEUgQdmKaOD9QCvK2CnKbBzL87Guxtbt7e//5Mff3H0xez+7tZ0MPrBHz95/Mm42dy4rnUOZ8NKZaFP32K5qfGMLPerA+M1voAoRqdTTEH/jZ2oyXj1OuvaQ6A+twx/6kqxJBDT99U55MZKAtl0XcxlB0T6JvKejbhyZF+vQ3yzpJ6qFZB8Ojim91i4P0w+jEVzxesW3pcIq7l0vd4cbrWe7eueBpdwHBkQixJDYOnIEDZAvddaQVqthlPEgb4YJVcMCwlO4rTGZ0Mm56jgroHlUoisxfcEg8TUeU2Vl+bqNuyxAjBeBi3MrPGk3eK1GbD4LLMd96eHdFGNeQroqV1WZoG5s9xcW9u9/fDh3fcebL7ZbN+fr6zrCJ8BetnguCJGfjlCfBiuAJlNvJ7hzMrwJCqKOPd6rt+vcwrnTRdv1lTtSDgCwE4kVl+dhzsrtSsCC3W7qBZJWC76M7SMx6XKhyqC++ryOD+fnBhFMzl6dfxy74Rw9BejZmel2lVVwAcsN7obd9cf3djaqBzXD392evTZ0dnSsL205ZW1xzB7B693ejVQGTfm6FXbw2fjW5vfWG+1Zy9eVM9Hik+w/VeXthug7KUWuGy0dIjmwY5q/fve77xR29Hreu/4TAciebLljiob0OQyXrIFKfyq1G6ORTsCYv2AdUUNwEvBydXwcZT0U0yArQRkUY1+Lr6UPeIb+n/xdZ+BdG9sBK7T1AXvEAs/EK4muhgl46H5tlQ8DaC0Obz6RJ0OmjOEDgCjSoECgD1NIPTOXlqhA9Ss4PDFr20akB3fGEst+UdHMWaAkkHc5sGmi0zYnQpOqXwC6T9Ji/LduLjxmymloq6Q3Oa9vQRVTOEW7gRFHqUNiI5c68iXYWvUbMqVFK7R405dSJzUa3RakEBChOSYYQFnzu7YSMg4OsvXCKjnizVaLvohnT3y2wPBOgQA5bVOY9Pc6s31zWa3nTqMerxjpUxz006w5um76HdaiGaXNcvPpAhSYULVK4pDGWVYiW++Rsuoq2hjisgyaJKiyQMfrqEVeBdlXzE0mEa3bp45UM/z5V3PBGkoQMRWk3VVp46jTYPsRmA19co/CQbwqZiX5nj2RQceUYczbzYJcc7bUt8MoBKaRrtbp5VJQuErWD5PYo18ptisImWRoMCxjdG+tIqEDaWSJktsUvzmYkRVZakofd+1cqrI0PaoQc8S7wPcwsbn5iqTU7oQg1+scN5ab7S19Z/9/MNK9W341PBM4Q2DFwci6jpota2gu+g8jdeZ/ZkBkPOiW0JwjDw8mARhUc25FbWBqkFYSeC4pOW5nhRE0Sc8fewngWFFdPgiaF7Xcb2egedgRkC5yYylYY+1I2IYLqlyPCxNqtWQc8uq15ePbm7cW7/T2N/rX5f+9r/3va1e4//+X/3LvcMDDQVfjF61qi1CmD4ZpVqvvra1dmO3s0uLpX23k4EHxKtURdbvJ326jNSuN47yE2qMMYVN6iyhuEdPy5rantRyKg3QRlBbFYz3sspBnbCloUAnWsPUMrmCMVjROKikL72vUQA1wOy0tGqMyoQiKF32Vq43riu7K+XHyypJrJguoQgAzpvUYmejY7BI70arcada2SqVt+BUel45LSakc4oyPjedGoJsLmsgOOmdV9rlM2XXut9Vry7M3+0nUiCQQq2iCMAB9DSrBLE41A4uBU5O4/jbKiliqruy1FWAV13aai71bmyoju/ce3i3e3tt6+2N5q3r6uZVqeE0seZMN/GK5cjZVQdAmYaImDgjEIdv8T9U4Ajs6gonOaG0SVQfxAKZOAeY9xeiF7SYl0O0Cs4G7jAWNE9X5379HVF5RGD1VWdpPlycl2fXnYulTbS8xs5V7WHtHbQ7Q4bHk1MkD/oLBTe9Xi72Dl79culFY7v8pgOcGXSxr6JPZdhnJ4tjsQQMxGuDAhzU2qL0l9/+3r/97u/sPzt4+dWL/onJlWItmIWO2VSlcrW5JPa0NH7zvXu1e82nL49PDwfO8PHhUVejo1K1XbMkfCnlCZPx6aEBIrLA1uhKKfmF7vUoxzoayEuQEmsEK6D5YPiUqd/EIXq28LBzLK2nPTG8o9tsG+AdlpVYZz4+PNqjnZDMa7VTNEgUWf3tq4umtnImUjVx9J0nHG06lkfDSUHg73TxxBUUO/PD/oDeA5/HF+VRIUJkiFXUR6QhJiB/UC2g0DgZeahUlfoyRxnKGwAreTKmJapG5ME10mJgbS3AzupgaINDUn0dDsiB0MWkw0hkbQ6YG853ZMCkQiYLEVyNB6GgIgwN5riMdWobDNRjyZxOeICSBGIZIAeoPJFFcH8+fTSjq7J/5bs3b9+5dWP3xi7YvYFnxO/yuasrPT+vr49ZQv5S6iWEVemRmcLd6DsyTGVGgv2dLHPc6Gh/d0aEoZDn6P84cOZKtZub6+2ttdYmA4Cub0Zzoyk5zdkHKYm1xVqmREqCc+05VAWpJcaDFaVZLIcnDj5i0u754rQ/lCwxEcnfmVjPl7bW9pyQX14huPbyjMQjdjJgoCUOPOa1Q4LO+3N+QSAa4IAE1cUtTN7hRgkqBGTW0/omysr5zJdeb2zypgV/dG4izzC11ypsgEP0B31vbSyoAi71vVk/i53J353k6cTypGBsLi7pAnFS/6tVloAqd85FI0mmqN4NcOELHEPVVoYZJAXoJ14vvdWXcNExlP3mtEbBa8/DeCRIBR9IxrABOgV5TMaqMAv0Ue0MfyeNuZbDy8GYzdEJahTCnPMBWWwvSQ6UHz89sINr9ZsbN6++9/6t97/fNF2jd6da/8R0aUU9WoAMXnODkY5e0DCrn1TLHSknDe66ay0OxK0b64l+l7aYAzEeEXQOcID1GQZrak26uF5RjixZlSBcUepCawpHICRFMQ3WpNgszTwouOXVbs98J/GsFjjtXr1hI87ONTPGHk8nkXPNnEfLZ8Pgwtc35zs7W7tna/Sd8V1lc0acebONVq82djt+Zlabv2pl6rJyAKeT7NsrfstqVVvA+AMpbcX1YndaF4275dJodXXU6s4q8+H6WKb0dCjugj7hz4QWpnQ/wy00JqIDIzVcvWIbfFevjuVWa1u14IMbd9+8/5YZwzzr1Y2r5p3V67WlytryskYgGswY0SIRYZtW+fapFsDPdlzR/mRsLFsq/82k9YFIPiHXVU1iSqL4GhoKBanU0IQSl8Z/TCsiMXFK6sSyIuIg/likGo/gWjvDOftAYeNdOS/GF000EuRwUWSz0UifNOy3gfTQfJIjqWxQId78umH4xXj7r238p7e6b7n76kWVP4EQhYico7A0V1G4claqLbfbJW7DwQ9+/09+4+vf7lU73W/efvbq6PNff6W3O8eu6MxKVhncYal+fuON7d49Pv3pUXNpcHxIOZ0OjpX9EgKHWHhPI59OTKs/0kJhdW2NL5DuW+qZbVBBLqdaKNwYAL5MdGyh8Z0D62iDo58SltFFtotEOv46zyvjR3+org4EASeLPr9oPr/urPWa+hJfXTa1NMuZgDfDJYIAVy/5J1pAtzrr+lNOhycjFnQ8HutQbWLo2byJOdxSV8FS99YIsv96juIYxoA75ilapevFONlcG+I3JR/bEhec98DdrSO9B8Ljeeuqe+rPUePM4INFQZKMkvMKxWtJ4qtU4eGPpfCAPytnGiu4QQGJUUJSDqPxIJVvr/aOTo8nZxN3Ehh4LAFqZMV2m9jLFOuJHW8RSrUo/8Z3v6tHXW9tvY2Lo/1/OhszGGfmNVuIhJBqhkAchcMrL+otsrR8HFk6Zrduxl6mUE4kKYxtiEIUoCUIYrjcTMrZ0Jh2SwXtqt/p4hEYL8iS9WLoTA1VOnw6mJ4cmzQw5s9ywbOAVij/Ty8sRgdiTJzx1pm24+E4xYQQjWS4EvS9Jm2VMv+wohLZIaCXw5phoo20YQBkuGVsPLidwP2jAuryxCCcHINKFfoQa2O/WH67mHCGAqNTg/+nZEE45MOD8eTkdFhAPTHNEhpsffaHew66CKsFcJAZljLut2/ehfFOxgtoiH2G3uNOiTGSBGXmPEU8yBk1dqGxTZw+OrlKi8MIM3qcPeLsF0sFf+Z74skXVj10mnP1HAE4MU8Ct8n6RszicLAZqVXnMsL5jY65uLIz48yQCVc8cZqzxinxsPBOfpDI6aNP+szq9fzjg1dPT8+frVSsdkeHUloDvm/xNEDKqgQT4zbZY2IrmTffG18unmVAsWJ+FLONTZ0mujs7NwTTN3dv9AejN3tvkPl0ZIG0ayRyXToXK6lEuNaCeqpeLqZII4TBmMFVqNLvi0BMju2NDg/o315zDS4+Oj1lPwgPpysSUW0uRjPVXNktKfJypY0lj9Hfh40YUVJjFnEfy5+FS8pYCJjcgmpAzSQq3HrxiIMj0E9CheXJxJxg6MomHVMcKyZHEzQ6ocmzrl/xn3lj8m6q87GpI0AzQ1JL9IMTph3V4cv9xvXqW/feHSwu792607y8rO+ci9zOu9VJabJ/NC1PW/Nnl/Pq2UVlRGSl4OXGR5cn9Iiy3ZAROALGrptCtbSot0q6qrE3ktXxB2UsYFgXxnz7QcqPr1oyha9wiHXMv1LkCs1jAERjECwn2HAt3ppm7SCOyWwsDUeMWWNYZ6QnbTcFmyk7kknSp19mJk0AYJsrs1JNCVfiTXlP5th4SSJKf8Or5ksT0D9/QtP28NgitSqcdStY6Y8v/uUPf8i+yRoM06nbOaKHwxuKjx4C5XK7t7qxDQooLd+4u9ltPV/98vjggD7q90/4RTbO6AiNUr549nQ2nLYUHSrZ3tpUDoZpEPIjJw6CE6AbJTMpx/hHhD/uKOkHw/gMxeOucW/5aFBVx5y3W7jdZs0jZVwqETDA6nQ07oxUmikR2Sqt8UXqlyZw0xYeJIcPabNRPzOCt+f4W1s6Aal9dsCJ1k+03ob4niveMfqmJo0dkgYvLeF8URwKGg8PAtKdJrpOfRz/8BvoNiJGc1vbFa3ofImLej6TrjTbsU73SkDhgrLHY6ZgSiIYbkY3rPqlEVNq75I4ZKA4s7xHUko6JcNUNYV7NBhwUilp7Aw+qI8lXklgNUDzCpLmIcPshBnOy9/4xrfWe1pUo97IAYMmKE658bN6fV95NjhdP4aM2WYUrORFxlTaSLGLtkY989aQ0YpxxmCZk5Pjg+NTQIfDTjC8rmUUJepkq4sbdJExt4oMzPwMDRYWf94/PT09PPSDh8fK9DLunkdF0ArNj5VhsrZVEjldW2xYgypDixJfxaHwBgUrgASk32/Wl1pC7AMtZpj9tDENvIA5KiOXZr0sc3IeQmeHP0xfbiEFok+awheFVrY/ghKklfhAc0lRQf0sEoKi7vFY68/sBmpuctDx/0RIcaiT7GA9PXuScY4Yk7fW2fRU88m81lO8xEyguykqm9LaDFs0cYJuitiWOErZVkUwlDgrKHBkEDB5Ej6QdFYBF9sX0tU1nCzNs7Eil0vIN4rKIl35qbiDUXOJJZbo0RoAlKJT3rpU0Z+Le8l/codAF2FpemDHw8NVV08WKz/++CWXfPrZ4MuvfjC97Hz29MyEIrGPgCkLR4g9mgKM6/ON9XVpffHN0cGhXPCwP1zr9Q5eHfjntD792S9+vt7dPDeFpYrR29u9cWN0OAax3rt/G7l7ZZVF1CiuzgvTLSb9NWqt0bGzNaq2K6uPdsmt0tZB57L6ZgfcrcD64mZjerWCJSeg2+6tH48Hs6GUCjyoKgbHZhmauVIxgDNANt0Mwq9qwWl5zvVZ46V0C32Ak07JldHq6r0Q8nRdhWtAd8+vlZloNFLmBHtditEyUfeAAeoY8Kv3oBOJs4QjzxYSBA4Zlkl1jPSNqoD9pd/q8ieffKTm82kfr/Oy93hTJDwBV9WuKGK9P/nh5tKUquemoVZqjPuSTkpapPPyFhcD0ChIknCtbfMXVoeDMdMGT9Ztp7vRdgbO+gO+IBaTtmiff/KV3lS6OtEOJydoPKaNXu+/PBRFclU4uyYLMYIcpEZHGAgKvUobnfY6QZr0J6prb96+feq0KoGcnNlayxA5M8VT8046SvbtfLV5tbYy1Zp5jnCVzBFnusjCSheL6NLoDOa2UtdXa21pC9wrj7W/NHL0s6Y4C2kgAD1LZB0gxPgwbeClss26UQFQqV7ucHP0jraYF9RTqTQLbf/Zk5//8kOTzt6+fYtfjPyuRDhxOeejSLCFApKOB74iScap5kw5cFGsQXkLIyGcj/tfOLkYlOkBg/XEh06QceEQOyurg1Fvynafu1ev3i21cyCJucSqc4H+BP7XlWJ9bc21nM4h3ZauYgO6u3VW5VFz/UAO3UwAzvHgcDmaPMrA8BTUxQX312MFgaA2Q3+IYivOX0yVE5vmY2CKlcr5rHqhWVqzWRDQk7CRsWH7B+PhwfEhNXlyOoivqslwWCkBR9LkKRkQ/ZNX+Z3xwFXjOkbzKcXonhg9Hg8cSjn6vLyHPVsZIbLTwvgmyFnz8r27b+lTR0/y4GhEmjFcn3MZA85VungbiyOeZMfPJ6pTeBuc6rgLW2trd27cvL1zQ9sd+mlkaN3+4bNXrx7vadZyarGtoStv9jo3dta31jT1gDHpCQDIM3Zp5kc4IBx5bv/e/tGJtBC0p/Dcc5OA/grMFzVZ9hiYpdFsPqD61WTZfabLc/oEtSmYspmUsAZU5n/PzovBD4PTwwODkhS/Xy+mWvmkBQc77PAWM2i4wHEcmAHbQPXm364FK2E4RY5KUaPbEZYYf3XCYfWe9OHd2lTr9D3CUcAAwilJriORaAF60abs8SXrwIaCv3udjrSxhebtM6BG8q5c6AzGgyNObiucSpjjd9EnATihp8scig0auFjWu81BEkXGY8iRCplK9pMvqx/fqXbIKlSzFQ6uZL5mMyko9gdzkpSMapprRY/LrDjVBfdCpbbrTk7OY+wA9IGtqjW4en2EWNUTuIVuKYS7LJ/o0KHlS2mZ1ReleA9bkTnHpRLBpIhN+GFxyf0NnNBaa2Nji1+7c2NTEEASbt25+bMf/eydb7x7cjQ4PjjRz/p8uTKYzn/18We1Za3uWgIXZ/LOnVuffflse2trY3NDf5wPPvjwwaNbnRu9zz/+vLPWvf/o60d7R8eDvTff/rr094sXjzuN5q2bN3unx+3623pdGmPlzq1G5/nHH9vuB4/u8p5AOrcePth7+WLWH3ZWOop1dDlCKznYf2EJZdEsxtpGSzro1YuLXq+VTvET0tFSugskZVFwT1I15Wxd96kUAc6itHw60jqpogKu3lqenjdUlhaNO87H6i6XLt/7+tv9VycQ2ze+9uDFF3v33nprw0vVLr568olI4c33Hpw8H9JUwaaWZ4AF0w80J1B7v3374cHB8erytHvrxspy4/R0XO2kt8HR0eDm9i2s3ZNRf3t323kWnG3fvvPLP//Fu++9CfjcFLi3mi9evGroFNhcmc3JSenB1+68erZ/eNC/8+i+jO6Pf/hTQx6aa6uK8r786inVgwZTqbWR+06OhFVjXslwqBpnv9deU2wm1CbAUJH55VSyQLv/0hmaVCDH4jf3RF43/f/4SYSkXVlXu15JTxAuyZyr5QPQoYyoCffMOQJIOikwGQjWbLPVgvyawLFi5ufSEv9+e6c0m7UoO04en0p4/elnTz55stetdSQEeWjONn/cCY0WiyFTQDyxznEzA9Zz6iG6dCzvJAGw65BkuBkzkaQoZ200POmfgk6wBkfpODM7GYz5evw+S9ZptOU8ybNzmPKrsBriPVGAmBr1RqcF6PF0sGY0Dz2lXefcxNyyaOxs6jLkC0BnjLYDshqkXd2WxsMekcExVC2TXujfAjZhH9KRg9bOQvvDa9Ef8gCZV+EgJ6MTaJgJkghnt3rTiboq9aqUw/HxkVbJg4khd5zEeOHsHL4ysoOLDLW+6A+A0IU7V5VdM3tAEsrPsv3eSDJA0QsFThfxwkW2wPPyjRs30w03hBwMLAGd/t4XNVU27uDwzxcPBLO9Vmtvb+9g3zrS2pAAekiTyu21jZs7NwzfxLcQ1m+0NkxNposwbzJ/7rq0rfRye+3O7sbOWm+r25EL5H1T7YFoolmS+jTmRHquebmi1rAdJawDTdg2ghZ7ScXYE18GgeY3D9jtWUF0AULlclGP/N0UQ2HPJFe9kOPvn5wmjsuYyPlIXRqsgP5SJUEvwwPDQo3LUPiF/K94wZxjbgOwPQEHAxzkR78I7M5hn/09Pj5ByE18jTgAFGMq3DWZ5Oj/mAOLJ6GYjkjoT1dKUFAkHz/5jG1ZrfTOTgPFe0gPLAeb/wZ8oLiTdeC1xNMnFwonlql1aQBOja/ZCIAwDIVWChZqL83MHvOGuPOk0pCmkERjzKxdcEX5DBRtOls6v1YnUljv5fM6i0wyCg9JROi/wiEcW+hlvVSxgy3LQT9ZGeNHJI4hzelVZWWChkgTllQ5nxtD73GEvkfnBwcnOBJxj7Mu87WDA2L04tXi4PAoYNrS0s72rlbrpxcn6936N373W59+8sV6r713uLRz+7YA4uc//oU0VvvGzR//+quvnh0/evRQFczBfr/WXjs8+uqDn/3qzW88mP5i/OmvPpLV7W5XNUB9+uTx3/l3/6Oj41f/wz/+/e/+pe/d/9pvDJ690r2nfuP62bPPb9y5VV2/+vEf/ejO9o3vbL37L/7wZxoQvPtvvfXnv/z5+WC+0Wtuvdd+9sXj9nr37u0b//pf/+DGvful9Wl9S+HGDL7wxps7P/uTH37vd75hcvGTz57c3O5Ve91nn321tb3R8rS/+NX1yua9O7dA50dHp/fuvYXF8LN/89MdkVB348c/+sl33r/5Vfti/cY64ulKfWXn/lWne9Ern7/RXT+djXYfVn/90ePedu+Nt+7svzp+cvJyfjZ8+8E9yuyf/dF/A+n97W89mhwM/r9///e/9f53dh5s/as/+pfk59vf+a1/8N//Y2D3//w//Y//8I/+WLuiv/rv/tv/4Pf/0X9YX/z8o1+Nfnr2za+9+cM//Yla0Edv3v704xfPnr48vdTgavyzP/uFBPjO7var/YPz5y+kpDq9DjOD6H11uQfP5UYIWbE8Gu3GeHoGGehfnF5qDAcS1GHEPJ5pv1valPUQnabmM/o9rEGqqbq8qlFTTQ3DUqdeaksYVpdNhUw22xkIshQqFJJ4Maksc9lUWyTohF+U1nqKWEwxSxMenS0U5a62XF3jNhmVizGFusQaT6a+MHh1eDiWReaKa0ma+CTVGzMoMM41jCOZSeZgHL9Oc9IcaSEV/eVRWIC4bwjn4e1P6EZFr5w3aqF/qkZ3kqCoSW+aUVOuttXIMnoNdZwqdUUmKNRxpdCZ4y8Jm81ibsxGq4PS0kDyRMGTpx+OJLjQ02NIqADvTrmwScwPBxzHmZK9vqyFPB8wL0hUcKqcc7CsF3R+BZl6R+t+gRQQPJsuoaeAsnmXKr3fabbmPHGepSAb/jBCNxZ58CC5eVemJSMszTTNdlG2DYTizXH8jFwIsN/tbm9tClmBO67v1E6grvMZGMPBpojonUzaokvpR0Y5OASthHYgK4fYTY3J/TdrShjXNzduHO3sn+wZlcmjrJXKm2tdQ1pAQJ1mR1+G2kKuk+JZ9KfBJsVukiU31tduwgL0EMMPrzfoO1bdwowzsMALEzgMw85Wo7FZ5HQS513o3r1gtJNRmM8tlUiHfmtfXbbn8/aipmvu8Wh5OAphjA4vYii5buQr8bKaZ4ytEG1UUB+dHkAJ8nWgLYn3N64ggyh45ggZMMn1DmJoi2h+z2MTPQKWk/AAfYYbwVmU8uMNymQqasYXYZqp7SwWn8iH/QQoKrB4YUOYdSLQatU217vghfEIf0Iw1fI2XNQi18mj8eIsh5wVLRvxSSiQeAZ3kwFgWEQU+SIJR4mRDb66rKWtkNNZMmv6RDmCFvHXK7Rz+OZ5lsRBnig5Y9E7OmmqCpI5CJ1G7F26WDew40rXRukCZzPwjzuKzMusDwAD/U07O9iqdiBOc4ofNKbxCRYI/17QB62Ml4mOHTfFIUlRy4qpOEKjaTg8mEyzOfcWWUJl8OHe8YuXG6P+8PadGx/84mevXu6XH97Xsa9uy5udu7e20gqgVn7r4dbVbPj2o81nLxa65d5Yy8CRk93KRpuTfNyqQxkqL58+7x+9mE+On331WCnJdPR87yuP2f75n/6rzVrzcH37yRcfng369eXxz3/0o2e13eZ17+Nff7C+tvnzlc4Hn/ziYjT95te+9vmXw5dPn66+/zUFI189eb6+eVOrbWa107755MXh0cGV8RKz6cbp2fxP/uzDv/XX/zLl+Ec//OVf/92/vNyu/OSnH0tHf/vr7z998fwXP/3VWnOrfb/98uBAV47TvdmL/Zf7By+lCv/8jz4AhX7n/a8fPV76v/2j/3Kz233r3beH89Of/fTLJ1/uj89Hd1WlbW388snz49Oj/+RvrZvB+s/++Z9vb+2utddK3dKr/vgbKD6lOjN77w4urpcjrK0HD+9N/kC1YZA86mA6mO893z84HWq1ODrTLeL6H/zX/+Tdb35Dwvdf/U8/uHvvNqUjDfXlx4+dCpGKnVbum1wSvPgi3RmSuIrjDHpW7M/Noqc5dlBRfYKvptN+EmEiYfGolJVchono6VDcMK4vk6IWjsCqNH79PHMI4zPzHMOOLOGaaYudUQEUupsVlAQREl1SWZlpRWVCicfDWAzBRdIjkGYYuzpZewB9nzc6awamcKJ/+eFH3/zGG2vbW+bUrdZaIDleGQKEP0fTgf4CggBApjSrCpS0EODO5EEoY/6RhGm6SkGcHWGu0vRsrOQNQs4UkG1qDu+AhpUCWN/cbnV6OMuuwRmmzblH/EVs6yAFwSMIxqzROEniDsZ6pfet6iFKXZH3ykZPqxGjC3pWO26YUxcwKoqFQs1/GCUxfqpeVPn4+0qo63LzIqUEG3A35io0SAdsieOGfwJn1DoUKI/Ds1h0WtNeq3+0crK46LOOOCgjjNazebqbztYa4xY2C52Bj8C5g8yCCXuNOKAoFPx/zr5ku+oy5cQng2F/rGMDfqCTJXg5F+NJ/C7QJtzY6tGJXoBKl3a3s8l6Tc1wX9/d2bkzuDEaDc6mo6QImyRTIWO4OqZfCGm4sbiderfeuDA6swW9URUusOdvExECEtLVzBuMj/pD20KxlOsVVhdNXAWRVhnsPHcTAMPAj3WlGY2N9Wblya6ogGfdmp+3K2feSGcNFhC/sCt9wQ41myJbJfXW3+c50laNRkcZiqeRzAYGTdr6G8kTZpdWIBlCEXyJJsPfjNXOYE4douQa01TPszgqiQlD1cJaUotaMrxTQS1XO3mmGCYSopsCUba1RTIgg88qO+vdrY11OfH9o1OLrMIetirVaHUry8hnZ0XpA1cLeibd5ki5GqDLcvIhkhBmW4hyDEDqBkQMV9BEgg1iPMNjdsBWTCtUsqmVm/djTRivuC2UOowPXeJ6WSKIx5G3gTOWl7rqfbzs2Tl+mN1KyMN5YcHsnZDGplPh+B4SHyJQdiQBGs+fMUruV/sR6ZMYgWS2xI+sDN4GnQEJbmJSO+7nvc1uEUR3DZTX1mS3VZdpfbZ3unRx4kC2Vl+e6n55PP7ibL652Tg8Pb44mtrYra2OH7bobz56RAUIdN5849GtR7e++nL/7a/ddIoGx/Pbj+iCXm99s398ev/hm7dv3xTw6Tvy4OGjSnNjXJrtmK27vvnN7/12p3Grc+vt7//VK12E29Xu9lF/58HaW/cfHU0GCKxvP3hnNFn85td/47033z862jsfLT97sqcQcO327dXLrVcfXXpseMxi0Hq8P3n51cWrO4u9p0cHX13svL97dlr+4b/+5OkXpxe/0dx/tfTk5eLo+fPDwWR9u9rfm3/8yasvvjitXC8qb25fzVfnJ9XW1r3d9ns//df/7TvffPtv/62/8w//wT+uXXZ+62vff7L3xydX88361rP92b/3N//99frqmpKi7lrtr//eW3cfPn518O23v3P3xq3TvfEbt9/49jff/+rTFw8fvrPbgdKUv/vt7/WPZo3K2nvv3Cfqjx8fVptK+dZevTpAqZBJ3N8/RGWwC7DQYO/MdRwdKihkSSFuxCURaHaYlxa+QyQMzRiEQwSQzauyKvpyLcoKUqekVkod0FFzTOtCgbPrEyy1C2XLtWsEVa5LSX0A2cB/lTgrfH8uRoZO40eFk4bNwNVQ/2CeWOlS71+kP3IIiRZ+Uw4FnK0ur3fn7t03Do8++vjZ82ezj754+U/+xQ9rjTUh8q2bt3mZHDJWxoflsKfjwclAOJ5ylhbiFw8zdAYeUtgPqfHmjzgHRVweYB2HMNTxcKIAMhKn9Vp7Y31bP/x2e03LTvGocx7dx72hiAXODBGQDrZ1dm5NuIyIDq8hdd4PNQnr0YH54Pi4u95rdddpibyl3ibF4QKPWnM2qvgL6gJiF/AGvpA8zRSWHC5vAO8ivaQPbMjN3XZ7Y2sHKqMtJC0ktxcCk85tamoa6f3ATrAlXDN4JTYKf6g19q2Gh5YFYFTgIKIZOTkcdJUQRAC+5UdoX04ty5pp0lpw8qoZzfHomJrH6KHlQBUe1gLSdmKUiuDAnDaNuS/X19OXYaZ6wjIGnwmKlJJUuXPZHrGFZZ1wUa5mLY3/9DzQvV2PB39iEaxWZXbxzS08AO5U17tRH3wDb7iuJAku9aGXs/orwzFY9PjS+ukBmwZDLfK0JtYmEQHLksfrxLHWCMUjVisdPQNjwaWxN9D/qHSERzaX1yNL7Gn7/dOj46PTk6HUccwC2mJjYDyP9kwpEW6E98t5tl9+DvwmfrgQ1ajzVvodhQ+eK8HQ7ApNT17l8fQH4trbNcLlp4RiFC9WeeKyULO5xfXN9R0dyHhnz56drlzqiVaXg+GtaPKxdGH4dartCta2RGAwFn4GSyoKJq/hOON3LnGO0ssvTQ3Q1VcWuvgr67xano1FfsY6ZVYdGJxqVj6Vk16QkZx1iFkoT/Pz0+XrgQY13ppAU9/LonZWbV7Wq8rPFspB5skcTwVF6TSr8zc/Pg8TdAsawPLGpWGQsic0I/qQ/hTeU9AINQQbChZ1UUsFK+fsol0tIRAzoovJ4P7NXnk2lO8VLG/d2Hj5+IXDz3AMhy83u2unw4P+4OxiJ9T1L37y0b27j2z8Vy9n2maxW2UA4RI3YLbW3X35bB9P+fajW5/+8nRxOXz36/ePDj5X4r+5df/o8Iv1m2vbd99eWR3u3tq9+fAh/MBRW1urnJygOJ7du/l2aeXXh3uvvvHWNxYHr/onR6ez2frGzdmnH5weHDx78fL4YHg5HN+9/w6jOekfz1YPuz2dAuU6auXZyXoP8sYzOF/fqD164ybBB7Mwwq3Mn6pBW8fHp9QPCEHeB7+GE3IuR9Sf37u3/q3vvLHWWr8Yn759t7XZLflkbeVqd6t5vegjbPsYkGM+P/7zz19+8969z159+Y3f+q3f/4N/8jf/xt/5+JNPj/rHCIo8F+xhjPiT4wG+1EsNNzZufPrpFwbP3b69++knH+/ubMk4an8O8zSXs6hx1YbaI1+EN5JaBwKOvHkGIiGwjhVVSKlwYSKw5C7SL98FmAmJwHZzJ1LXtyI+5gBqZmiwAdeeNy1BmpRrs9pav7cpN7g44chT98ISgA9dT4A5Mjg4+c0Xia8cj8RNmB9gZ2Op1ZNmo/ShMwJHDxOwJcAIF8XpW+2srb/z7jvPnhv8o9Tn7JefPb7581+vr69zhtfW1tkt4SeZqwuqFeWMpz7kyONiTTM6oBMgKO5mSRln8sLeoXDdUlIOKcoIC18LFaTX27x15/6tm/d3d29t7e5INZtAIMhxqIIjOwHcsvjxjCngOH0SgiCn0TAHUS7cLPB4vZPqit1MWnAy0vof55BpQ51kL3lRTJX4nvIFertWATNzBWfC4gkoSl94wILU7YSvmIGk8J/t9U3EIT3FMCYFV45Z6mpC9IMsiJpo+Bgw2mwyX1aKhV7YXVx2RHJoIgk1sIMwoVPAEKNoEEwgFMWGWLjYu4bkaPhoaYNM+Hz55Hjfy3EEw4cRw3jPqlEO8iFajuJ5qIqJW9Bsd5kEdWZsDzWoAU+aU+ggLsUOSkwJAnBoQEF69J3tdf35M6lTBift6HV1w3RAmuQnc3XT6depIhj0nY1Popp9beJ9scMsEfXDDb2cd6fA/LFBurjcAkrl7PAWbjP8slqB2jFx2ztbOzdvmtSsyEjUZPcg6/bAMg1P+8eHe2gbnhgzTl5exZlHFsQEfLSpoNBM1+QphBRk6oig5rxrvtmaaoXwR5N9FTmUhQ5MtV6fviR9Z29Bf4nvkGh4AoFenC1yn9dST3fn9u1GtaEgQ6C+WX0bjCnPi0ARNF8r1AxJlkHw9mRfQi3eu1VmieX+w7PIL98sCxEZAF8v6gPcVBQB93eGsyvOwwIXmxgYKpM5UzyOuHu+giaqLspcQ3Pi5ATSlwYxvlD5ojp+RBnPlGrDkEGHNbwYVETeBOMeDCgQPJeWLyBBvn18xNf/1paaxxhasaOEohgBtXYIbaTfciqBVmHZTC9HUg6m0R/Pe+5utOen9Vs3d+xgbba4f+/ep7/++Nat2zvr26fH+2fji+7GzfNJ/7Mvnjx4oxPkqVT+yQ8+eue9t37+w8+PD/aX3il/+sHjx1999u3f6cCsf/HB5zMM5t/o7r060J9i4/k5X33/s8OTr8affvirtU7n0/Pav/nx72tm/Hvf/9su++SzX7V7axfl6Yv+y+7J8LzSefr4RWYZ9mo0n9aQwtrH+wejy+n9r2+wvivPpJLP779x64PHjRtv3ITUfvBF6en+3jvf/tbO2zv9o8uZzKV+J63Zw+21R19799cvnp+tLm7f3hzM+i8v57U7zc5u9fN/+uP1nQe3v/7vPP7ZlwdAj1ezp/3RN2u1L49e/eSjjw73D779G//bP/gv/k8/+WBvuj/c2Gz+w3/2J18djH7w44+O9ve/fPH4P/73/8aHH35Rba38+c8+unnr9snJ5PHR09sPzg+PtIur6l6+9+KFnvt8KSSLIqF0BZR9tbcnOSxzZcSRiNi7EDo8TIoRCM2Ii2edIIqJNqEuiR2AOJx3R1J+tkiNUgRrplOo8rzEwqpohkUKz7Uvm6YE4VZPon8bb27V0IrJpdqjV1MNxaDqCWAjln9hA3whEWjxNQ1dJfDwQBUGB/IO4OFIO9Q0Fs4BK6AJLsW9Utrd3fn+97/rBX/wZ786OBz94Ec/l6jn4ty9dYZhhdGie3q7XFuvtYcVzTqmJ3jkAx0AJmdrU6gE1QcOUmvPeSWhIQrz2iFYYSmnyFOjslqj8+DBW++++c6jNx/cun2j0enWNes3byOKJzrUOSbxefQ0MknnRybRVcSm6JKjWn1W52IGNIB5clPyC6WhOgaQhm+k5FOQIY/n/CKGyD6DpNmqVUE/BDNsQoC90SfAU38iY/HlAeN0Hwezk4pc02P4E1pqsZcghjmAMbNT/G82dS5jO7X1Q0bmFAorFpK6lEwgcapbco+iihFjD5PvTMdt+qYwIslHEAaLE0t/dPA0L6YOutkSS3Ffo0GXalSSkh0qjmuQFeGFmlVqqGoqCALTeOHV+mRlqB/A0tg7h1G/QBfsrm/cuH23095w+PHQ0qrt9HRaHrENNBZLTm4gBto3sPyrghudaFqKENqVVpzyKGWmkxBhw8TeQycNZxLpNWdXQ1WHOKmsH++TDuR7msfIAet01ju9dVU3NBCP1YAMT9PpDokDJgEODMINIRuba6XmZSRcXSqP+eMewcuG+M0GGfa4aJ9B9AEj4Q5eeR68WPBlpmOzpNiz/olTEsTNk/GiinkBEiVWyDMGNa2s7OKp3L4jv/JiXznG5c16RxWCEub4tdxlDb4iFQ6M80KzUtmcR7SKxIt2Be4TxcsoaUTJq06NmC2pyJfYMdAq5ewVNRySMAj0yjQljEhBQEiiDqA8dpLDbQhoFs+oT3FT+ofA63Lm4pmR8ej/S7ZNQQF9XTQZL3R9QE77L2oPFc7nEhbzGdmHHG+Wyd/z3OE2xKtJrv5kScnn8l5/7AQ1JmZCDCg9rYWWDAiENB70+4urfe0RPVlrA30OmLO5s1WEf2cP33i0tbN9+GRy787NBw/uKeM9ePp0uDZ9472vXS19YQjsozcefvjLj7kVt7ZuOTd2pAlMqJYGp9PG5ub73/rNP/r488PDg9/8/u988pkpZHfefvMbf/Iv/8GNtzYefuNB6b+vrW3s/p3/8O8ej148/2+++Pa3v3n7zps/+e//4P6tuzu/8e6f/+zjlWejW7fvX201Hr73xvt/5ds//dOfqld//3vf/vQXH6od+ta333vx4vB8fLV7Y7uriN0s90ZvY3v92ZPD1uram2++9+633v3g6R7Bvn9nY7fV+nK/ub2lFmKDvL/x5ju333iofeTdmw/rt9796tNfr60u7+wgxFVubD4oVebg1dvdy//Nf/6f/b/+/n/5zXfeevHFx3/vP/lrf/zHP0R5+3f+nb8Kof6jf/Wvv/Mb33zjzbd/+esPn82u/4O//Tf/0T/8/a998xsYROjW7379raPjoeQjToU2rxwADn16BBTUWkGu+Tx0Sr2dYigBIp8DykGdMNi2jVNO0glzUU6IyS4QzvAYGsAKS/y0lteJgBDNuDbeBoRfLAC+NmYRXq7WvURhlFYGF+OVc64udR/BjauQcNRfHC4/R8wiOnqVKl+ISxgQJhxu/0vEEZc7VbL8Ey0uaIQ3Hj46+13U3sWvf/3pJ18+rvwLUcb8/ffefnj3Xg9WXK7orH/RuS5BSkxZmC9P5lMAPwcbHE1X033xEKEQwEqxsALzznlrMu221m7uXFxsXm9u33jw8M27t+5vbWxRHe1Oj2tP7XhMWqWwAd4geEPUt8I6DQulMeRlK2XNixZrPdc+HawAcbiPcsLqUnv9IfPAPFHvabSn8zZ9gLwr1GEdeNxho5c5ozEAEqWjIVvOGdezQWY6rWZ036tWu6tVNHl+nmNO1VL9flgYCNF4PcmQ6bToCarEWRzAYrl9JtipnjeLRZsS50gK6ll6mqP4xRgyDHItzq9fVsru29IyOEikEKDKgv1F+8IgG7RI/pd5h+HGvlZILmAhtGaBcxWxQpr3C3vZxwQrDUUHlRvcups3m80e65ICtMmYkrUtqoCqiNr+gSimRZpok1XqdNpr6/VGSy4+M/CIlO9b/EgQFSrpwvJWuWDSA3YjNhD6BAq8Fg0sQcfWz9YYWPrXy4fiWU1/jmV9CFCwKK+oT96anosgv+rhUcoNRC3iEb5DoMDYNktxrdv/lUoevZNqrCzgSviHcKu4w0YEUiQIhSjnz7TUBtLFyErZ0qdU4eXZilJd4+NX799/1G11j4ajo8NX4DJNFLQGF18ZlCS1BPWnRWfLY1y6OBvExA3kVHE4i4fJIYqelVGj2aWcvbvldzpcnpanYKOFXSZ/F3q72NIk4JOpkmntQ3kD9Nkk4mhwPCCfE2HkmV50/hJtnUg/v5UXcfw1nLwCMBKP+HkkOqUasmRWNWGAE55Yxc0KlyhGwKNYZb9Epg6KL/k+7zGNvBJPmQMtHqJuBqdEmQUtPznaQ+V7MR743PJKo/KsolC1fvxEl4O6KWjVxuGHP7qcnLYq1x8//yQs9LOzcvv6y+dfTi6Pq92r4eWo3Kncqd0cjo+BEe++/RDoejw+aN1Qo3Tx9PTZ1a3O9WR5iJTUWoGFPz4dbT26/+Y77//xD/7kcHCoBF1B+dNnr9DzZof7LybLDS1s1EUvligOfPBbv32jtNP+7NPaQAmVqQZADZMqRrP1EJevjw/38Qtub+9iNh58saeKtl3qbFnaUbe6snvRr16+Ki2vtdtw6pXyT37yZ0e3TuslwenDy0Xj848PNrbufutr3/zDH3y009u6dePmybB/OV99+PabX73YX9vYurVVl7rrH0+/3t78zW//liRdd339G+9/8/DwWJ70wYNH21s7X3z8catW1kVl1O/rfHK096I/Mj7m7NWLFyz6/sEhks/LV3tSYYoJDk9O6T2yhbHsROlORZfzQLPf0NEwrak1yUJiRQrCRLSbZI9cITBQ/o6RjWydV+sX3dVFo+hZwi1RjcbxWh7MDmcXo6PF6gYG/HJVG60ZZmdgeVIQ6RChFi6GkxXwp0gO+/qifoXml3xe9KyzEzpFZJ2diJnwEbdX3Hihh0/vnbe/Phnh85198umTLx6/XL7+kZwpd/sBNHBzCzLRa3Qw3XUUceb3+0dH/X56FsjGBWhJ5strMHfu5TA3r69EgPRqR7fVlcr6zs3d7d30rFrrtlqt5BQ8cR4UnzNWMG/BrwnmAt+mcrWdAcKpo13uNhLRSj6p29o7KoVdulhQKv3BgL8PbPWcGUkvq4bPMjkbDkbD9gAqhbvEPae0QyznFfclD07wyzH9sZT0arQRq/yael0eUhiOGaQTjzok3x8BswehMIFd4EkqJqMDpPEr+nKzNCXONwc31ZrKWGSOrZSpWnkXBZE2nObhGMCwCgVL2cB/Yj/M2FBp0ekqXhdeQWH08wJA0WKq0yi57KF9KpSNv1IFxCSBlRJgy+Z1jaqAHIMOqrqAjTGQVO7R6gwD9U7OpFHwAkBOYBgKBONE/XBAOo5+vVNf3zLRly1JilU2NM4vsyf7mMw9I8aHZQn4zCb9SsII0zx7SrB8aJA6mfZJu9o8TKMxhT+mD0rEwy6FQ3lfmr2DrF+6vCm8a5ZXmtVVoMER83g1wZFxcYAGWbSUEho8HBa4MZ2KiXlA8Cqpn4TMaffm4AR/47CQ6TjghehyoYrouyjPW2jdsLq9e+/+g4cOnhj96ODUNF6tcW2jG0HLdfx34tiLGfwlIk+WcgHr/Fr5Eztfi7llEOKYSbSiV9lEtxYHE9R4Vv5whgL6C8/lBjCCIDvhmXo6VoOpYN85ZWrvAD/2QNLA6AUWBWQV98FbM7VgHyZkpFPK5XnYwGy9L/pxT0FiGMa4lB4oT1ecVssf56D4MxYhz+/88v4kRvKNVJ65NMMNMS7slKsA/51yFZJeM7GY5RQMSwYtzFuhAExnOz5BN+EgLi73WVvcQA/4bz77DCu1pvXiR79Q0UEJzr76gOw7xL88/Gj6oSLi8+rVi58+/9Tbk8sn/91niEhAth89+deN5dHzxXDyZ/+iP9y7XWv8F//P/+Oz4dnR6dHin/0jEnH+4sXST64Gn/0ST7ej+cCfzJcbjU8/+eDV5AhG23+5/8/+6e9/8ey0VD777/7R7794/hx14oNffvjjn/35eDZAj/gH/+i/ng9XTk5ffPjJ4sPPLvdfPv+wNP+zX/xxe2Pl06++2p+A+Grn5Ysvv/j0n/2rP7yY7QPLf/XZKW/q7/8Pvy/oX5xd/+qDz3/+03/d3F6bHy39H/6v/+cnT57t/ROplKs//vlPh9Pzrd3tX336IZBAs9wPv/zkYH9/c1c/r/Mf/F/+XLT+6YvntAxv6bOvvkyydzrkPPE++8O+jZGZcfoVpNPp6cEB9BexFf5/cZaLnK9qS55AkaRMtEta5N4iFsVn1fooVjvvNMrq5TILLPb9ckaq5xcT/T4htsvzisJTFC3FdTr1FM4+4XvtUsWryd7Hj4kx8F9yQYgIYlQ/dNW9eXuRK0LuFESkRCeVlToXHtC+u934je98SyZDwmTv8PDZ8fEvPvkire6vDbq/Xu9twhqaK9Wd+D0l1ajiEWNQ4LgICn6RXtoqloB2SqhTMW/4en37oqnlhwTAVjdEEPogM+xRlTx4wnBWkfZPGJwz7p8qhtNrvi9xqeZEiclyK+FVDa9TipBK8FvjnqOTvnpgVcc0InhF1YH4zJsHfIb3nB4rtwSvc6B59SKg4UzJW98MAPg5AordwY7qNNu3bty4decWCJo3L54H70BaJDNHmt8oXDbF/vUxjK+VNfbEnlRcj4GJG7vA0m43qxcVw9VDNPJnOkiniSILxjA6sNlgPxrmJzfyqnzn4VvwbmFiALLMaW6IBaRLihWkKQiFX4VS8lMqL/iPSk0L25CwM+TAJDxofEEMiQLDGT/DkLkC/0KL24vkUAw7vS6or9iw9BAtLZ/SlWzDepV0S8AGMlK5iZHJg6TiISCFGWDG9WRqLi/3kmtNNcDi8HBexE1eycfGTC4yzNVi/WppDdtT9ygdSgpJU2/a7m2kfQDxItxcVhqCZ29rAR9puRM3nEdE78FYfB11eAhX507LcF1W0h/LcQBl0eKaS6T2mD5jGFwv9OS0OGBqzUK5MPJj57vf/fa9u/eOX8ovPn/xaq9SaqkbR80W8KbKjmOevJBRh/S3zcCwgWqKy5Jqy6pGuSdK8yfzmeSrUSfuhOwfhh7lHHpSzluAXIlgxeh8OafdNyhYet9xymH2Xy+FdOS85XIJvv0g78b+u4u4xR3zTLoCG2cgG6/7e8J/z+HPaA1S4mej8vNYxZrGAMV85D/xkvK0foJDl/yxH4pBkCixSt7P0iYE502QBjY25fvLCE1gipRbXBrjInQkkkxTrC4fTJqYcnAalxY1rSBtuE6IFkvuxQatlrgSms+m4YfLarepodE5l74lxtGnQO4J5LWYn26Vr598/Cnx56Yod/3lq0Nd9hjhww8+dpeN0tKvf/nTfgkb7LpxOf35v/rDRm3NBv34y1eN5rXl+OnBUzW6LvVnL56aHVC7qv3DP/pjufJet3o5Hv70yRcVk0yqqy8/2Te4EWPj+WcfxJU9YeTmp3vPjIyr1jsHh8pCTs5XLv7ln/3UZMBWc+1Pfq4uZFZdvT/pYyqc92cnK6qoli+dmIMXz8kj7Br3ZHw8gPwCmFe6VYRpsSxFaFM4JE4A2XTikkDjRYlG0Qrh6elzJdCXpJFLDOsmFpsMpF9xEps2NXuXnXSmJTf9s3BB4gmkvXFaj+qDhyq90t1s3e1Nbnevdr3TeGmkDQi7TbeOPHQIP7MajpCW7OmqVGZiwrnJxDRdH9w50uHPnKv8M60gQLnmoZW7GkwXaT+AKnlCcEfmJwHhvC0D6r2iVCqnXhL61s3KNzGgnr/s/0Bns4vPn77sVnX1ATdwfUAxNAaQttzrtnhUbtnJSE/+Lz5p+vTz5903Ihoxp+7KoPXlEMXL2gJyQLNSPI/VCyXyAhDvbiOS/+YIiZCSszxXgjscnBzu7R/u75syrJmt4e5haHrd5WW9CTJpOBDN5LR6SmbJ+XQ67w+mA06VKtHlNOfg5WPNQFkxFWNUlCZNGYDT0WTM4jBqa626DhnqZm7e3tWWbW1rS/8VK2hPwUdFnpUBMsRc5v11EVgA/GSVE37HUNlKL85q0VS4KjxnaQEK2aMBkQgJw8bGkZIieYBeQnTiq5V3br8F97BbBEKTZh/1H/9KDyHpBfG7B4GGmFDtfIZqKj+no30yDP5G1VRbDT631Mv5lF9LsbMjdYndqAYEc1IJWiK8tGTBzPFwygXM6rGBnc3OykJtYVkfOth6zFOq6gw38GxspTyE1KyCwxDdQP3Nbm9ze2t/79WhurS9vbOL+Yv9vaHBC5cANHII9LPmGxUjxHUoocwk7/GgBARwe8b5ErQwG0iciaAZewch+is4U8Q1/nbGSa9M00mjwVuIRZPDdun0giFKNFqUcbm2kIrSMcfSKJsBtc8R5WoP33z7/W9/R5YNE6Z/fCxJXlu+qT2zFiphXDCIgT6T7ILn53zG4dJwRdZde3dWkRqMghYe+KYVcII8or5e9BhUhxzz67OsQjqOPLwn9XGie89BLyCxqWFhXXwyCj4WRqIkAzeryiohgqyZoxhV7cBdm12TrRee8cBEW0l7F/YlOA2P+nWKhHaPis+DxFiyGR7VP7IUvh7D5e9x7X0nL5l/xAGjnzxfykSrjWUKn5xpvKuRTl2DB5MNyVt6mKXtEf3E4UFArABciZPEhm5dOLNMg2p0xUTcRa8zwpJXGWFaAG29XDUnMW2bVi8Uv8/N9g4Zl39P7ayskfWV6tAfQQrs9rlK0Eq9A+HQoKGevLdiJjgOODE5FNIS9Gqpwe8u1euDc2E7+1mWfZPM0IJYy1OjC3QmDbE8+soax4GYXs01b0bfl8W0hW4XXejx7MlsSmNj9RrlmrLy2UiU7lMm7sofidfJk+iOD9iQdlOd4cEzO9jqRXSjzZ3t6ysOlJ3kWqaZVAY5LAo1JSWE1klVGcWRRJ/FLnR7LLdf/hUgLha2YjHCL/MrJO9sl8PBPfPAhCqJ/9SCSE412tc729W7m+Wb9Vmjdt6A9qB4NpdqTV0PSo3VpaqOs7MS4rpmPFXujEvAfOKmpElqssSEMtBlDhcDIzj2DP4mOFhQMKCHPEbskSOZhmK4NbaZ5PCqyD5OII/QaaOX7j+8/1t/6dvP917++pOvlO9+8vh5gHoH4HJpd+1SDVK302vpYFBChF8ajbXWgw6X0qFfB8k4oLYpxQiphcfeiwPn2/oDnKVdglM7HEZ83d1/VCfX4o3SgLaVxkOZPzxWAHr48uWr0+MTSmytpSaWTulSoJKiGxqWyPjuv9BQ/hCQMzWYCDdUzwT9jWfBLq6WUnQqPG1SaLhWGnZnGg9d7nm4b3ixEpjbW52dm9ubuzeUW+mWqQaQIpU0BXXIDxwfHR8e6JVwaqMFNixX4X5nca0aLeGs5XBYQced8MT4XU211qlju6Do6SGmLgqhEu9IupzDjEGeYI/OL3e3blBLgQLxpopwn+i4FhaOqwhBBCxEjF4wCwweHba9fmWJ8WnY+Ik0iFyzE8C+Rex8zRklV4SLoAUyEasoxViMTkYv9l72p0NwWiYSazhBIK6vwV5GvxKHNEtFPao3gkDENvKzKQr7Gf23dr6mz8B8untjZ2dw7+TFi+ev9g5OTqF//cUXkLqC6En4GQIhQKsrLFRPQQshe3ocbRQx86F1JwM9XY9YpgtnO6W/gBxHPZ4rLW+lrClJGhui5UyF8AMMTGiYs0L/RKdxe6xYBCyGClReqiKTvfXWe2rw9p59fnT06vD4kDvSWt09GwZuswaOirdLOoUlLVr95KvZOL/9ihuV1fT/hCx5bedHxE7RFAgPjN5ygUxywOPIEQEKrOAE67GmPzmcxXw3h1KU5V5R0QkWXV9Aic1Qu1I6z57IwCtSTBQtYGvk+XMMPFW4gPmbM8uiGVMQ8l8wuyIcye29B2lxY2bAj3kKq001M0h5MbfMKzp7XoNytpGWiU60WugIppjVVg2NXjYrYak093gWQncQP+omRkuaQqWmkLIQYK2mEjXKSm7DIVLGtChBI0JKkItivw3C9mYVDcRpI0smLckvTh/q5SoPygmUwlJEXQcDNBa3NzUhF1yDSyYdBkP/skqDkl69GJd5kLMq6OmMmzQ9vVw1umFEgMkFhy4vlNl2SapZy8uVddK2suBEItJz1I27Uh8yleAvUSA0NcSPX6b9BbKNjVLOOD83jw/NA95AVwOoHThFkIW3jJKlR5ewhlsfUMYz52TnJFjryI0H4Luxl8rWbHDqxuMA2t0sP7YdRId/IyAmF37OjyM1eFzKLkfnL+SNsKXhdFBLt8lGstCumTpzox8rV53y0npjsV2edMc8SMzC+cDW2gL1OLw8Rqmzui4CmZeOMJLjKqXPM+Iam+9RvKr7R1xtUuH4F4efSJMEv3ETSK7LFfWJDf1eMXTCxbOp0SiJO+NAgiKE37bkotPuvvnw0ftf/9rLQ43GTo6Gk8+e78On/WIttzYvgD0yf/CDHrwK3wAZRUifJnmXRZGZAN97ML4CqpS8wcank2X4veiAAYqMhSLCbmkFVikKktiSFbC+yqkMTTg92ds/eP7yFUe/o1KJKAEkinkhPLpue9Zp9WtmqA5PDbCtLE34U0lkwAq8ejzlS1FCiDjWOGPW7LJn8BRcunRn6vTW0B+S1tjZQlSTy2k0tVey50zQXN3awf4BZtfB8ZFEQDAIz22pIo9FVjBlRP4iamSSaLuwXSOtnP3ZDHTFPyhl/kZJ6pSjfAR4MmFXiya4Op67x7J+FH4kLgqwkKg430mImLg4xsRPO2nlExbW6EiTe8WI0r3GDKulghdl06Rc7G+c3Agfj6JAqL1rHM4MeKNAuU0Szo+fv9wzh/TqotXua6hm1QXyRg+VV9vgJ+/hzRiBennZ4eDy2Ep2iAQFzxe+dHDSzrc3N0Ba9x49fPGSbX7+6hnWXgoRpEkGJ0dMC7+J3qTSLZcYgnhlUbZhQXrJTciS+oETFlLjF9YyWrSwrFFbhEeTbK1i0bFITAyl97GiUf3EEwRJFWUcU9KdFixqfXW1vbn5xnvfvvvwDeURhy9evXryfO9w3+i0cruj277Jhsvx4ilFCIfeSStTOiq6Vj9iKotrLkCKBs0ZCsIWcbGz8a6iJH2F+dUWm56T53F4vRktYyh7ljz77bezHs9dXzJN8T2bh3PwvLrnJ1OMtAkwDbfwtirDFfq1mtr56byW0+lkvj7KDg8ALuwnwkP3MDn8Y09B52SPo61dPpKY6SjMUP4IGbY4/f6M458zH/8DBGmEQKo36DtKTAmHib4CVsedgk5nVq8A3Yp3q6qIR8vmc/n1IaREPGzMC78mvbBbKxIioC7kWx8I5IUiJaXAYCSyoafyXHmV0lGE2JN5MG+ckLWc+SR1z2MFzYBh4CZlXYgvm1dzOpfNUJNjB8wcWKp6+4kkolfKYQmYlQCt6OOcHEa2oMTwslTOZLxsf6SQBpzFi9G/PyUP1LqJDQ0dlrRSZixXVmYXq3p4OSk8RZ5aQ3zNA7HWafAeEn22M0YsxjvJmiTCHCNiw63NL6956ZQnMvBIAEmCwsjy7D0BYSLNViAPaHtckuH3y38jvDr5uY1lx8QmfZx1+xJuy3WrfCksYyitx/louM/P0IBD97ca25aGspdnl2qDuhp21lQCrA4l0ApxJaCm+uAr5ya+4rQIOsn5awMQ6Yh4FKcIduMp2DXjIVKyKSeWcky+ozPPGfWgTCjN5hIF4XC52+ncvX33e9/59tOXez+dfsALOxxPPnv6kiNqLi8vjbrRXNQFGUYUFFpefind9NOVC/qj67iO/+HgB8TQL8nzSv1HQtLIS+EUt5HbQUkqC+Leq/dGZ3YFVJBjPZIOTyQNVSxCoxdra9vnW7LCXhGEqTWj8tgtBcbqjc7GcAWICU3iVnlloaDQ9Wz5TLcCXCR5PClkUmhbaVKHXS01vdFt9HoOIboZlarafwVrRc9vmFL/5MTdX754/uT5S83SUPcDWlBoNpuhZb0TxgWy4RgWs7bCToyvB2w/vzzTcePqejRRkg1l0zlS+fREQzMsGDx+xQF2QFUpjyY2uRAWkuTCJAS9VX2JMYfD/vEB3o2pILIcVtPjd7sKw3pdDPwbt2ge1XIOb458LhELQkV4ysLBcGe5I81ESDSTONfZ42gwOBwMxtdXfRG1ldQWEbO2tVbv9JaabD80yGnH8aS1ElgIP8g8/ApuQjroklJNuqEmxd6eryu/3rqxfe/u3fHwVHNWZQ9Qfn5QFjhHheuUR5Jcs2QZ7tBbW9uYbO+cHJ+Iq45Pl/vOkFtxcFMY7t7FcRLykw83zE7ljcAIdhN6GT/TKln34r95ymjaldrO7QdvfeMb6u4Onnz24tXz/uRYxF+vblyf886yKh7ID9JFxbNR3xbdHUgKhcYWZAWdWZ/z3vkJn/Z5BztnmeGnpH1c4GExg1Feo1bleLlsDlhyxjGVmEiUYMEr8lw5ja7N2bN4zImF1XIpPSLgexKJqmcU2ZdUcKtfLVwJb5uHo+ejI5g+YuZ5OE/MXeSvCBb807N5rYTzCerzBIVFyLJFexXv5DaJmNwfuMK7zb9dPZ/xeR+UkrGkTgfYMZnqYjVK+ogJPxUYWjpLYV+afISVVsIU8X1sKfVzPtYUg8+nClX6xkCsvFR6fBY/5DmDRbiiFWS8sdzryx1MrwxS1Z2Jtr24aAh9jTI1cERtphB3yYw26kDib6LbJWSDOil0Vq4TsU54zaDGVeWpexmoB3e87Imu3MBLj7kKSjeYO68j6IHQcRsBj0tV1mx6WTl3XgG29rsSxM/K4cjnZGUziZWOfTwBSyFISPCZ4+SpCnn2BFFlbB6ow0cj4z6btc8vH7Owvke3IFFE12aVufywP+EXmkTLOcgXSFk+LrJIpSaVDTRj9kPydGrSfUM+TIaRSXQnlMZzTSgmMyOge4Y7MgjEHhjpR5SZe3KvEfkN4JMDEYHJv4u9yLciERwOvjqh5EOzMx4u5oCmJJp+MV/WNe4s9Zy38W3RSae19sajR9/71tcPDg4eP9+H9r46GS0tPyfWDmgjY0cxlzYqrMjVpdcYn2v6AGvQrzFDtAwa4Rtl8ziFKmLS/VaqYEYXqWUdqIqayrEtM9ia2m71lFK0BRiQdxR9KP3RyeB4MDQejgCoAsZ3VwDFx/fk+NPrAY1dZCg4ORroUkRAs19eKi9obPjlkjkWK5N0CcU0lUSxjwnUSAv0q54wuiCXeJbZxays27HFBN0H+Tk5fbW3D/56+vIlG5P3sKxc7YgiuQhbHS6qOFjSiC2h0glPPDecP02KWAt9CpX/inEcD4R1SWFeLStIOFVdAgesbzY9aomaJG7hXqbq31fNapmMT06Onj999vlXjz2HZgxSRXdubN24ffvegwcK67RRpZc5668D0hxre150LCCSBNHDeFxmKT01OD3CY14Vz+XSCKcrETFkq98/Gg9R404qnarA1SecAqIQsXE1JyiZiIRyGYlicRPjyP5ob9PUa3hta2N28w5/VscnDBJMW1UerC/xivw7rpSYY4IGavDDVReVAqOLgdU4SRHeKWBhsTCRTvRH6tM51Q7EdyTUQeyJjd0UXXNt6DBXjZG3Bb4KIQEFXV6hTz164/6tnR1tlvafvdBv4+D0cHp+ZR7t0kTen1ZOIV5Or/Ps6jZHZowi8GTxrJ2ObErAqHwlZzq/orp9I4cr15DsN2UTAqHW11L7mm9HVcQqEfB8OJEB2MQ9HUuATS6VoOz/x9Sf/Vi/pfdhXw17Hmt+6x3O1Od0k012k01SlijJkigFgpVYMIIAkWMgF7kyguQud7nJVf6CBAGS+9xkAGLEgCM7kGNHpkNaEima7G72cKZ3qnnY895Ve+/K57v225Tr1Kl3D7/f+q31rGc98xBiRM1Qh8Wo2wuG71RreVBCJYrOrj5dOHEUDwYLe8+tCNEkX8SdwEqtfgwDVazITrhpJREhE8w0Mr8PKwgB8sRyAgrfCn/AbiLBk7ty2FWa50XyETIDLSL5oc5wBDaGcCBpWTaHRexQaMnTbnPV6tf2uuu2hl+6g7iETDpn5KzMbt27M1ENJ0amYFvMHZhhmGOmaPtJOrtNFZNStGCvRcrQHKtYRvhdkr+qsiojvPSSrdlMQLnAGa3LdMIQSrMj9A89y6mw7YBZRARWB1o6JYaBxhewC2s1XWS12HnTXDJsGJ4g8iih+sOURZECPAfZIZpaDM+lwJlpYraantokyJ1whQWwFIhGcjIsCAOLxQQsv/p1ra9cB15+Qvx9sEGYaD0pUmvjEp1p6rHzdJ4e2tvLTuWprrgIk2L00ZiAqETe5YSZFcNaTFPFN4EbQcVUwolSs5wvx8PVjd6M060ZtzCk212JP06NaHJG0LdgmhfBifxADtgQhCg4HQOXKLtE1S3xAw8UlZJZEjmqgAmpc2WW4U4HPl95v9pWOerXvvj8y2++fnd1K8IeG366GdWr16lIrwxGQ/CCLW1SCBUCX84EVd5f3Q4UzWFigK/BCHIG9EqmzLagfEH4V/qQjFWfR+hnGJAkMdUC1LTnfoA0pU343Cc4N3aHhUDFmNHFdTIlK1/BnYXmMmduPdxPngn4u7y/QzORfyJaJP4AGAncUvViTU/l6EtZdecu0pxJuVKJ4FqJ1JENYNlYTb5dS9aVKGYJd5e6GN8xfA1kTUUmRdAC1dAeYMUf+cz4GOKVDuViYQMxVSzRl7WMA9sy1XBlOkrhNRyjkBmnGnzReIhrC9UCUg6faEty8H3uh3QQCduQ+EoNeX9x8eXrb1+/ecNy1aYyypF82tpv6yG8v2p04jphZSBeINtOAOSGpJFSeVoYvGIHdUmyvNst5leFe7p603BnQzp6iq0Y3GvRMx/fCGYjAShcq2NW5khoC27IOdMKYKIvAZMQGsZDkOToGPB2481vd1fdhIyuj3joZinMLbg9eoDyp8t6iwHaZHyAQjzJTxX8u148l4eB8aI+11Sc2dSL4qsxvAr1ormoYDy/ooswz+jgBsWwBbRIFzYxm2Cq9uGRrFxtHnz88rNf/2x3Pbl59+1QvQEBWw+7nerBXu1kZ6SWCOkXPjvc7iryY4KBdhHEkOOgZ8azYO+8sIlZPlzI5+WF13kT20sOSCRoF+fmUAoYgXFkXxEDHtX4mWVaiRqS1/lh8GwwDQATaLJyibII/6kmc+N6cu0Uslan8WmMzuQjCGN9SEGq1PobnUNMFLTwCNE7OdFlZjDFJ6b0b+aZiYZOhTeBvH22yvTPyydQODJMJpNNMRyZ+klaf4SRYs3IShE+vxEJI6pXOrVOc1vR6hZPcnWdpph0XNehWM2tNl2BaqHmcNFRAg7k2OzCVOh+Stup/baWwdiobHVjvgjByj4kYERpxQSemks2J6pn1N/WerutqOXkSf+nyRx7WD9WGY62m/oLK4jWqZ20tzpN3WrDb8JeUUATxuooDYPV5HY5mG0PhTwTO8BCNm6lw6NNAI1dPissp8QRCbUluCoWEHOW16H3kZYin1tjjmLAtrkj8HN3eQvo9iCoUj6BJsUGZzaww35RFitcjE8EfOdBTcrm7rJZfWiqSa50U+Cfccg0AgewpOmyIlnGHGJ+FNsQWaz48AU+IElQVaWHiZLDMTyqDqFLvY2bkebBmQJB5iiLYouzLVlE5pxHhKb7l5rIGSRqMC6hEDMUxuMY8izWiedBxBuYpAkeSQwGN3iMrlBUFb3t1FsvD59xks5UhF9uTbaergeji9u7435Trdl2VYMfMZNRa/UzGKsLOLy7UPVtOicAkLu1yFSwQ6gss7sP2IWedugSSpNpCeRciSHZktOMcKLqGCYzsKBvtBvtB3MahBOXCnbpuKZYf8J72M/9dh+6R32lz1SbvcQdaE0QPGUli5EAkyaXJPfCepGKMMTI2OBP31Rh+iHO3pRnQModaeROlSBvpZgpla++xECdCLHkoEesSevHCEpOfQQ/u5w62DECYfXR9QE+Kjw3qEi6zBzTQgYFL1gsaDsXuSfGV9UeE/ilVZOqMiat06lvIzuIMUgHYlBnaY0GStwT6PYUS6B6n+O5KhYzxdFvbqfq1eU4iragCMaqF0nOipMElFMOE9EHPpOGam17/eMXz14MFeZWLt+4xQEsOWM0GN5cjnuKsyatCk9ReiNeoLRU09KaA2KqKNBCHeZx6Hv/8KjZ3WsLqVJ7IFbFtZYisC1YtU9TXQAHKiUgGNl2RAotNbEk4UoO0cTDh9lpLQ277Yvz9+Dtbuwqon2q+c8rMTxt6wIi6kpNagPncKV7Q7CpllhjiWtNxwJxOzg9+uIHv9nb784vz+/O3iyHd+/fjnZ3j3/4mx9v35/cXxG47KzALHFCkXpFPRBHqit1GlQuSum1SE6BFNQvxx8YnQ8nP/uZzUYOykE3h2AS0R5LycIiWmP79BW/IcaWJm8gbQViVAjzMHSUauncLDhuifc54dSkOgWkDve6P/vqPC3Dtb8SU5NONoYQTWZbmf1pY9wxuAjCEv9nBBfkANki+wZhTDGUJHSwPC66v3d5u5mRlZjy5pccnNgeETyEUO3gy4KZrrKWrNIkix5E0G4Il+HNTjxvTepta1VrpPMUNT9r8zjsS9SPZlVFvfVEcospOKoeFtEb7WvTbAj+KxlfiD5caSaONjOzo64WacrCL6iRDzC477e8oPHILxXUI/9EPKX8xWrrqUsLaS+xonbjcb+13aunUndYlK0DB6hArVbyu1JpFyooRJKlc5kGFMpwgBOGwwiTHY4CFS2Nr4UhqmgCXhcFMfOITAWds+v+L9zUAz5gsslj/t7i5i4JlG2x9WSTKfWh/qAk9rNVfdI5nmXfMVDTv7HL/Zz2wAxBAm4DWygnR0Zvr3i4dyaJ1MyAJG87TBvF6tVUY9jA+zemITgKfoa0hEhKStLScSAHmQAkdSSzAQW4G9QFTj+RVr134kRt0viUJ44XVLdI1LQ0mqJaYwCCQbCTPNz/rFZAxfXNTEXqf9g+3T/69MUL0pXCSGLyNGe5uBsqN9ljPFfmpBmVi90mkS6jsYTPSwUI5iqh7orcb+zVk+IUt2XdkXZC7gRHTibKJIWkBuignkMRy00BKeWJOOB4qSlAfSBAo+OmLY86Wb6C7UQBN5oWezTf/+T5y+tbab3jx8lQkqk4IujszBuUQYUPVIauYALUyoMcWMINQiyyXJCmbACCZ2gV4Z1YyuWK+WhMT5CPMT+Gf0TYjaAB1PYl4ifZygeYMYsfqwA5jUrLfim6IVYdghw7BhlbOivZE7KAqWtyEpG0HGUtmqeLCkOPWEv4F6sdXhe6T+qO6kk0a2m30e5/dny6O3+8uCIMow2Ox9ZSj53b2xmfsNnIa2w24oGqVTjcGW7B1Ppj88JvKSvcni0Zvyf9k/HLsUqij/X3F4KmaFvdVp1NbsQkDztcSGHDmNhMoR+Z/UnLhdR0u7u81dNBUQnu95Op4osP8QYAmyBRnDO0MpIoSqV4nbWZQE5zEChRgGXxee/EMjby9uwfHeGDME45udFwEFebfaOr+zNLDzYE1z7Zbriy0YhJTSLqicmyn3WPg9WYDaPRxy9fffH5Jzuz+/uzb+9v3lFW7t4ujl585/d/9Hff/eXj7U/eFgsYhgKsiX7wlr1SEBmbDEsIRuiYh0GhzIUGlcOeYwMRQy1CdNH3EIWgT3CIgQMC5Iiap620q/Y3L3J9UQQx9RDucvjixXY6QliYL8PTE0C61W7U9g66i59+C+lWjdpkNhWGzv+donOKxc2jIKqGGIExP7GXB+UA2gBFxAsbCNmNS8A//sBNGJa3ucU/5mMSPgmFMrfUaY39A1el52X2tGJCISoSd7CP4t1SNiyGYHINWCHf6IJxkFd92uCXqRBIXVwlUwJtnh42TczCY6CN6xsiyndaTVxbzXNmZ9YYXDOX5Wp7Suj+VdXikDl+BYItTQIdpD2yms4TheCsyDUWzdVtbrXq2JJQVfYp5ICEHutKwbNQYKtyxrIJqq5YKW9hZL3QSkarPNn3cNYsOJyKYhStxaPDHCBCFKaIvQ58sX5kVwNFsATBss+A48MgDFTyJywi2G/kKKZhvxQsUj9Pe6uyRk9xKdRX1zRudkDARAX8tGlFtBdZuctdXEomPeeHaFWz9OSNWmJUcprNCe5BN28s2XIIhY9RRouiRlUL13VumQhdGdAGP/LCagDc80E7i99p0aLl62Nu6bDpIklOWl2pzeV7IpWq/Iq2WYj/kJoQLRn+SKUqXOMJfvysv//y6BAS3Kumt1xJSri8HyovXsGsj7Tfqgzmi+Fijjcw5kT+f3ikWuw01fjqRkjv9AUYKcDTazztN6e3lcFsZ2psAog8+G5N29pWih3saKZB3SHuk8hZbKnDQTGyoD3FBVBmW5W8Na3dRCdOFyeH009eUDvGIfopi5RVkxYjiTsBDg81rxiQ4WiU30Bnh3daTW0Yj+DGqRR1AZxCoGEhhHDwoZKdoDcV8uU+dMkB8VnipITyi5QwveQRUSYYlEia9JciJAFfkV4dU0dpNyJFRrHNhsZNiJ5c08PBMv43c0qkhMPjsBKXhD1LDJHOe9TuPe0fPQAbSinWCZGcLdN1glWHGs5dMu411HhKUDxrB0O9vRPIL9C/297uicJR00hQnmFPIvk/0IPU27y9u9UuXAIYwV8Mz+j62s6zx3YPRnXVNpQdCU1+TA9k5RAvr/RkQY7FzBJzOAp6vc5Wq4nJ8KcxPcUi4tABfOCXlUYsoYokVsHJ93AQzDHB1+grrb6JidmrCxka3N7LlwjrS9lRBHy6c3UtFoQ0SEJ/moRwy7rsNRv71Afl7Nkxt+r0QBLA6cvPfuP7v3vQ3r/88X87VDFmsmT8bz51fv3lr//w89+9/+YXW0+XeDhXy0pfpRhSaB9MKk4posZ7LnwCDXG8swBHqsjrkCR0P/tl5nmxOeo+tCdWlDjXLDY01ZhR7hxIDN+NjmIhGuX4FLICEBEaIUoIUB2N0+Cbz7e7jwTHYmhiqc6uxSSrpnR/hi1BpPpBMWZmkux76Fb8A1YhLSu2i9Dt0J88uvwfAhUcKjSr8C5zMpXgKuoY93pUIT+CsfEWSV1BRQFVDOCigOEM0bUInsi3Ix0rnxd2IlRJtWJ0WZgFl0JCJlFc0IjxV0SIpNKI9rTkAWu+vL3E7u7oUrLhDiJOhfl4OMkI1pOMSCnK1guHTokP9JcqwCsjxWmBKPEG6/vuWQm6F/a1Sqh6Cp6yd8tpqNHIy8kkXYK/E2XNlli2LAmv5GXWJdUUCG9SyqYCcEl4Eh7tmLPhvEMCj2OWxcmSmJhngZaNggFlz2OtLq6mwLN8FzjmB5hBPazX+sOAyh6AM1dEGt23xfNsr1vVdbO2gqg8zTH2UaeCb1uy8qhNSFftUdlKlf/Xw8Wmz/uO7SiUvgTmxj9FPS2EbDMj84hDJF1vnQv9gCEizsadHWUCpgJEBE+8Aqa5MmKHJypeAkEir4izZKuAiiVPa5nyZMZ81PxDbZwxKqxSAj0g8egwLJgCVpSXxPWT5GAounF6csAyrzECwfr67l4IEZGOEK+1slxWtSpvRtPr0WzI9gG+HqXAezrCi7Ppd2p9RuhmpcuqyZL/cLRSQXqyGDl4CoGqXowHMC6b/VgBBmWONSJ8sOpQABuDbqr/ml5fKe6JljEDoQW1/v7T0cPqZSnwLOtKpDudKVzQebcSYi3t1C7F9QFJyGEglMPrQ0qQbc8GwyScPTYLMg76FxZYupiDazlprgdIoLTpfnLUieKrWRRJ5oUwSzfSNnicfB+FBiJGmPBEwnQ4WY4jdI2gFLz1rIqCNdEoY7d5UA7IYQjMdttw/FGyxOMCiIUn2T/nRsYKvJa/fH8jGZG+oWfxaPcaVFsxqFZ2hVHTj6CioiSqs9HuVdUUOpqoqZ2dA4oP8Qcm7FZV5dfjRgFrW6sKVVz3N7dsTpP7ewRazDpBTsMd2WzDOFWvdWJDHdVS8IA4zqlPs2kOJsR2BgITC+OIs4Qcs6hGhCn+Gp1pOZ6gFRaVTyhTgaIYVugYV3yraxoq7qXsk6gAOkr0n2AfxQDIcEuao8zxfSW/a7zFYg1E4tVfdE9/7Td+9MmLT9jttC+SEfj2cnh5dXd00Pnii5e6TNRa7yPcSud75C4DZUK73acUreVMPEQTnzkOjgoEyGEL5Q5lz9sI1/4LloTc2Tbimo+j6YSkxmOb6hCwye5GBHNtmbaBbK1TGVk9a8ktNieZfqLjBE7sdA9uL94fnuyNFgOqmKJzCfo3L9ROHhaeKt5+jRmogUqa5rsnc5gMb37cwiyI0SZ8FDxkRC2RZF6VqaOEWYfX5hGqaF9kMDnSmQa4cjxRQ0JnoqgROKJVWC0TsfrgiYlNxICUPgb0LBfxcD3x3wL9XdBrAxT0jtEw0r0oiJgCCRc7chE9Bl8hVyt/04x3MWQoEMOBkP7HnKxUi0eCmV8KS2ASpliwtGIJo+kurzLM9VwBuxWlCcgCEcrc4iyrxGKPoJAjaxLoAyAbPpsGAKj78lGrBjml/I1qYcXGOscDkjkVfgY4kZTiWwqJ9Yv6R1sHq2w1aAUXDIgu5bSXDwvtL2iRBxUbRS5LjBazDKASV5D7xi4y+NTefepgALITRPukU61I/wTslm1JwDHytZxuz0ar4aPiDmqNhN5CociodFOx9br6RbnxaThblofWUF51WDU3djySIiQgCFdBZUsxWvuNOYTFb37dnAUlGMHfiAyEfwfAjjqJynQ9rTvKJCAszr7G4AzoMFh5ANSHNQviFMMIZEvNR9gJBcBGRS8hk7f3olgUJ1qfX92Hnq4l5UpOrnAt3onAU+2eFjBXCRUWKXLA/J+ikaka2e3HF6j3dFUoe/fF0fFkzHkrbw8oGTysHTlct+fN2lgzZ8KW47scq91RqK5Jpoy1Oj+gEq+nPVAwv9Ofa3z9YjSfykgFH3UJJYJZoavgRn4dq7Iop52rqEhGBYGy17Y6bg8ImhPrR1pe+EsQ2ekJTUtZt+jZIQDZba9yetii1lUiZYkvCN1DsYKMzDFhMqESLs8z/MLXfJfnlO+cOau+Ov+mlCGQnjDK/vOeaTrd2Y99VBV+xT45wnVDV79Od80EzuvqxUUg4nbOOIsBCO8HDJXVkFy44BHNXvf4OZrfsagE7cS1w1EkwSFaKtsvsqvidaN+rbiVctLOAuOacy5Cp7DNFLc0DntSqrZNZ5IXMDdF62L1kXQGKzxNhu58HstTQ/orjhebEBzyA9vwKh5m91sxhOIIiv1eu0qA23DUQEYWRAziZsPa5lRq/CZ9zKljt42XX5SV8p0zdVeqqo3baG1RRKGJaf3rf/13fvev/T4L0nRwN1Sq5Ozy6t3VN1+fCTL7wQ8+fvn54XarqkiWsJfU+oi3UdZTiBoxyk7orCdmkZxnDpHion6bdZGIzasQ70IF8ib/49XOpsUQV2FSTr+jkZDysAcvAnhY5PNkyieaPPsNS6NKujYxLAwjVZRICeSnVmf7xXNtynE7p0TVlNKlbD1Vr3B33VnGdlrXlFTVMyaQ0r/cA0P9SZGFJjvexIuowrYqE85EQywgt7l4gxiYTV7nErMucqFVQWeiCWEcx3HNLquTa9G74LwBI/L7gHkc9qDssYpwTPGiC5Gey3xOWoXsCypwMhV0LfBIkgtsqE9SXhs91aDu4WF7zg4WyuRkuTY0N0b/lOEzh4ALWWfQoKM5arEIPezOV+ofe7DQaoQimcbxtISsp/aqI7LZkAcJZqnKwHoTKT7MOpQPBBLvMzcZfdFT9Gh7zhSXPp10pkhj0A/lt3zLtWCbV14HXkY20MZsEioKkwsxzbi+B+TNM0DHCPaY5Iu1OOrk4Jp0OVYQEf2qn2nuQF+hPIn+lB7ocPDTMqAJOqk4YlFgxIkvGHbXAp3iY8wjIokAeE6s+LZsmk/z2EJMWOhiCY8epvJhqcmifnJNzwEfS+AolN+VhgmGlxeZv6d7HX5KAvPe7BGCNBrDUOKhdTxJabfXV5Px1KpgBJMBgY2vUqVClQAca0nC4iZZ5GbjmXQ/dfEmZ1eIHavd2bVGuMuL+5ErUT/kKoa75UpzL52iDvv7+oX0NAtQ5v0wvck9lKnEB8f73cHd9XTSF3QjVTjAt1Y8j8l+56krHRWYCobaMYVGIHaYHGCVeJtivM0MTbD/tAeRkMS0a4JH6+XV4FYBtNzikECKAkNnY8PYEqpCnC3ZYbbSQQLb4DnMDeTit4FetiXuOlxW8lt0iTKcj7HCnHeHQD5GiL5vg1EZyMcQNnahuBXythynDdkPAoVkBLXyzXbl7O1byRKetn6YsBOhonS1ZmdIihfiqloFX/jN/eDs9vpWgvPjql8RO97bOzrcOzrQbD2S4OJBcoHmZHc3dx6lGU1/b7+lmEVXmTZ5041q6gIFZ8nrtttiRJCmelOS3QUO8XUoEryjHA0HhhlbD0eAdQlTZs8azRY0MotqRQOgjTAqxZjCeQDkyWGi4acRUGTpEEFrIe8pPWY3RorwSDjgdeMwrjbaiVjlEQRWUqBjEwIswSiLrjqlMT6YIJYg4zktJlmJGlqRybPQF1NQydXo4WsVeKdb3zeBXYb/+/c//eX566+ng9FX31zpdnV80v/1f+t7p989RguJC+piihzKiQ+5SZKgQ2nG3pi2HQza+TdnpkhK4JRPgoe+yh7lrb95+eEe0pjjhKsk9ARKOWAkuM0A9td10fgcOaCwcuYXZuhcHUFs3dvb+/byzUenR9/55PnX376WIx8/J4oby+GCyaOMRK1OkxAYZFz4FOJgsxHGcp6t3rSsAKxzb865SUaD9SL/+zqX5Co/jozjZKKhdrkospWrLNK3RczcrDHUNkocLh1PCcIMkDGjs/xoTbxIAhILEMqJ2fOukgWgSY6X1SXeQ3cERN9hotPGy+o4RvZRJ8+TSf3UEb8m8oEMlyk51Og7oxB5HBQiraxb7e19QnRUdy4BPbpjQRI5Voh2Zq+yUsxH5X22KGaZHENWIE6VNEeiYRR7fziNrXAofZ3rA6HAK4cwas6HvQ8UA57AJK8cpwzog3xWgBps31ziaVG6iVPKHRWKX5Nktxbnw7YiiCK9QllgaAbuQC9gIObH9bncXsSRBwqlVKEH0RbD1JOdJ2gKQ40dxGkCedMt8wBCC6CHJaFHFDcu4iPRAoxpuKO1AUGOXX5sMoTM3d6Uzy3SkMHrv+JqIILc6LKluk4q+Otqm9BsETqRGh30UAsZA053GlRKH8tnpF0XoICpI/IwQRNHY1aZx/uhanhcr3CFllqhvDL6HB4cn5ykOvuJdKHnJ3o/iijF4Yj86g21ajuSvhTQG9fV0eMxwAWE6tir2FCwQZoQG1FbnrnqnJVEo6v/kjQt0YEkUwIGX1qkGo11273u8og+IQJfwpXyPcJH5Ygn0ikcgN4DFoRQ7IffkqbhcCXiApCKB43pRog+yAVRIEjGzUGMMi4fqtjOQNIhciJEvgW2wZzQcXEQ+Ea4uMNYSD9GYR3BSUcJTLING1zacISCcUG+rcrl+/ckc4Ihz1E4Rpr1PIz1O354GD5M2Gj8N5iMz4Y3un12+10Oz+9//sXL02MVi+wPA6AKpbXrm8XZBes50KnOcXz8vL933OymGEOcUjmdYV8ONVDVntbd4H2ILkaIguhmL+dXCzDNxgji1oFHgUKSnxW1QMgBmhCdgG0yPWFa3IqgBedVXlhTd0xpdEotYStZLIBzqmFuapVOZzdXN1rUZjsrtD6ZhzIFuC8wESaPXaVXaVgQEahiRcaUSUE7PdIEnxJuo4Ukv7zR2/323WD+9hc/+7Of/4Jq0fnPdq/e/nm/03oczN/94kvRBL/88j0m8+rTT19+77PGfm16a6YTojlGBuohxRHGI8cy+xTKXAy/NrscEige2lD4fGEHsCaEwLcRq0MnoFDWB0n8SdxuWD1MyU/QoZzVcub88dCc+sJ40KmE8aNGRuCb3G1tffLZs5OTZ3/2ky+FNmOdAmYcb6eqXVMd92gytQ9yoBKKkfSHgj62rMbtqnIRm1FE15z8ELzMMOc8k8v0MttffbD5zELyNTC4IDdktoh/1CG4bG3Qgx/LWsCHpB1iUUhmfKbJXEPNBTfjUQw4obnAhRhRmxDuHILiQUW5ahYS6V7Rhrr9tag5rwCbXeFbHg4sIWmZskFAr5AlYhH8IrNHqN8WPNPdOujvPG8ofcPAt30vReBhVw8NbHVRW6c8CX1CGEz8wfHKIFOR2Mo6rSe2JiKhj/GLPCUAARdrLf/munL+sq1e4bKW/gFWuSZvAtFCIUILyrfeZSBfqAkBU2S3eSHcMxZ/YVxPrd3QfX2tZKKJ9glGl7nRcug94xXr1pNfgU8WsNEjwrSiXkakaEgJpEDUpU1ko003/DoPz/KK3GLTsT1wTepAvACUJ14lemEuKnMrbAB4LTYYDgt9vMHG6K4JlKdIAA/nvjyv9vzgYDw64ba9vR/eiAvXM4JQU50z7zqYJAfxNgRHZDBVSNOBlaU9ii9hLXz+6UnAf/TrHRGATnRjr906RYz3j06fvdB0QpmFw+OTY+3RnX/9UaNl7vI3qL7/2KzOJ8TBIPPkQRVImViPWBXVanNimavryv6tRaMFc9CYJAoAWVEyEiRIbkwjrcqTYmiL3vTgUAFoPk1uRaxyi+ZAkCqBRpCAHCndV+sk/k5PtTrgEOMfcTeeXso1yg358y2RtJHqJnWN6mkMG+5qULGpZkdYzuEuslfIC9AH+MFD8I4UHOtpdqT8BP6ucWWwNDhYDimCjHeI0kxvxb0Oc6Oiody9YmyvBsN3N5eXQ65XMpRc48bx/v53Xn70ez/84ReffUeT+FpHwD5uqnLaqCYnQHYS48JiIU1MVRxNMhudLvpuYYh4mBz24j/qpbrOPehTjnKJunGmn2ZzpmkGGmZTh1EWAjgQ3AV8Se+AMjyE0JENSoxXozVUeLCm7c7OUAVn6SWdA60hD9ZNsArOOFOJhjfKdHZ9cf7t629FEEGOHkVQTcauOo74nfi8BomgLcPPBgI4IIMLhq5wtPKjGEi9qtUnz0RCFGQwdGd/8ctzSCIq9Y/+1Z9+/eWfYCgsXsKGttQBfNj5az/6zu/8zd88/PhYvF/acM61bFbuGPTRP0SBaxFOkCLZYeyZ05UDFjadMxK8JIc7M+XM2aZCAkIcy6nP2+xdGEGIl9PllQNs2h8kq4yW2w0Lpj5nZN6hoqMCoUTIlamkyMVtp9t3yAbjGKGNQ4s3urJqB/svtx/2509XW9vjtCFDRViaIkMHY1SU4whdb8e5WqKhU3TF7GOF3cggJl0oSiFrmWXWUiYelDO3fLBhZW4J/9gAYXNJxgneZkyl4cgkYAJ8RQMIv4lMHTRGcxl+mG5UfDEaasZwKmlAw4umxYIlHZMNBARSXHZLkLtp5fOiwfiL4kLLALSQLlq0Ems2CCgqDeK/XJenA0VAH57qyaqvjGM8eVoUQ1ys+cKUVYhzrsynMBNqlmnYVWvGvCPElRMdwPg/6wwMC0CAIKDIVgVG/s37QKrAITDcAMSEP0Ar35ZdsITYSZH+HR4OCW5akFbXJHf+e0v2CSdV4hSCSEXp4WdeaN5W4SCZcJNkykCB4Ni3DzOAAttCKUU6tXY6hcOhz8JfwtX8nwfDTHtNJSsKJcrjo7L2GEVSmCJoQDfNQyN2GCC/m8XFSIeNowXZvcg2Eg0q24rG+/hIeKUCkWth9OLxF9c33LxpgqWe1eYsi6CEB6iJqLQN54EBmLWR9EwqpeR8qTV8u6Eb6+Gro8OPXjw/5oU7Oj3YP+4r+t8/wDzYdW1RvJ3qJC/QEqWDxvKkLu6EGd5d3GvrMoq0BtCxWZtyyi6w8ui3i16ZTKNZV+jY0gnKam3qP5AoM8ArtlDEXSmfg97BSAddicYI9W6FGkBuQfFpMAJWha4TLhMcSRRbp24tQUbgTgr6U01TMTueUh268L+uTB3x5oxhMfetOT+dQKchnCVAdvoL7uVPiAQYm4o1OiS21kfQyv8Zd3NscoH/Np8HJxVTZds40Mbr4HAPQvBwd8fTbUUouKaG8o8ZCBH/1snh8fPnp9/9/Dsff/fzo2cfdXr9ii6JTvBq3WJuXq5Ojvaf5HdNpkzlDDXhYOYTB+/TWPux3W39E0wm3mRKjQSPXgfReco+i7NZVgZj7cDaHbXYAFa7yTgUap3UbpvTeIIumoIK02pYa/r+aEy/5HKGVBEI2weHq5efSRGgXHkwmqtfKC9xHOPyokd378/OdIQm+5Pl+71+h+e309E7UOsmEyaGNNWmsl3iI3j+EB3yRosi0OhlFds0SoWyu6vV7//N3a/eXf3Rv/qLB5Wahgw/s5XWLjpd1Bp/6/d/7x/9o7/723/9+429nq5fJKZkEDoIQk0cJIoaYZeBOlXFZqpgQHVEZ82gYVcJW9kUmghLfTn+2cGcE2/LbpajWo6T723i5tPc5EiQxNwUEh1c9FlOJhJK2iIph/vngqUa8bIcHwd0vOX8UQmryZQ9TOSbmmVzBKxVOXzR+/zinPzPgeZavlQOK+NSX7xJnO3qqR6uLq6G81CLKKaA1F138gtCmlYhgWW6yOGGe/kuJBp59blxgoTB4NA9lIJQKRoKSdoEd1oSDHe+o3kQC2Jv4WqELpH9/RRUz1tqSnlu6BRh36ji3JPttS2kvA3BFk8qu97zB4Q00yKcYlwtNN+Pk4uROCwPC5npNTbBLKyy1BO131z161sd0jTfL73V8hbberph3Kh6M6w0bIqlHNSB1lpyyrBDf8raPYkNgfWvRPRl1gU+LisgyJ8CBfPY7FpAVaaVv+EQ/stO500YR053PsoSkuS1o7Cf8DQ2n2gA6L7+GzzAQpVIuUIyAm2yuUinx109wKYz1F/KdHK4eMVV3SLJwlLYkZngKKxeDX3eyalrmwsnl8pDoDAel+lHgondO3tWRFWUKozXtMp+FX5TTHqZsWXCiiw2hIhRkm73ICUyD/SWnm0QwfTpNrtH+QoLwVvSynG3cUby1NOYiJGgrfiZbC8fAExJKo7Ggny4/W52C06y1NbrijiI0DtS6f9wT+e2k+OjbruHrrVbXbXo/QCdPqYIizIAY1KkBiv3N8oQXN1eXd3fvLm6ulIjWMKp9eVpwlDQ3ZpM0wj9DDbmmxaEvkqVZRWeb2VRAj8TmyZxOXfxoYt8PDzalzMr7oOaY+Xq3jBJttKkUTdKIavITNgQGxKPAUtR2gFjJxF67GsKJ2NUulaKUemWLF/Kj0eTrp1QuWOFghKTghoFvB6eU28fi6QYDSsQLwcDvMMyM7vyk40sp26DZATy42fPnp+8aGmpuN9H/Zi3KoPRw25ryuhVxCeJad1m8zu6HH786sWrF2xqnf2DaqslhxBbVvlwRyV57nu6t4ZvzpbOiVRj1O1hLHcr8juI6i+FyJLQKZeOehLY5PbYnX6X5P64ElxPKwRBNL34AB7Fz+GJbDiqNqAVTfpbyHScC8i0IWyEhXEcybSntXAp6vor+MjO2SfiC9pvKE+wJTRL/SuGd6PlFfRP4QecgF9XT6DD0lZephpFwPgpNSR0iQSPj9HZSA2KlNW7hAJFZH7nd3/z4KT/d378i//fH/3hL3/5YwI+yfPk4PR3v/dbf/AP/uC3/q0fKTn+qCBH6FRCjuASokAEs2NM2Pkbf6NQSFlhEJ6IFGG6YFd2KESv/LOhAA5Q2d2cOld+IASFZBS50kg5j6EcnpgjGPQNTUJuggXwGdGkYCYa0KXp0vOw1ImHgPoX//Iv7s4vJTirp08x23lofPrs8+P26Ze3f4oFV3pmlliQiBN5sE2OI7UE1QZXEXdPVfuynGnkxlpcUlZU5gvTCt4lG5YgFQoIHCYRIoKshHaQftg5C1lHF1KeJGQwEMFzQmsjpfogZMbywxENitIX9C82rQi0qJgvwwbqIrak7Fb6DTYQEabVKY/CeGsYi/xTUk8po5HsMpUswNIyc6ozidqzCZS77caSZMqLjq1RSMGhjA5Nd6JJWK/lG8Aux2qK8ZhhYGEocIV8hrWMspS89oBM0J/YRDwyl+d/UylwCHxMaMPC/TVg2VLTyk8+z2yzs8nhQuULrRf8WscAxJStpWQmyetDnnOezr/NDMWtPUP9FzuSVibwEJA80cRT/nMHJ6PJmTZQy5cW6srY4BDTLrNmKcoYfPIzQl0ST5GtE3ersIh/l2LF0DV8IJPc/NlM2ID/Zo1RVeMxIKt51IcH5gJrdshE56zX+wdEeJKxovlt/9dr+mkoXBa+wFVAuq81+r3OXq+vfm232UEiCeYJ7PCqXtfTSmFoTdCp8x33C+pvqyym+S9HQiMeJAL240Mi3mbT1O68HyhAcKPQ8v3dxdWVWBQdS9MiEB0GYPDBV8SpsvuDegwyjMaJxI9vVlCQuMTBjTLLIA5EzY7uyeITcSjX1btdgqhSqaUDOloscHnxoFGtEkMxM8i21KYw1H8+TFbZQs2ieBRKogDBk6bCQIH0a7oZ9hOPZ1x3epgoSyP6lGTM+BZBw0koYP6AHHYNloRiFLmvsAgHEt8IMhX82fxxfQiLe+Fxa+9ZY++03t+vHXRNz74/dXuLSvUZ3ZmPhRl7OGImf9Xrvuh3DgVSMbSTN2O1ISGQ2BaLyf1cSP+UpxYpVkJ08nR/Y695OzQn4BQfqTZRqz0/PtIFdrc4BmhBABPGrZzPXh81Z6uxSpvq1/E2aVH/nCmM/bOp7l26BnKEAGPaw2SHiB+wXEfvdmtbNRdlXWczpUA54tFwecLxzdeqtD8WPcpfZ69PHnj99s3lhWJ097c4A8Fut4oBHOzvPTs+2ut2ezHydPa7zEn74sVqis+QJk00kUehVlxCVIfDZ91f+8H3/vbv/9aXP/sLndrkG50+/+hTnblPjtSRF2NHadSdc0r0i4IGo2Jt9YLF1KYVkTBurs2R3hwpR95qoF0hlQ7Hh/0JKcjhz5HMNd7YNUJgQBDbUjlHOX122ughlY4zYhb3qmsj/fObRdT1/B013x5/4/NXrRenk9nlL3/yM4W0l7vVmViax8bz7qtf+/4P7s7eD6aXBF/VdTjP6Swx/pJhkLzNo+PLReM8O3XZfCuqMiiYx5k3cTi03iQ+fGhGppLvbZmPXZQvN5dmFb4MPhL2RIvuzgUCmG5K7yEaENJa4xmg2YWXOU8BRJISMpLsnNQ1MUQYJ8t1fV3rbfeOdo8VHI2tudIJM6aHPt1xCJN/C62mU7LdRVcEQd1aF8Z21jlUVtJK2/IkCl2WFpDkgJgtcMGye5Q5bS9NAFkwgWwpAuNViCOChtuZs5Fdb+fxldQg8SVGA1zZ2AAmsNpAyAJtG2TORQFTvthwBcPlHGWeYVh4bNwJjAQp4cncT/7Utz1We5Vp2HxYfkqVKAPE3f2wReQfr3gvtsalmbWsRnMIPAUieC5FweHgACAfAEVdoGYeHdeFJSdGNtYeTFCQiW11Lm2G8G9hiUmsU4MHGgRxQ3qs0mqBIuwAkvstX8HzIsLzx0iKnU9Ijgw3KFpA5j6WcQ1cWQha6HjzYL/DSJuWxs3qL79+fXXL77KD6OsE+dHLF6fPnqm70JeUjYKEmGIAGNB2RMN2K5aTZDiwncRxWhRX7tH4uknkWjZeXF8h+u8vUPuBupjXeiyq8jyZTPRpn7EoWbQ9zJKK5h5XZCyQNo04KSverlkMoW8o+mjJWJ1Ka6t5T1XKbk9LIl/TFgBhubUv3ZibWDUZFF5TqRjPRNDTWZn8uZXS7HExSe6pMFzEPwYAt8cIjMHa58hFQaIQ2tQ0fVTOU4G3FBSJ8ynaFfTOqXcGKfjh2kHtgmXZET/lsOWvHcneeYKXbijf+tAHmoRUVvWWvl0rDncIEEryJHiKuvQwHiy14lEpSQQOqVrlM35vJdQeb5IHklQF62HjGgsTZatJ28TVUkG0p9vRTV0DvBpdSdVlXlxmlp3ZK1SUPYv076SbCGgnvqnVhWuyqhmaE4ADtbJ8XpZHwj8mMJ8OWfNZ8G0H45eaq6GmosJhgKRerEusdkosw2dOSliBoaQUBGVR9ner22t1eDgOTo4FArz49lsegdcaqDL4zRaq0A3Pbi6+PX9zjBH0u0f7e8cHx0cDBrEDeoBeaVQx6ASb6QT6yimSS/HZa9Y63/3kk5cHzgbrVJ1SwphTekGYQqIbBCcpFc9DxIKC7BWhNZgVl2ah9CEJkYAKcc8Zco0NyU4hK7Eq+szbkAufFHBtvvcGQvnAh0W7y7eRrcAzKBr9D76FAaAj3pkiT12ONjtvpfLbP/i1j7/34l/++R+/3vllTRuYhYo63Wet0z/4m39Qa+3+/OwXM9b/BOytqvU2hIpknAK/kdNhWehZ9sGzECPPZLMqbCmfhMGhibFZ5W8oglfBvo2PwQkzjw+EzpxV4iFoC+NxBQAy6NEqOYOobo8BJPWq5PHFGIUTF3AFLIGT/8k2DArJVzK1kjegfLFmv3vtlLZPSqfjryGX2HXcmET8lObJSSGONSNWuNDmAkYhikwiXAg94n8JnUT5SNA80txRKDFfq9h1AdCaTEsPz0ytCuHGALLGHJwa2FANwursBUqYKoJOKa3DTMqBKxP35WYJAU1oTkCSD0EthqkAzgchGuLsw5mSxoguxK+7FNnZ2nngIZTtpbqDSsjoPpNO0r5shjBNq8MARHkudqfz3dFCmQfmExFQwS7DYAMGDUF3lKCImFcOFFQ4ZDx0z4lMqK5rZH5BUdMisuFDWmFQ9aUXNKXck0I3VD/Wnl8RGqhY9iUGP8uISTP5HPxppEa7wewjp8u5QcQicQrFi+VDWWFeG2Jesg4BAuIRM0nPYPLJy5e/pQ30Zx9rj3zQJ4VGVHUpsR7Bdxcw0gYMRsiGNEDn0enpsV6Olfu8H91eXZ/p23n29vXZO+XVhJUjV6RL6WKuTxQNaOTQZefyDwnHseXr1fYA22SMUjymWk2tDA7ona37iQ4Acg/G8phPjkcHx8dPBMN2N0igpRoP0h7RWENHBHJ2vVJnaMjLYa+J8JauSp3JY4Pi6YOB0cFAmelAHS6VCLW32Embt2JjhLlCoxbrBEOyF2EACY37lRQF8CZlkCw8uFeQy9986FNXBrE2nxes82k+cYtPK7PJkDrCVphIQUKX6YWXULukSumw20jX1vQDUdt6Pry/EyflAlvn+AuMEhIceQ+W89AIQxBIoY/azd1icaGIU8rajWMi39e3bWdH5W5OFMdDly4Tw/gIp2bB/BC4odrNJrbhmIOKmF6u2lWXb725GI34SNIOQW+HmULxDyw+7HNtOt/eYbd3IMODc4WGlsiEHEeKOHqRaMimCpDtLsx7pvPCwTPNZE6Onv3il1+qcPfu/Fy1PLGad9PRzXDQa7eP9/ZOT0b3e8Pj6ZDD+GCfDbEj4bv+OGYYUg1q9SivkLOiDX0b1RbCKCwfKyYMgACfNwYUEKp0LzAgsAedIhWBGxN0oBdi4cRDYpIUpQ+VdNJQNygPGh905Lz+QFgLubPLYRZlyPzBI9FNowVhrTNbBBUcZy+gaMQIB4Cg+oH05LSKo14NBjefnf7BYeewMdn58u357f3jyeHHP/r8+3DuD//0vz4bvF5q9AyLnN8d0bfzEDtD53z47wNipfxl7AbsK46JmUcczkwiTuarrDwoaHrBQvP0KSk2b4KimIezhsZElw1x56sIY9jEpIuuM20kB+YxQVgm0hMkMS1jBEOD9iDK0YZGGM5njMo0bAWfW09LiCQKKASKqMzjgpWkwBG72/Yopz3TCkBhujDK5jrGkFAp9XMYVbZrgFaSBmB2XL5yI1KWNp1naPATNryIV9mOZHvKVYprgYc8dUZti8VZMyiYJg0JI4lUEN4TuNigkNRA1BWIFfGCNfwDe8sxDo4wOEDg4IsBEUV2f3ZDIZ6NnYcE/FTZw9WlSD3Ojd2fopAfz8K0lDKd+90W3754VMcsWnWJrsJsCvLMs5MR+RVphivRNrZZKlkvqVtONTbvaD/u8M+FPTCCq5nvcKbCkhAa5kwgT+NzOTnoGF0BvwpQaQ/4QRiJu6w3oQRYq0MtAmn62FaC3q7AAuhgFxzVsK3soMA7VnWfxt2gXoSOBM22+/VJ/PXvfvHi9FQ8D5OxjrOkMTTDokDZ5eG3QbacDtiC5jlQ/g0BniqrdnNzfXmmsv47lfXPbkZDwabCiNhUBF/adNfTM0wp7qZsD5jbG0NQVWLFTaaVlogPDzvyxKMsJjnrZiiT9UZvqvhmOW2bnUizTZpqtZMcBisTdauSzXioq8pyzcRE+vdQspjRQsBzrqIDQYaggROq74Iq+RxTKD6vOwHJ5yF7IJJkKS9KwpA9zMIzgAsC+DyujFOA6i2IQEQH6wOQfAQDXZ5Lg3i+xpxHdzfzw/uqVN6nxM9lYN/lHxu6ElmN0DxM1cxDBtYiQSvjO0AGKnYVBkB51lrAW0KiLuYdgB2Nhsp7sN5oUuxX6TfMRZTv4PJqfMIzA0y4B6THyLRMnipGpIonqiUBODnAJo54J0tCtq5eUdWqND0TF5koIJ89iE83YaMP7f1erX9YqSn/vJ+IIyFi5lFm759CEcpinWQ+PDUemwxrTTZCFYD4Ezr7+832l6/Pzu7HA0jL2ZwFrzUCm2oEqvbQYb9/Mjra6+9Xm+3aUKGSPYbGGasiM2W7I5Rpt9ZMNY6yXRIRVNCBiUK6ULtEz8S4+kj6ocOjz4E4CpfdKOQx8lGmyU8oEwInjsTkliw1toLsZxG4bVYhnhk2tLLsH3i7YrPFRg4dCz7Yt6BVGEVOQA6HP0bjCbA05rX54+xP/uLHh3svf/Drv/YP//7/+Pd0srifoGyXV+//+M//xY+//UvlvUjG8XXipnFcl7NEgSgBRWgdoooubYJ/TA1xzIlBwkP1AnCLCikOkc0yrNhswTY+wxxSlMb2FjaddYZXBR0sPv7SgqS5B70PnuQgKoARaogiu7hQepMKFEEoyGpUA7kfQ5IYlZwH8Ikdxs1MWerH5qypfChnfipHMNVaONNQqHTXwTYYbba1ykl8bAep5aS04BSKiDQdkMYYtS2+iK2IHzWHxNKI0Flh/mQTIjQCNVRGMgqPCVE0bfYj84wO5KICgnJXuTPvw9GyCp9mE/1TPgQVaGTq2A/JlrBPyRXqI8kLl/LXfJRjIf6z5CDQbizpymr6b88XlRmXr4wEk7QAc/AHiEIkfSgUISBiAfOsFM4ovh6TtiiIkl00kQ1jKCzO1ZR3PRVS/zHXU0pCdqOmQGXgKmBxZxZYNid6RvAvVf+alvKoDPs8xuMch1DuWMii1aG7seYmKJwFILqreTCnbO/yTJJEjw4OTl+8JL8dHh4TyGRv5hmbYQov8TqYHpKf0dl3SVoEcOK0TFDE1gYmYVRH0FYvuFStjciRBDdcOaeHdBKansmjbjEzFvUIQIv5RcFQCb6E8hyi4uIJv9zaGk7TEJjWiyp0+H8bfJyiUMh+pAhhJiuZB7ry6j85YCXXElQGHVWiYEVEg2x2sDj/4NwbeZhYjHOFq0H/MLmgjnmYDPpkRpmkY5CvTDjbnkGAOoTTiYkoGXpjnyJ1+clAfoNkQVWvo1K7CQNQPFU1UlXxBMvRBQthFhGvO0QKw/OFqy7EvqMqaavb7NM559VOqyecXv0fGXv+9vr7tLeIOUvsdtK8uyU1JSB3OMLRpTyQ2ckH08Hw9vxcsgZ7jph/2K4KzSKJZmPhWEAeI6CIy26bU4slh0/F/BiJqCJb05rMfirXnR5pl5ej0T3e0X+cc++eUA0AQZIqE00SVZNv4gfEnCswNgi8CiKmeqgNErqpA8/e4clLOSJfvX6tdsfgDjuX35vq4WKBlVDlyRgMu2xbvftbRiRif68znvbHsoFRf5jMGa2q3K4EFojrJCB3ml2EIobw2B7VUTlImZdNIJ4YNIGsaQezA45YJpg0imW6YrKy2qaYuKW5fiD0weQgR9KiCpmwyfbU3VkhumCMbKK3OUdWnK8o7BaRPQ+dDWp5V7hOzpuDUfnlu4vBP/2Pf/rLvzw9+Xxru7UY3Z3dvv3q/JuLu4v5w6iAL20r0q1LOSBmjRB0MLYQY5GYwmUKRhVpIlQPcQ7xNwF0BGZHHcnhMf9gnAlEjPXRBg/L33zuk2wMxZq2FAwlOeaOXOBrl/AEw1oaBqXGK0uz8HzpT8FtR8T0pESRHRhDUvyZDTEsE0GIKEm4ZkWqNreby6f2Yq3MlOYs3AxUDT9pqYa4k4Ur2y30VAYAeDpmmtzKPBA/ijijnk5VasDBzO2OqkSJ3aK8h6xnlByoTDdLMrWYv8t22LGcansWOphrs3dl2bk2B9ey7KY5Qtdsc7iInxxSvyYGdUP90X2SvjB/Kb5kf1nKIpR4bi08LplQCriVYnZM/49awPqrdA25n7UUbE0wkMyzrQuNcE/AFitWypRSyMPYKd5mDiwUnYgc4e7pD0NQ4SyC6oYwKL0sBFdclFqVYOV1oG2LDGob/RNqU14EP7CotTBbTaaYPYQegUYAVmgc8s8E5CereKpBeNYcH+6K6T7s75mY3NJue8+ZpXrzGkvKco4KsIjmaKPEUQYVldtiUGC6TipZqk0l+TCl6nXcOlidpKv5jiCSvgCe8fB6MHREhkrR0OYSHma2JgVAmVQhnpEf8l9yHbJ5jB8uCseIvpI2y+qiYQntluDpg73+CQJWrTU5rFFilE8p2r3DQzYLnveJkBWu6NutxXgUqmQzgAmRzTKCCnl48B+RDygdgyBmAawJBWLhtRGACk2z0HCgXBVsB8mYPOL4jNiUmhAOQNSGrAffKqfL8B5VnpiFlrtVQRCOm0C4xMLZ31g9U/HIE0XsMMI97KzvpuIFp+1p8+NO5dmxjjAv9g+Oqt12rug0xdVjAFaBAXRm83YPe2gd9HsjgVaipe7v7sSUSidT9f/y0uQ4DhZaOaUlG3lsjAMhtyi/jIu90X1rv9vu92kkVZV0ZYSL7WaFVjlZ/uLsQRjP1ZUOCdeCRQ9Xi/7RkfZeiHkitXjLZcYUPAzsMNWcq4KSYkmiEigasItk+6212r19EcNHL1++ury+uNZ58+pSnzBFWNUZUr4FH6E93txfy06s395Sb+iePManJycHh/vLVcfWS6Tfrc35/aUL8HITlFSckN0MnM5Q1PfllLAUbRYKFRQrQpWzY/tz0B1gp0zdagVnkbkQhxDTsO0iDqdSN1nVvmW/QmJ8k93Otm6Uj/CaDG2dRVgIQuQ/Px6SfS/nPhpxkAJmik4402dicFOt/KliQtSUGZukh67SJdhxRvxTYECSkWyqiBmIc8ionyL4kyX9mH+Id456nlbE7XyYs40kF9HD4wuPcpWXJpr7/GZTgrp5u3mdY1ZmGt3CG6tD0VxhKG8zhxB1zkj03mebsSI5Z5mKB/Ms6cOVX4ZMQ6OGpFK2RImFbDiEUNHKPATNedoSqcz3UKRjLSzIk11VdLRF3EnPAKjicXgS34IOUuoOYck4Guphp5DjNugnhDdpAShDrEmFewGGCWeDsheYn5dENscZR7C3+So/H/4p6y8bFYpfSKeRypYFD+KkTbRSngh92Wp0YDfVdA0sztskLCYTONTfCNAs5YzwNgE/811payQ3+XqRBYHRNoBvwB1LD8puP5GyFL3whm6IRayf+LqwB9CnIcAWeyhDjEum4SMBtjkd3J9GRG2SO5Y4B2NGachmbuacTcnSIxQF8hGHIk1os5rKgwGJL/kbU8c3NvwE6JcA7FAyTClBfF4Ql3ZZeSWq+NbxEzKSgyT/No13FPFMaX7ps3kRc3v+128d1cNDkjXW4plLQYn4h9ERBcoSdBIpvegZzqlVVWUcFEoZvmdvkAnrC15ZRdDOYLEO2RMybmDpJpQmOxk6q46BWnZKW97e30QY3lNmmFWiFsa0vdV56Cqco3bdNPUOHA/HbRdJkXS8MVFYqCcB6ebfbFU5r85A8Ch0nsMtOBYA59JyYb4peFcm5lOrI5N3iKSx+VBy+R4kUjjKDj5Myp74yaoyCDwoS6EBCH6RkZz4f8WsScDiBTVgmEZCBwxniE1qsJpSE9CO7WZ9/+REqler01dog8AUe6DfYsUDoFpTwA+Y44LKLwnHkpdFI52PtpiRpmeXFxwv2tuzpaCwFqYQICc59g2g6oEPRp3OQA53d+/kQA2PanUfOhANmAabInLAlQCkPT3Tmr40g+37+7vJaKgfJwbguJhJsUvTXDHCOLRQZMKOBUMptluw8AoWSCzs9CQPdF7eHdzfP7u7uRmMtN65G05GTEwCm8Qr4GfuUCofs2HMUrJKpqBMeIbFw9Uh+Fe5SWkn6pumcKbmM0KGVFKA/cUkbuMojpJpWIE8t5w+xyUkMltQzNLoUvY5Rc1iikCZKA0uz4nlANI0Yh4SWaSE0MQQldwd71m8rwnOgY+lphDfppUy3uDh2fnsegS2stvQyqioqyAShF19usgv0hSjMaJitgxShboWHHRTpDCHGF9IrQXioc8i/JtYLP/5CTplSpFJbIunJ2A8zyBEB8N8FwN9fsqSy+AFEsHAACPY6FYzLlflI1+ZaIEY6hnPSUYmd+ZYehXMz0+Q2n+gCRp8KPiwEtDsBim4Fq7p8eYvfamAy5rV7dpuLCrtiU7UmWTJC1Dzf1FrrDpNfuOnlucjZ3Ng31LIxeB4gKpeBCFmh0iyOUGplKDIz2yrFCYq6lGZUc6xdZl9IbJgZ4DyWz62DFPz40NL8NdEQS7qOHngV0TffvjFblB2fiQWrZTw5C7C4ZKV7Tf3U7YCgVJgwd4CFHmSxKCaBTc1tVj5iuidpmTfIkT5BdukhEPSUAbzYabHt9D9iL2h+LzYwBYUioztCeEKKOBKxWXux3ijgSVfCZQM8oS8ZDEEz7Ihoap5ZGDhvwyBezkDwmdS0RMBglmbQgCiHFlL/JBc2X8Cjcgomvqh+9ST7XlV2YYHFzBFGDBSTAQWJF+/8inCQpRUFECM93ikEH88rM4tesHeq1VUpyVhoETvmLX5BVEdMWoqISIsAcXM0tiLEl9v64J2SHM5rmX9SQCw8R+Onj1xvz12gRstFBpjPWoii+sxTgALJJ6ie7KNQo+bFALBKdaITKa8xcX1xWAA6DG0RpWJZGPpGyph4Bw6AxjZhPPerEP2/eNdMKhAGoTDGFyHRO4peK3lbbuD8IktnRWV2hnEuozttoJy5f4yQhZaPtLjvcmFqY8BSzs53alEKNMAXvQqMqsL2pxGuVYM8+Sjl6+++73TTz4/+egzgjR7vQTwxA6Usq4mWFzDEBehiudL1l98IKWOhZWKulk83Navb8Rpya0gN6d3AMY9U11X6UJEudq+Ysxvn54cEwNxD1YhY4KAAA+CdkfBDS3FpGylV3C6sK4AXgeG2fhhplY/aC74JqIH5BgHqDsPJc2J+57rhRuDJbrsMS5N2sWdWpVqr0Xr6E4nR4uXtJHxlFNYHbkxTiBS4FEJ7DhvFupFy2iQSTIZ3rP9ROSHbrqbkP53H+ayChACel8kYaRan1mICt0FGpKYmZSLZF0wLAKEyZkgK5EAj5yILXnOzrJSA1p6xXKCAvoc3q45FyQhQQhoELEi/5K4c4TcSzJNYSSI6AqUQcwJj5/LciUE8BhfZncwSHMW02iG0RcjOdom6BcsQiFC5pOzAcUR9pgU4BgWkgG8Ck2GTW6H+Tx2LvAJEu4xRneN+ZZrNkJ0kX0zuuWgGKEO+ckC2FjyDM8thC/0whsI6VV+chhou2aYtYZBeEJ4hoVE/A9snOisxJ1OZ9zpiQIp2IJeQ0DmCmfZgQUEL/ha6tVWQ4/m7Tl5n2PT6tyugBo8UzihvS1xjN+RcZywxkhCG4pzG3TQVpTHg9Ays8Ktpc/TkB44UNnZGcdKaQTPzeoyTwsudCATNUNPspwNoHKa/RdIBmxltaHpWdRm/DAsa7e5cVBbnbhPk/E3nvAcW7Msd2b9mRtsQfFZ9sUyzqFQXBdwJSkaGABQpeukeXikO0MSbKx3DNpPQjnpzoq5YU7oPna74UyJ/DSjCNtrNfXSZxD+xSgUGdmK8FwmY4GztNeo2NmqzCor3vw1UXsEtynG6TmD5jGEIMBERKedNEdvZvBJCU6fFmnFDXAv9eTTJWyrofhr3jPooPUpA6MQsHyfueTOAbo/KJGcekqpVq8MD+3V/ojco6/v7+33usK2hWRXEo0znhLTB0ONF2UBDO0pKESoz8SLETewAiC7l4WUn1DOvPW/00oisrFZm+tEFQS1EFz8yWfGykyB3cjlbJFcmQPYt6LJQSdW4bC+HDa2OplJTneEmpw4kDZa5hLqb8uC6nQrb5xQkAmueopzYlfyx8W5Sb8OKdCNk4ODfVmtrTYzmIxXR2FBWXJGHGAOQHVvs/fuMXb5JwsyeCpEEnL5ZiIAJwew2JlUOyaWX11eXVxcIoX25vj5y48++95nv/aDZ89e1fsneI7zHVHE1NGiMLE4TwDOcmGNyNV5c6aaBcQCFZUd9F+WeY2zsALyJ5kF+uGAZtufRDJDhZ0WK1CnqbGnmNOSB9FUpAahJic8tRtbBz2eucVSaPOj+nSerooDaMrt8zDMiAvC8sJW0VsrZaiT95SS3cGzRLQF2nYnQAjwQEWPRNl51YqIT+wIjuJ6OKhK1ApQqw+lQJRmFLPpUO8i9ICyinlJxeCQDvMWrqiIhafohkSS0HNXoFzEGg5HRjWHxyIjB1hvIclR6IMC4cy2wBtrowH4pM5PpSZGGvvkSKsr7xOMYQpcOcPZc+P7h5Zh9lHbk5RDKrMR8XwiQKGblADnn6k2C4wqQH7J0YRONg64E+ZRUN8MXBeRKObFDJgnF1TLwxADCB0KDl6WklBAm23jwmBiHS7fFKpnfO9K9YXwt9AzHIXUmC/Qksy+EKygccFDu5DD50+5BjMIRPKB01WuDWdBEHJ9+SorCDkPHmcUR9BeOpdiEsVuyonlUBGQEy+AK9yZLnZuKXIWM4AM4YgVqy4YSKZ1LIX9dHYO/FVW2owZQIBARLzedI/qaCIKItpDD/KosEpHHimI8CdOuyq+KAAhdGtYEKwqpwz/CokPsTDXrNN7X+bshby6KkOGJGcVOAoiXaR+nCzjO/W21rpoANryMASJ/wmfi4OJdKGNO8LqB/W3L6QbjF0ZhUlJVZOGSfEquxcKE4XRhAoKBMihIOlHpGR0t7HT331kE4tblXLAFqwLBmzZ0ksgWx5gp2ePDLhwF3hjQ0yNc0jFPWyDqOn7gLtslaf9G/HZkGWZhXSmS6tsLIWycyGxkTEGlfcTzwLcMMlsVOBjys4i6RB20rj5TaFo0gjo1DJDx+j94ObiBj2/vRuo5TDUVYvrzpWCA9UZbrWP9vZHB7dy/DUBQ3fVEJuOZzcl/lMIqGbAFAWHW71WjM2p32CIxSaQNHsXuGXvgrZAvNnWrNJrU6QlhIAEOjlpSEfi5hUAmkwfWjItiQs8NmlVwvPY6ZTNhSg5NRzTqhQrgbzgPmYUyjgQ2eOiXDNHUcsZ6sLXPTl/4/razKSglK3PuchwMXDV6sec5AmQ7ctkBSwsVdKAYc3TGYUhRSvOEzJiVJTyY9PQP+22lLKRnCBe05STk2aLGg1i8J2+9IOb5WzSO9j77ONPP//ur7U7B9rmUOlSOK3IVkFDlMCj/AQNrIh0/RQDnL7tjZboTH4bBEk09VT/AO3OuHVMiswZrZEKId5nlxog1w7ZlRuNRMnoO+4d8CfUae2x8HIQVNdClZY9oQDCY7E7waPHh4KCaYtP2HuqUZNVkuydqgaIM72SVjSXZNxRVEMFG1Vx6Lfhq1zT5i0ciQ0PSBA+zhAOYhiYTOD1stl9aCtIkrAr5ZfEX+khjC9o9y0VI9RX8RIarQrJtsNPs95iW282H1qrdptyWUn2PS2FOocMuaaccMQCmCKVFp3dk8GvOPTgW1qgYJ20AnULXBAkyKmIKCpxyXxjVH3cTk28kFjSLnrtRowu6EoVwFYJv8g9zQMKQrtiBMj2uDiXIkAhOc7TNqccc2p674XawpYcdRe4DfaaagqNFbKXb9yX80AwJbYUyhDJPPQutAzzKBM0gic4FMGt3FLMBUTLyDTIATpUSFChDL4LGuf/zL8QhpCHXFE+9FEe4DfYktgG5CcEPd/a30I3i31cfZa2HpDVHRpYPSw338d0a7joQ2UI6MaS3n7qrLYO66saLkgoqwkbDSmn0DiNiaKBDcHibREvHZPLuSHa2Yw4J/JfttLoiekCO07y+EFz0PyGPoQTeGSAkL8ZIT+517vy6gMU4jKHAFg4ORrMN/SdzccWAZj41Lh/kX5swG9IfyQGtKW8KFCOPmaX0UheDZXMIGVcmkUF5vgoe+2oaZq44bPWBmFWyly3a+uuzBx2S1avUNgIxURF6V9ZoPVZha9MJXQp7dhsbRbpLacL+DOBMu4T74srggiS3MDgWPDBraForK58yxlCaFQpdxP4FpJHMnNKHR+wAaWgSLHwSOok4qP0k7QMUbphzG8YWr16VH93KJNzMLzQEXg4uh2MUBXFNzX0wCsK25w2lfYUgH53Qy/Pg1QRXz7KaBorbJ92i8QIBD+yD3yKibPQd6i2cQCYRc5r9tey4WiExZyJLCGfepvXetkLRs3kczQST+4JcZeyUOiB6NERh0kMNZEi/o3BA33ScET2Edu10pnuSz9kA3pVbAQxRWFHfCVFVihHABbZyII75USUjYw4hb9UO53e0eGRGPeD/h5uqoSG9ATu4GRYOvQp4pJbo0sU3Cuko5xbyIpqDMaDW01MxuN3F2eBTLUmZV7tTRZviVhqbR22m8cvXz7rHh6ondPZE5sPf5wHKo1peQTwhUB4XGARdE9+N4fIsdJOD3HSpOSFXAO0FlKM9NqLYAwpmBGjDMYBBEdyjKitD8tb0T5jNfWGAnHitqG8EukkdW5ty+ze63UQgse9p4Y8rX6fD6PQjh2PmczpMbd393d6O0oHoHxxUB8dKBOyr5qbfVPoDwnKtGPXtqV2GteTTq54uIn4CTlFW/jysQQoaaZEES4cSYz8DQstntgcbfR0PBcVm7hyKvqu2h2S3VTA7vBErar7y93BfZuJqEh60eSC4iETUIm84wQ4qxE2q2gjWDpQ1K61Hq11/knyvtMoc9CSU3zBlOOV3BbQzbknr0eAB6zLzhoOJoT6Gxk65cAyhqTYREmiCerkGEbhDSpH0f7gn6QNwDqfhaQGyaMtUrgMTI1WYUb3VjJ1CT7BWtDEEvFpMqyPcQ/n5qww8wud838Oj7GKXIwKZaWe4etINO4I68uZMdUCGn8xn/LGXT6yiMJ+grz5CcU0RJ7FNZ1/8qysSpyH86UoAhmrqfqx8BgiEQhjqwFOokHD38gC7kXSzJZTc/3URfcXT312nlAxMRKqTCuXluBIWpcpWweoMkHy96IfKK+SPtGo4EJcLMhUrGBCIZGJIA3tbUP4+AxiHEs/Zbw58/fI/NnMOm+8zhqt2v5nvfwveIDTwOod6/9GIQhxd8zSlTMcIkw6xhfXG6qMaCjzCd0oNivxP1BR5YQYcexFxALSLAXCXXYLcPiTY4vI0/E8zFLDSNEs/EYC+R2wwgOMUaRwGVkt9oswujxD6qYTFA4QTGH7opfoBa54nLJL2lyLt3SVnfbkbDcswODteMAeSgsqSLhWDqJJQzedeoJfCKulhgRbjAhJB+1xMbi7m6Hxt6jkIFH09/fJNNXsXRIu02zSd+c3d6NJ7MeemwD5dHSAvRgqJkNCZNUej51ps1+gQo/suEypwT4bUI5MIIwI2CnGws00cHjI4pYEkgbBy3cF2tGU8wmeT+dxeRaRXFNGfRFS3ITTMSNKixsSCj09dbb6SeOySk8gbJEaNJZrV7v91r4Mo27nqtHAjTw/QaO8PGE5yTMSn0AySyhQFO2wgRwqWFmOdxCpHDeHyMwbylk22/vt7uGeWm57FCvyX204hhY4HdUmNyYoaMPirN0pCw3K54biP0DM3l9ffXN++e76Qn08xlIiJwYtS4481KntPOu09rodQVi851wYtiym0Q0abjyNIVKGM9UAKJPA+bYazf39Y5crz6aJrrj7fvfg+uj6WplRnTtTK9XWWzwQmZ3dYW8Jpq3WeT1dSCAYDUfcOfJMqo1IH3g3nwSg9/t9moM036oATRq8+CoVNdZzzO/m9ur84v39gETwyOkibuxwf//k6OSwt8cU6NQmdIM6YnVxl0qlr3baasx1tK3HG+WhuIx5MuFcthhdDdUjeJPmKdYqG+lO/5Su09e3lE/OEr2XEaZWVTaCfOP+3uhgf9IQWHP1/kCSjN0KVQabcIMQMYGYhVg4plAtCojNQCMT2hGbHd3KPIGSDKCdEwxWidZJjpjwUBHmMSobh5UiVjCxUOAgcKxMsAMR9DdMxshx8UF5YoyH2BZ/gxAuKOTadgWfNgPmSociVIZOzqrVqKWzYEuLQZ9sVmJiIWZuNkyGg1I5DEbZDOOfjG52Dk+UlJiJHU2zjH1288Bc+4GGudzcMgkY7k2o/+bXNZ5ZLvWMzSPySQhGQT//QrWExGganOAf96LTCMGGCVkwD4xjF37jZLM+Mp3x1xOftZBsJT0KW5Jbv81ppnkHfa1EChg4WVfEbYGwSkaYomwYJnDVx7UN4TeJlJazlSdgApiItTmpTCH4Kz5SoBW45sFlEUaylg98LywR3Cy5PIUKwryzofL5ayHZq1S2MIeSphCsQP3DkAIEg8EQf510R4PRP3aDHMs8E+RJAFEj8AzmLLFDAlJ21spYJpQIUnm4Kdgk2UalpDa9R1VtoJOQiAVhBeIksAdRagkINL1EIZZHBAHgF76iYowgS2UhgrQWaA4mAKbmgQ+Hyhd8yY3QAhY8cMnL90onb57ABgaQvfSTA5JAcoXWhqw6Molur8/evLu9upB8SrK+vXbY2GZjpnUYuYE5JYjUIWaxYcLYsEYADS+J1K8GXormpKnUOn0cNU20E3YLBhnBeTE/1CfVI1gtIgA6nwnGp0pEm0Bw3B9YZz0RafKI7GhqFsTjFPJFdvWpqg/jqQITyg9pqcqRLulursgRCxCLjqsgBQ1gofonOy2eoQGCltxE4UwduTEXU3+qgo8HpKk1lZwl2+vySUGeHNp8W2aUYyz5qtQ066lpRhbeZ0PAOmRTozaAGQKToxeCH0Dl7ESE8okhCk94qoAlwpqk5odHMBaRCJssEG41MtHm/oGf/U5H+NQuE4kwlxgcCgkoAfCElswKpLLHAVB+kfV6hzvf324Hbzo5OHlxfHt5dnN5fner9c8Qt488QVLVRXK5UojvWmQXgENf/NBOBilE4vD3bKk+gY1rtwYBcJvU3662alXlptvpGs18ojkaDuDaMbmBqY9TaBFA6wE9kOc7GHb6arEqtTRbrsYYjLSy2czB4Yze29trqy7S6cAFHpW24hFqJXf3afeMxtAirDj+32gAd4P7y+vbb99evH93NeQbEHoWEGsby3LUOKBtHB8e3DQVBLx7k3Zt6BKMjN0kJC70oqB7CJn1eU3yQrXYUx0qwR7OvxeJxOSRC+msYN67ynSwSyPnFZEnso5ltzCkZVww8je0P46BwD8kMpTCZuPE2WXvXWZbygPxWFcFicppzZ32y+D5rOxeIX9qQzYbq5aCSMwmjhZyYhArjWyCIOQ1YueJ7ir4YIgM4Gl+ghKhWSRk97ntw+PyrM3/JhnJIZcVaOSLgqPBI5jkmfm8IBp2BocN6QsfelmM8B4S/kzaCMODsnieqE30ym0SNsGKLhpqhbY5T9ApHnlLSaMA8XkLteUVS9iZjnbGcwzADHLYESnjcfOyyHtuNDDMmyzD4q/JF7HRMTYPfv4N2wottnY3FqUHVwafLNBPPs+fD/9aRHasAAmtX6swUbouQxVvI7ajzQGrawjsmUPIazYUwLPg/PqxENBzYIQX+g3tzkMsnHpuEMdIsaAUt6g1Uf9lr7LVSrRryZMQ0OAozXQrS96Jwi7WDpHNORB2wKvi50HKVNMdS6Q42xbZjMSX3TQ+vlDfbnUdl8c0zsStZpRO+caZWDwF2Y1ipvDW1OMseIxR0+QxGJQ3FMlIMBM0ws48gRWdFDe4RSm++fbbr766ubhAmfBuoinpjU8xPl2pDNyaWbNZpL+lFP2UFeAABRNSbYQgnVuiUKwmcyE+VBMYlCPjeVbMoBULOX2I3VClX9U3m95AOZAR8jHViVZB/1BQ9jU4bKr2xpli8xI4k972NlsMPfoQCb8GneaD2d3yank3v78bi03fl6xPcmMAAQAASURBVAmQX9Uk17JUxLOAuXiVyYxOIkbcHpczVQ5pHpAjC/gke/AKlHNgvQ8Zz9nIdzkWOQyZDPJbtJASdlpJ1VIIhObR1A1hwpl0QE/dE6nuWncEQkZBVSL7YGbV7Xqv0TndO8TR7prT+/mcfI7QSqkU3hMby/E+248lk4HW8iZ0YeLrg0gYjCOu+kEsrUXdywPDCszBhkY3xpJEPoVPVkRx9tpN4UrDXhtF5oKhGDoVnDf3kxESyYZG9TLHfrva76gUylDPjsUKxRLPhaPJQnzIqdHa6TuhSTYDCeeA4YgHWBLykJIYC00UQwkx8jmdtiGStVTSToU4Cq/tnDxIfZtNR/d4nZjV5jktolPvtJjtiP/KQ5/sPxv3JlqGqjSHFeKm+oDeXklBu7y5G55fYAA3HEqiEay9ZP7yLs92x9u3s2FrcNt7XznuTNf3Qtjqum3xw9tYh9WBZhwQvZPDwchgc3LgYCWNc3POY+RFWjchrO6w/w4hMVCZX2ca/la25okNZ95w7FN4juAgAgSyhEQGPSKBbsjNZj/89ZRijfHyAx0qFMlNOXzlsvLHO+SGzUd/waQaqTNceoNAm+CdgXL2TZkSbd9tX+BfkDcj56pcl0sQEQt0yq0/Jtci9MI+A2yuDO/LxMr15UazKWPlSUHbzO1XP3m4Tc46Y5aLfFDGyrWbXwCOMcSgzjgcJ8Y4mSR3yjd058xdRFhOiVsgYiPXEn3wNB5tD2e7k9nWRI0H2wGshK/o96XMMjIaOh4dJ0RATgoKls5kqX9nhXxbnuhEmlLob3YZBXYyjJWFFuiWdWShG2gbLSb3BPIi0FHaQ5xACgtDkQrTiyAUQvyBJRRFKtCKDyBnuuywQ0ZItPux+8dIxbkWuR5pC8t1JbaownyK7iRpQLEUvq9S+CF9cgQ76UFFJuVApgxRa4wKWeNhjiySbvLCnCkN9Z2VRB/OAVAl0UZpcK2s4MaTdiVKnxM8KbZmlTioQtHL1gXB8gtvOQea4h30xmbMVzKROk4TL0uJCB1ulhh/RnoJn8Pb+zsx2RowzdSh2W221GXv7yoU0+o1W23kJJE1QaAQMWeQeSd111L+lxKG2xMcWW2X6ohR1u94jKUkxUKv7p+pQw9Km6PFBiXYKEI08y2hsqC2piMzsrlvqipMskgVrmW3pQ/A545qNkgT6wDTnVlkcY6/DVspDz9YjHaHNxe3Z4LZkxJM0E8JY+VjukgNqjtmcnkQWTiakVeVeFgKE0Q/hXdlVzEsywHA4D08yUmy3+i9ZWXPvY7qgZDFdu4H5YXvcSXlClWZETT1Gcx9V2fqDVPBwMnLNdVRgA3MjFP4Jc6/roiUEmuiYeaLmbTmyfng/quz66vhiPgaf3pH1KVOvHXovRQfvzMWvLrTaNQ6OtUovSATJfqAuQFA0NIT476KLJEfCEtRIlY3O+ueCiUPTN9yuqbywutq5CVzu8Zdulrd3Y9jJdve7bUbz/d7JxLrlGM72Ksrt8BaPpFzF1+QHqaY2cN29bHSmo/GHeYX7VXS1Fw46PXVxfnZhRS/GeMgDKXcAZjW4LZURbqduxwOjdp4mIo7aEaKAFBdfsRPdbt0nT7d9GHSnw/Gs6NJXY4D82aFLinAbCLq4EbUwe2MfXJwp6VEkdbTTiVeOAImy9XTaM1sefU0H+l5s3oVz17CJVGc7GSOQnbR+USgbHjh6FRDpze+u/BveJbow4SXoVLZcnTNxQWcee9VMAWVjfqfM18+YF+CCcEZUIc+eWIQyH8pdVIeGlwqk9lsVAiSH18Gt8I98g8ylOqSVKOVPEAO6mKYyuPZsCI+eOWyVAnLv6F4/vFALzKcb81ywwNiCaQlYM+Ra0IWNwvKlRBk865oABkgw2WdZaDMP0NFawK38mNU33kDgOGaQBWxj3NSsTsgy4LES0QTAEd/nA5qYT6JSB7KtVCINx2AVdyiWE4Hu6PB7g3qr9Z/Hi7vmeUjVJjr4KEiYJQFKbfbDbsTZiYu3mlz9Iu2odaCimW4AhIA47I7lo5ql6mWmYcIbgCUFRXo+Mc2kcb8hsqjHkAUqPr+w1XuDdXOt9mU/BaIudIarTTSbrSabEmeENaIYMR7Ec2MrT8MBh0PD0OcXQlJdXDkJ0CnH2dbs+nucLYzxgAMVaAK9xQ/103B7heHcwxrtRS44gCwg1nk03xnRloLtzUJBvusPVbcbHrBgbKQUAWL9DGMIkm7nP6hMp9jItdlt7K0eSFegbuCQww7XKQPqiQz0cY2u7Pbl/9L02819/oHTLmixBviwNkimgwojADYE0dXMRwlRS0pYLEQcUfEUmC8FCYYjEdXd1fvz8/fXVxc3FyTDtEDECR8WiEshDZYdzS9MIUouge9en+9PKEZaXcrwMrqMRpCj0twVB6bFDdKGLbnObz6SOKIVIdFwpS4S8bAuj24FOVa2My2lCMtaTqsyrzvOm8sJiwW3Ds2xeVcSzl62fvAYeNx9A9YBt2hE1A6pOR9SqjCCOWDaAYFDbhqZ2oph6QxZ+ilrPRZ62Bvb384CKsulrVoLRyiEqrMPuYFljFVDsNoKoJl2fg/TphhiNc3F2dOksmMl9qlAXk9M3xMc116r6eInCgMgHSsFFusTnK04FgMY9G1C6kD0FAv/9igoncFZ3OUzV/22CMOXlNvizGP8hYXK6LMqmc7us3a86Pei5O9g+NDfoOEGs9mlUWKas9E/SoQ/bS79/jAu9AN6Z0a2OQW89H17eWbN6/PlfiWIYKAcgpCV5u9XLMegkOYNAeAaJ6ZbkCpykRKQBLr86qMBeb2/WWL+Uyd19trWtxQmJpqeGicIAOVQ26vxqMRH/CTacr9kpriqD0pmxPfrkwJRbEeK8sEVKiwvFJKWigVFMxRL6c+1C/wKZQiJCZHOtQsWjxvEaqCrCaoDrnKDoSIoW4OJyRDCB1gdSjZavWiitZP295Jkmqom4UW4TF/gzjBp9BL45cBPdWvIQxuVDe5wpeFdOSFyWSe5d64nwl/Yem+icBAw7CPy5TVZM8nTxsoRyDEsQySKzNAjnN2vQyGfrkfNaLUpFhe7Co+CKnIXb/6QcIKhoduhB5kZv7PeP4UUORF7ouIje6w//C7WHWsZ7KTTIOsayOKyzeiVMyfImi37cQ8+VOhUGqXy95i7lcjU+ZzZP/R02j8dDfeHqJJ5A9eNS3hXe+IJcRFjDUnc8K3hWAiDamV6zz6U8AePSQkgT4d8b9wYivM/P3h9AT6sp6y7PJxgXNAFcKTiM94fRJTURgADAkT8oB8GGF/E8kRHPJbtmMDOvQ2pN8JthOIg3Pm67zaPNzlgXSmFaMNfs7jFV0hdIXXlCw229IoRmFL+TFgXphQyTZIdCzNL2zDKhnSgh6elbEgD06awt3aihI+nmQSzlQGTR41QSe4R38ylQRThVFtuNHSCkWmYT9M/GHLaK4jr0kfA0GlSqOii0v4Qr3NOZGTKkOzwYKPWn4tVXX6KY9fa9XI1ft74raZW12UeYEt3HQ34x4FBC1J5CiDUeK5lYHmT352e3TcPTju9V+3OufXgtuvOQjhsTuW1SdibQTqh5RlaTIHNTSM6jLysAeLIhfhDQtsDJM1yZFxSJChfDbKBjiwN6AgyZvD4PiYgdyopsDOJCCVPUH3rwoNi7FhOGe+koQpJ0gRAZY12EaXZv52oPA8UI6BBobHZw70oBcJEUQiPmHFZsPhkAOSEth8H7S21cP9VD3ja5Gv1r/X6/pWP4VnKZHziO7LbOXNtZo4ySicISbYFecG/AE+oYe1ej+mD/1YGH0HGNRQYQYNmh/0Ta71GMGXu/PhbFS5VVfWZKULJ7up03l+8mzv6AS3aYEXD2rK9XtK0VBNP+gS0hjbGLMMx/3d/eDqbnJ7pygQY7rYSpk46cy2mGmMoHciDziBUXVXmp41aMFFnREIr3wsaBk4vJWrfbIYUvkeVwcHozYJlWVtoanw7Y1uAFdUlzERgzAWWRdJUM9QxSFejviMIoqaGO4K2t7aKSCgOcLxfrcF8CqPY9Qc1d++e81bQA10ikkTQDIdrx+UAtQPdq1wY9zh8B3pJwbZEyfSISHuoIiVnb3D9ncO10fD5SRcjygWWlC0VptdRH66vwMGd4IyhTYVssBaQixiDsppzpDiOkmsDmqh/lw2lLBHjUZXyfdxohy0IneiQ1mUIxr65C9Lhvc5xP5HlSMDOnghTfnMAwqN9YKIlk/y1h0Qzl/n1XI8GtWAfKbom9Lnx+eMKzl1pp/5+yIEb0N//M0g5cEhZRGZoTJylsgBy8n/7sxNeZHJ+D8flOfaN/8aMON++CwLAIpYp+BvAJol+x/ksskxYLuPzM5WXiJznCEGn1W6hFs4ixY7uycrqDtX9KqiFpDf6STGn/FkazDbUR90ATeEXdomSV7hVmHIdrnY6AktFO+kF8DCADiGl52pjqXrbXkbJegeALOaQCIL3IDBuyylgMRnocthnPzGiT31u46LIvE5YZrofmxBbDXZ03iDbGJ0ab/Fxuq1oQpRKOOil6E6sDJEIxQ45oQ8JTPxQAcB0iPe24pLBs2QcdK7kKf5Mu3NKa2Q1u7ETu3I0D6rj2JLVFQ1ADjabMPlmHgMcLt6sdYyULKxwB6cXbPDCttaZ5V61LbBfpP9Ckc31ZABiQUZpsCBxMypt7usEHVpmv5/3HG4OR6dflzbVELoVFRgKaoxRAnV5YhZb7MAk4HIdHR+snASa9GG8j8s0LoFBY0Yyl1g4cWaxOKO9qkocHxwqC3k6cHh6cHJ+6sLNYDPLq/RRdHdsEge75hqBDh+OjrsCNZpHD7TS5Lr85AUGDodss4JOB4MRHAOmXpUCRN1qDwsSoSXMFJjPX5sROSlePvYcmRgPSSQpHSSy+axoVlnCJMKOyvYaatiRi4UKY2rXZt9gH30mxiL4/9JbvsqDS1L8wMo4H1mrGEHQiCsNajFV4EnndKSMMiT/T2ebibv62qdSz37RoBDCEP01MkuC07C0aqiVI88EMGdUrHkFTRr1YNO98URew/9l/MoFhBdcx4GI8g/mk3PJvfXgzHn8EdHmkS+evny4+PTEx0lVcNjRvE575Gdt8HaMPgri2qi/Zo2PO/PbpWCGN8j11w9AnoiXiTmR4iuvgpsqRYeid9BKBOkbACaYmm7yzTSlGXLD7EWDzacYsYLQ3ba6cITYYIFSPCTyl9hl0lEEwSloB16YWPYFWMlJC+mwFnRqZ0K5kpHyXmUIby1dS9+tz+zH0e9NrH7x19//cs3Z6h1StGxzlSbpH7tZ8yODbVogDliObS22ks7FzrJyPzQahx89uK7tatGJNRwxCL+xiwBMCGgISDOduhhiELoBuVPT+GwLS7BHDwfhlXg8Wm6Nl/sTJeVmTSfR6mnkiqf1OpQriAIZ4TYHDLUBnsMRxwLnQnlNbeCjKGREcfhD4aUZ0OaQlv8m4/978c/hdpCSQwjchL+4JwgHKhtHoIEgpmPMYAyRo5cKE+5NVPwCn5mcOvIv8Bj2CzLUws7zDXmVQbIp+XRudAdRewxej77q3kZL4Ohb+73qWmEGphXDhGZJO47IHYYAuMAN7XDnZod0bSlSPXD0/xh62GWv4sYviEOi2Dym5RDZwLCyW0mExBLsYltOArtIXXKSaPkcexE8IiJO5D04aUOi8LKCgPI9AocsoI8vkAgu1KWZ/EBR1kfip+nYABOWKh8til4FBxy3tGLDxpAeECIabkstLUsHCyNhpRv1hn0CUFwqU0JEuYq74xm5AAyM47EJ5KNDjevLIQaF9BZB2kVm1DWnJzCyKfidgkdE7ZpXPw1d8dWY/SMErl5ut6BhNqD0Fd5WMWF5Jw2gxBqonhtCv5u8Eo71SaSZ/U29JH1SFU4Bgh4hdOmvgZevWABDQtPFKPC0Qo5qKNmvlsiBoV9ig/ktCOLHx0fHanDsj7c2T5glhXjB3qla5O8NO7PEMuIGKKd1i0kWaUuFTrV/+3WWwe9vtqiz49OP3726t355Z08gbt7ReDv1JBQtEuKD8zlmeChaHX29o+eqz96dKySPNZf6H+8i737vuzY9Y0yeylJn4kpUIynLYRTkQXtH69OAopYk5D++FLEbzR2eRN1PCEzBi6Rwy0054cbM0mZsLhsGJ4GE9wbxp1yEpG+4vNgiLWtRbrLuWEkSwX6CLEyBqAaJuq2FIM72tHDpK829X6cLg2Uc709mAznq8TGJ4pKtfAE7QbiyGOFqCu5utaYolRUJhI0dsQhIgC0Se/SnU3W32qtovbVeKif1vlseHk/sm17zern3/nsBz/44fdXv/5y/dhbHgbhrC4lZgUJrFZ0vKksA7WVL9+9fnP++q2S3PSBJGXj58IsmqplBAgMVeJvuvwrIfQOGDWOyD7W9xcQqHWMMAn7gom0y/XWSHlVjS5ub5O8ZX50WFukBghTV+DK9Bvhvqi2DJjxo+Y8Jq2LNBIm7anxtUBpF2PgO0t1AS/vB8+G9x8fHR5qFtzryBcfzihrLcYcT0HIxfvqoGLc7BISkWdFOEKj8wBji9hePr48+vx3vv83vrn9eZSEnCZgQXydB2fW6Y3ZeotR1ZnKsTeKRRWxOhkBkRvM19H34cP24kFyXmVC8J9t36VnM+GLOML4U6izZQUd3BDUQiJMKAjmWImUzeo2BDMU1v95Wv4PJ9hQ2M2HbvR2s4EQzBjUVD1BUTczRBmDZLmmAIzMCAa00lCefLvhJzmxEBdl2TwDgd4MCVxRcUObSIdccNmN4h7wmZsMnbNTCKsputSi/DWO7wGE7BEOkhl4G8KUUWxm+cwEUcpa9E3SbTaigMN3zHdbfADYY1Qr7et4ayyKRJwSbxt3mEHdiH0wU4R02AnkLhscNNH7BQ1lIsheFnodVu+CuJf5TuVzeJktMNMN2ytLMt3MBCAy2bzJufUfKgN9kP5Qf1og6h/GXD6MicwNG3CWCwpXMMIHOG3GKkY16faZADaAOjsTvLgxD2YHQmn5XImI6MpDhfQUMcSzBA7vPqRxu3Km4UWsVApiiHUTmclkZk9V07Op8ZLgJRuXL/dkYqEI3o5fMSqnsbBIc1E/gZJmCmA0S9cwLgcPses5ep5SLG+eo5hRC7Giii3nerguVk07AwVijosXFuUPxrLNcQOQ2gnnMocexeG8uxbuj4RcD25upbx+/PFHBFncGN8pTMSJ5xFoJUql18M3SlwqBd1OPlEL+ESTGOlYKQOVBGHVI6cvhoOPnt3dEWQJpVdXWsRwEaOoAsb8MGz3+719feS7Pc5UXlABLEZjMK7UFMxf1yeT3RE/EO/54m4y4VuePSj1hlGmiQU/ciJzOMYj+YWEV+o7ejwaid+D2yH6hF5tasOQ9O2CLXKmyo/SGMqn6bXA/KRcWWwMiLrvnYQAXtAiLRZkkvIcZ4H/U1JzxQWwWl2R69lF6Ue1g52+RNz+njBMQcD6WjqUlyLfF9qK6aObvpIOafBc8Mlffv3VYDqsNW4URLAULXZVr2a8Oug0T3qdk8N9R2u8WNzNpleTyVstNLlVZgvcuEnQh1bMpAC08WhEy7DNzq1QicxXtM1c7+Wz95evv337+vWb929Bjf+Uy6dRr+099ft7vXoKy9Ef6ZMJQWB9hC/2vnp7O8e9YK0iDNOZrD/Wp1I0bpcqo6hcOJ8esAL5YYGAoaiErFxiVSNskDQY6ZPxu70LXJqB3u6M76cLHep5nuGbswlBwjNRMxPSJP16cN69vj48+OSjjz9+eere+wnpTpu3inUJY4MlCUWFUjt0BVuDTZuDAAhcIPqMBhwCLb734re/+Pjjb/+/P7G9pkVqDd0LQY/Q6lxG7kUJ/DFSzpDfEA/yvr8ouVFDNO2PIuoSqGOyGK+rqP+IGxN9Q4njWAtJjI8Fg4EnwXvPQS2xD+ff7EJ6NoQnIgURPkyvkKIQmlCLUJdckvszqZAxDDgJCiXXKxn/oe9Gj3gGbWMq4RezX+FeeWR8ECGBXsfB5qkmthF3A588IRzXMB9k4Kw9l+Q7R6k8vEwh083NngQdPkyozLFcthEAIjsi3mGcudW/WVPol5OCy1qjCWcyAao/tobJSOgfxkabQyvJQdhUlE6aTcJC8psHIn5ZSoFMFIJQ0zAAIdpmG/N1lhcGkLuAxoB+89xMJX9AMDPewDSQM5o/BQy4ceL6U8WzBP5ni0A0iLxRbIIZeUY8lMkOMmb+z0YZ3G+WZMDCkgvwrTTsFTjsDG+CZyfhC2F2NdKVY5XJhClGaYivhFwFKqYfG5NU3t2lmE+iqrkJaHRjsAD24ZcwkKmZ8xJZdb2Zus/zkJ+oDpGLsjbBN6Kqg1nBivxETErvd6SB8itnarf2WN+aVTCOlAcOIfKh4gV1qVNKOXIsTLX8kE4rdmeqEO/o8vL117x6t1fauUzvBi+OjjTs0yJwcFth7b1Lg98HFnrE+vD0GZq9f3TUPzhaN0NETT9wMl2IT5jGZtTl2a7QLRTu51w8mI4oBLqCKxikDrBixeRwEUEdJZ1jyE7AD3Isiynny080DOYpJmoh31X6sSxXYUVuVHaTuxXUWPKK2abgv42DKcEryGM6zBsR63LYER3FqKBAmaAL0SB0rNVppgdhuyFi3a+rmL8Ak9gucUqR+sFMrDLKyqiungJCNucJLOil9fzEodVHntTOiN3Za9ADKu34fAT5jxZDXf6ErEtetZ14ieOFDZAWK1+/fSfmSvJuvUlUlnClG8FSsOaRARr1lgabtUSCtUd0KTm5iQUlBmqk/sUnn/zGb/zo8y9+ePL8ZWf/iDrGSENKjmID7CnKJqKCoSNkJ7YeQwvzEuf1GOq5w9DY6pw8e97tHenCKOSGkctaH2ORE8P/wN+7vdY7U7ClRG/uZ+6Ox3shWjjepjkOnavCOq7P5lO7qa9h0qZCE6PGA95uZ7sSDSYFHrZGrbl4te2ngXAxShDEUKCvoyw0pk8dD5kAzylce31BV9QWcv/58eHV4AL5xnEZAth2YveULwM7/GsJ/uRxebNe5MCpEaySxA+/+IJlF1Wk3iRmCw9JdXLh0J5LRkM6kKpyjkK7Ai3kzfucujh4HRrH1MElRqWql9RGlgoNvhdPM8aK0IdCTtCCEDo//s1fw3hGnJPeUTc/kCHUw8DwvxBNFO1XxpyCqbnWhVlRyHtMkAaKh8l9CE2M1BkMIqdWAaVWaHlcZpsrQ6wRxDKKVwlOyJQKSTI742aBnh7SkJ98FcrvN2u3ZgTVcxFuRBzCm6bRckEOiK/yIg/I9EEv3BLti1PBX88O/J3y3FueHDhGtMLylM2Q9pf1cVrypyQkyqkh74NRNBUKaPlNoqrJu99DNpOPjmHsAK9o7E6zlVI9YEBmYm1Ii6tNIwhU1rYBo5lkPwtIP0wpi+dnTlWftHBh6I+dpzDRHIeQzg8QcZ+3bMDwMgvKFBKFCUTmHEhlU7JoIR3YlbfuJjOsRCgBVwwZQuMYRJAPfCsCAWgUYBJG5pXwAKdARDLfOBOZbmj6KIjsTlH3oFCwyikTMhTEW23PwkwgrY2Srh5e0MmKt5hN7DZHgikpfwNRlRKy05tfuY2JocLtymR3mlu96qwzPX+8qdyoDazSDzd7rVHvaS9ZSWfnnPYRm7QKAKPzm7vzqzRxvJ/cq/RZ4XU+Om3VhCzWVOm6ub/92Tff0g+sbu+g/+zZ8+enpx9//MmrjyZHcff2ChSowZgYHyFaHZEXTiDhCFVCP6d8sjyNTWlAH5VaEiGqW9hHq8NjyrDPrDMagmDcQI42y8VcCMpoJEYQk2KDdn34IHpEvVkh6yQ8BhmqIsNNZC08svLUYCubPrJmMyYT6G06PqnGLzlOg93sv7nG8S0TqdXvtTvN5kG3c9DrpMiySPIVQ9NsSBKdSkdUHMCRcWAILlAzpBbdDzKkOM3D9e3dQbd/3Nnv86Qm6FNvZMIxb3SdYkA4oDIXbAm6RK+JIv5Uo0BIvJNQhYhjb0wwfRmDsWFhm+l7xQih+yLemTO80oho9+XB8W98/wff//UffvzqO0cnp6m4raoKs0CF4f0xlg84LXeg2Xns7T3290d7++P7+5tmi9sBL8BKdZU5OXnx4tnHR8cv7V9VMQUuDh5mQVRjLt3zwVDT5htNnJX+ECKUmqGKe6631JagpPDgCL5aLnDpnJzVDFuD+A5zsI9aIuypW6/vaxctOW93V5IzYYXxS80gGwCTe436M71sWhLKHLSnmQAfcJ4+nF3fHN/f7PUOTO4XbyWhh74bmKqFIxcHTKAW+uPEFuEgC7cDOgE/rfcO9n7w2RGas1JYLD5sbKnBYFzEzJC7hPElOTt1cUNZIqI5wf4WwouOcALkcpMq+gEKFTYSn0FIkOW6yzg+L8Qh9C+SRqGQLsq+cmtncHJeyEjwo4zvSr++C2nIhXmTF+XzEJqQKaJKxOZwpZhGIgATEiNUYgDSSmlVSZSFt+6lpsSiCRQh8oXzuM1PuIhx7QakMYyBzReVLrTIHEMi/ZcvzMT7ojn4MJNxetwX72hWZiDDZMmFOHuaZeYRudbX5cEhnyaTYQ25mQrjDhKmSM7G5pOSRMmgNs1t5d4oAeX0ZAsyhucWsu7bWGoMXZ5r/ZlRtttHyCxGko/yPJMrt+SRZpKZZp+s2sz+6ifzQf0RfRw0yhNrkhoSCf7JirIPwFDmDUDuzTYESTeD5JPN3PxF8SOwxDJlOqxPpgBQ8cqQMI1vmwROJM+g/AbmBZ6oW6Kg0w3NX2EFub+521+ntJxIf6WwN6uygEJfgDIGT2ROqTtrUz5rw8VcRzuE3KSUYkkT5JWIRuYlwE94pn03gay3CAqBWGJSt7vT6vrN5Jdv/2xYmRgsznmuR9KYFpOyvRSOmVzf388Hw+nNaDIcD4W4cOXyR8n4Pz15eXryXATQzc3lu/OLtxdnX75/CzF3L2q9d+9ePnt5pXrE6O7VKV5wqm8fmbp0g18QP2cKqz8SW2QXtR0ntJFnIPSiXpNFS8Q2ceeFLM9Hy05DbVdknsVl+TQj8jt1zP2KxjNG6aXxXjbrcCCViNKAYDktNgCGQVp0OXWdItLkpEccwwFZfHDdJO9sa0VE0Uk9UyXLfGbTYrnQ4zh1SVCMXdpQto6eCTujnnIwz3mTNYk0v4SaFtukrZaWwu4dbA4aQhq+0avr6z3kWB5ApdqW+IH5C/QR0pScNTOJOsKQZT+To2NmL05OkeztnUlaUEYlUx65fXh02Ns/7O4ftfYO1HKQjlsbjwujioyGq3TqLaXnehwwnDC2Vt89YoCYaBNJ2pTM8SRc52J1cpr1bqfRU7at3rgfjZKopkMTftLq7XUOTg9Pjw9O292DEOKw0sX96A7zEK47vLh+d6tn5W2UrPh3U0TB5yz85cDFRZLIW3K1WoiPchzxTJZ6PcUR6nRvWlQf2g0WuMTzCQ6+bz/cTB+EbjnLR53eRwdHJz2JBw0QQfvPB83hYnI7WJxf33Xb+NOhWvFxhsUYqsZLSH7wZBN64bNNuHnYgPIZNVvFlnp69NFhp/vuzUxydQ6zu1F0ByeyWWx0EV4LoXHE4VxomdNdRs8JzFPYm0JWHI8kCukWIJQs9ME+pbycTRTI5S7/OcOhdUYwtQ9UIsPlDOZn87c8PlgadR2tCNF0b9aSf3xWLoYQGENIm1mFf1hRjBWxrqApeZ3CpMWCEWKRwHAD2WU0LBoOyQQWhLDkf9+BWEbOA0zJPD2oLCUz85RyVSGz5oPuhF24oPiMy2syr/mYto9JJhnNEB5nIyKWloVYgkOQx2Qm8DpWmlyjsHmZG48l34lUDZTIU0LHoqoymSez3JHII3yerclrU8y08ypP99bIJhJZP4vxU+7KVa4vsyufe1/4hA/Lyv27+TzMNEDAQUslRajstY3Ih24pv54RqBZzaGwrhcV+mEqmV55VZmZfbF5G9zcPy11hJ94juxujf3EkZY/KlTBGKtx8unufrshZeAOCMXNhRfJ+OSTsL8kmqa8RX1MwhX97tVbveiZM0S6zb8RRHAUIVEJ1Ns83+QCh+CRM3oqK/arW3urAqHwFGNFpqtuTyuDru7OvzoaN8URCQvBYTZYiR8f4gJ9NNKNis3VaHXOMiB+7XmkgES+efdRuH8hVen1x/nMm5ctzJBh3ghls8dcCdAbXd7dnt598qgWVYBjUAJJI1xdl7oC2FKdkF398qLMJ1FVGkuha2Wv2tw8PI7aKiOKCiIVC2aEBm7OWAyvRYTdcq0zc6UGiBOn9aHh+fSmM6H5wJ2WZ6Z+MRqHKybGfG/Uy+BdUETomklR/YEWOA19iHRvXast9w+kDziaQg/Unemfarz6pYalpDnkKQBRTjn+UpB+7esrkiFynowBRnmJr0T6P8WASQYwysezIh7ofjt9fXHCr0BL3Wl3bz4BB5oZaBHqchtgDcexlkNvzv//9X5/dTwTGkllpC9rfSv49OTg63qOF7Knp5swLmm7W+NJ1Q2zXRiPkgN4xUSn/7nrKSUJ8bjYcJ3gmLdZSeYAZWEweW59P7leLsSbVWBr/RlLAladCSSBFmZZabExNvO0JcgI3sdv1ur5cmm02r+4qtdun7bFFRsgJrsTkDQARuMt5BITkfPBJ6V5dkWCAj2LtEnOJLji7yTZQ53SDVJtDybZmk8vGydlvNo87nVd7++1ag9R9V1VhbWt6z8q0eH12pYJQSsl2WzeDO/K3pJJosqFnZJ0QAFOy7SF/oUGhRwiwc3LQff6wFHq10Hg6RzyH1IFR3ANTci3PiYuXVIZYMLDMCLoZ1UL8Vwa2q/bVAmMuEP5Uo6QnLd/wNs8cSKAYQJye7kFzDZlbC20wUF7Bwg8ffXhPfwqBCF0qrCLTNju4UI5vuSd006/bwxWMWb7feK9CI6IEBHE2kw325TnQ0V94EmLkvtxk2JCErD7EoRAMC83FWaVv8lW+K2v2pIySO/wgdVkACJUZEIMK6Mq3aTKV4+bKIMLmIW4oM8mjyr3IkJdgy3xpw9T5eYjrTbtjJtA8kXTmDhIaHYbnybMDwTJdYMmkMmffZFfyEN/likxsM48ALJPdPLosOY8u1/sst/jH/4W4gxjZnHnA+UiLIDGQ3rrYuPSaKGTeWDPS6W1RsEJJCyr4k6khDWV9m2cGjkDhF9gjLmbaYR4Q1W9AXaCHkfslwYgeniI+ldFjdUxMiwKxrIqUbG61YXb5NYfI/r4owiyrzOxxPXnYnnp6mhJTaM0lKyPp8S1KQ4mdMIuANzwCTMlCZkviemur397dY2xDgqRrJjNfguHuyfa6WZvtNx+2ZcPKLyKZo4qCamgzFsExQ9ILArDDE0EsSGHu3erJs2edfo//8N3VxS/evn13dX2HKIolJTW6U2/Z0eq1BhwzleNu3r9/LZDUZDycpM1aY7h+q3ty/Oz08Eg3qkT6i31n9U4TdwIWk6uadojVMEF4y/lwpOroIPoHDTJLjkNTVoH0ocFoJL9MkIoLKS+64qq/LIeZfJ3NQ7R3ZEinbJontOo7nNPif7iF0ahx+kPqsJWmBiI87PpGRcJFiBQ84BNB8Yvtu3tVGMMXnFTaie/cC0WROXYI1A72h36SpBO5owKH0ERlY5QTqNAV7qbjxt0NbwWLu8B8PC0dtzjEU9wmqUMbigB3PaTy8cefrY+pJHjLg6K63W69f3TQ6x12iMbtHj0CFJ/qjcPF8nQy+v764ej0CHtkr1F15+L8zWo26na79NGQoeqO5FpEH/IVwxNQbLGbiZ+9u7m8v79N0Y5Ya1OqSOVsgViT2+vp3vHDwf5y2dcZjkbGViW281hlh9VyOBQvSnmqz7QUQ/XZziRUMMCpJVfOfzq8xKArHjZMQFoBYNmI4n7YbSWQYEvA/PRpu11tusAJUT9PHXRY21Mlmt9lp7FX7TKsPTSeMLntnTQFW19cH+93n5083z/ofXt+nVPGdhxp3TZFyw51CImC84gpwoAoxLRHeTtsH62Xjcvzd6rTMaGKRJiISI8q6MA4WLTA0AzMN3IWOp5CLt5lQMQxZ54tiQ5KjHqUYqdXCR8Gqlxy8RHhbflNkwRDCa6AqxFpZbJEJAzlDCHJkSiH37/5AKVzsb+hHJlq/nFondpCzsjdIX/5OBpAqGN4M15MAc0IG/riU0QDWSm0MgOXO0IOgKI4CTKJcrXP3EaityLgiq4Tula4C4SyisIIQmQ3TygiTAgc7IQ15VXmWCbtvXEjdKOUAGjvM1+fugRC+ZMF5/qcmg0FLKvDORoPupoKA8UPtHGVHl8eWqTuqHQ4gVvBP9wrA3l6WXEGN4ZhTZsgmo/9/Ap6BVzeFJi7MA/PJH8FgEw8uJkJJmgqDIDSzjrPBBS/ax4GFBmyrANsAdcGx4YTXhu026zc5pIQ/d38lFkWDuc9cLg4FDO30NLcm4Afw27KBEEw3iNxBMS4+e5gvnsvhMxsGWRcvKu00aP8m4f6VvLpMpmEitr7OIEYXDkAZDxE2rCFnkKCAf3lVOCP7nUMYsEosGUE1xCpbOeGU2nOXEvT+RXq62PPYzF6HO9WJt3TxukAB9ypDha30jtJ+Kq9AxwSZvo0ejNDIoKFyeN8UvtFpRtFgb5+c/+zb7/8+t376/sBmZXkyAIfcubxTzT75fnqUXOwL7/5Vu9f54jkYBNK1PvWfqv78vmL25PT58+ePTs+OT452emplsS8Q0oD7JwolgPeAgbn8VwBibubMQo0mnNtxBMLi3LYAULZ8Va/s36sMz/YXeGVOt7aT9NlVWo2q3u9lsrJCcckb3Iq0zdrYuqWd8PxenUz3J6priUUYLu9q2h+LCIJOQ5BYfGnhkxEtXtUTgLcA+CcWa8j+pOwwdPeRuIk23hrCs5p9PuIx1tik3K4fDia9Ei3uEWCH2NBpcHFPfEB64r1sbJ3cip7FSHSBAUZ7B+2D06eVdsHu+mmJvgRc9xm8DkW3lKrHZyezpTqGAPMndZYV8qu3V4ks0HGfYkxggX4jpSCpto6Wji26vBIlY404rm9x8Dj7dphWqPOzG9urs65mRVeriks0YYHVCa0m7Beb+sIuXx2oo/DqrXbUOYnsaE8BMvH6cPs4upqMBhh7SDBQEgAIOuHvjtleKYMMy4RvQFk5vp0Zz1+XPaRffkmMa7ghPFRJOclZ4xSGxOm9Ly00FmvZnzrAyzgjoWqnxZrITXwEPUDQYcT7QllcCfHI+Sj0Ug/2Z4y1kD6F7XW9Obx3bcUCYSorp8mFScuHxsZKf6D/E1NIrg4HiHlpluGiwGIaSIX5gUBrVrpVLUlWT8JnNOLnM5cBH81GpNFQcCRw7DLRIvNsY0Jh4eFoSlwNYAOZQ65CGkq9M0nITc5yKEZ4OeND60o+Bb8AZK8xtnMLXarIsTBts09BncbIMC8/M0QITflkCPFYR9ZTUBkM+yI7xnkoq+FrMSwWX4zL0/Kf14U5cFYAYuZl+lm9mXgQC2v/JQvjIro+Nrgtief+sSvs5wxc1PWZiYbidhnDGq4NZ62odPhbLkMoPDgYh0LgbJkgMEDIruYN1YcOfQD0DwzgMrKsugyRHmWl1lk+ScPzirybWYGmAh7OBOvr7L+GEA0wxCdgEAwrx2zk+FtPi8UPDtXGI4LshyOllxalACQKi/zVVAyFD+zSdNgFQOLHmCvgloBK1/uguozxQC0lksgF+yP2R1kJMph3ClDk0I++LpHJMfImL5ihwg0dpOJkrKE4CuMYbue0DTR8glZtgRagVa9IsUF4DVrW+2qIrKpN1cH/KQmSTsIB4rK25JC6ZAOF3R00RfMCTejUVp01Ej6SksJbxHtwEgSxCsHOqaPbI72sY+LN+/fnN/efnP+7n46YBa3pWwjgXUhbQX+ErKYMtCKoDGyWtDKJiQ4clxX7lIZADJk0n1U/mEQYXaOBJUkOpav5IxKC7hK7OnwanB3ObyRPJi6MrHKrITlxK3Jv5piFHU8kV6TrokE+gYalUIQjA9qVfBYtCvNXr172NlrtiqKiiHWTDFa6KhNR9rW4ONRYNVOQ0EFhxwPCDInifiJ6XhUlZ6MHzk1sf2iWoLiSc1YgeswqSwwPzk7tp45CCN0eB1bExXtI3ZWBpQWBamppuYCT7gr8Dd4Vg58NAqYhCV0tRGw70johOlmKoRKDCuj+Y4oojTghYsahW0fN3ePjhoPD6/gq5I8imLqFqZS61LVPMagq5uhIv7DCXVFg4luWwwCWw/Lu5HoKXXdlfYOanX9gDRHuLtjq/JMoZzXd1e8pCWxm4VQMaBnIqTgJDeDhp6CUOXqN6Vp0FMLQjt9gnVOD/aub29Ulr5SkzlBQbDRwuwSNI5iXQiKyi/iRmV5PN6PJ/1ak9anehF6FklJxVGidHpMLKdaoq3BXXxt0oXjZ549Xl0Pn+0vejwdtSrtCJQjRQf0EYNyzBzjkFe7EpLiY6+0sNueNd9+e3d+cU1ssHmQBl7buPiCIkPFzZMQJBmk0c0l7wU/c9LEjCYGCE33LdwV0+rISK9p0RbYIeurRVOV2chEbFa8c8gV7BXVriKNBLHpcmcWChviVHbZnPz7gT6GxhQ9IF+6JDQG8pRvHZ6QfY+GiN4U4QI9intXADhBKvIdTdOSooiAgOPNv1pef6D2Po2o/4GRhIrY0RD9kFGcAlk3th0ySEhNTm4mkOEypULpQtX8F4pG4A0/ybvNNR+u8ybv7XQhdiHWuTU3lSvyeUbLqLlyAwo7hZjzIgB1EL88OLQVQSwPKbtlDN+Yof/tQWQlJ8BY5AbAdL2bM3k35hEBteszwIdPvCo7avyohvkuX7oxeb8Ji5QqgupYMFgR8/LjSnzACEYti/Ey6zLpMpvIdx7k042QjklkpmV1Lgn3EO/BY1TCy4OqmWeAjkCm6sO2BCzcr6UmaEsweVIOrYdeQv5trrcFTreEphd4WhGy+oDMxPLtjGzMUdlYxBuxm1aeerXtticylSRA4ampcF7zqdvZ7reUIVAus7D7SKZb6ZeZxDHHTVEfj3haj1hptqbD5fT+aTiNgyG1OiE+kX9TFYaRO28K2XXirIS4eH17hYBdOPXDG6EcKHrkX9jFzgy6cUrTG9JidYPlEY/T8jngZzFlx/DifjRgjlfG7JZ0rt0DrZydluxNfSUvJtx8enVxdXlz+f7+/L0opOkdsd35jUK8zaSF7LuxtdfuKY5M3kbxZzXevslETrhAwOwib7A8Z8o5CqhBoCzCeslPDe9T4kgskPDMfVp9ZS3GUj/aRMg6T+RxlQ4Wj3zldkes5K/IdTBPf5BMw5pyaOANvbdwLuv3smC6VQTdOO65TtTARtzmj3udxxS525FBmj5ZsX0jRlxFETthPus4BSXuS/4X0NAIm9N3vttimpMqua60G/gPQV63DfYZjxLFMN9b9ffGx0d6qd8qkAx0R7e3/Np3t2O7cQw8/msftIBLRECOwlaado5I7fe399eXV5e3aQmAHa+ub+/1TyH0u5FTu9LY6ewc6tPn/JEjdHRb9PY0c8PhOEuwyojIW1sTiXq9g5vu/nHv7u3llVIYy+F9TGsUwZgO7YEqumxR2iso/jmWQjBtNBbL3rFiUmlHbBuknPENMAZBj0JMQtNK7h6nzsPD/dXtVfd67+iVPjtvLi5CkRzNIhyCP5OikxlyFrEyJEI8ABrZq3bu7mp//u7r4exeUIMRSZ4hbjnMKcWXUwY10/k9mRJm6mAS1fwKFPKmlKH3BS4RxQK7pRuXEq/cGNqScAYwCtZxC89GVB3m5VZzsTUNfQEmXU3CVDy4xP8VMh+0KKSooE4QqBCWfFaIXcEbmFtIo0MfwlIIoT+IiDMQ2p4mJ8hALJKMA8VGsRnBcLknoyRINJAiaJudZfjIIIAT8MXqxYdozpab8+v7/85MQjvLZ/nHiGWiebm5sMw2txTOZYnlq80NuQZu2szCmcpbf3yZXIrCSJhnncZoxmV4e+AWOwP+uS7EOnPNBSHxhoKRuFngsRnK4OVpeVtAVCafWfzqZwOPXBZ4GCEX+sm2xtiLI9IAYkL0MVJvgFxkvDAb59w1AJvLPpiATBL1d31iOvFgD6PnmkZhpezmUdRKxxjnBeobgca/K+M3Ym1Sf9X7lKWqYqKol/2j6vMm2s2avRQJQTYnmLdV/eNt8sRol6YSCHuBASMcasCJIJQHkIhVQoj+kZ3WAaxerIpdCB1ZMaN0Ok+97i5tVYJIjoOwDPHKni7p+oHZudp9emqJztuqd+6e3r2ZnD3sTG9W98P1cE4/F6NJ9CWgIm9MGJFUMQNFqikF4utVi3xgbBAJMpiOQwfNj0JRHMQfNggYSX5Qjqhm/wgbgSzQBtLsKzaVseZh/TBRIG6upeRNo0bffZTIhb7pFSbMMME284fBkHw7vJrc3o7vx+toFE44QDCGO5Q1nuSWZvMdoSUYIje1nZCkikFwSERS3OHx8OmjeAgTkKw0XZZq6hVy5FxWc3zcEiAcT9GBvLJSmLVU01xHgW4+vljiH9CVYtO1GzkoTD+INLii7I4V4gZQ2GQcAwiQFYcuBw8t2sJd4BhQBbS9HMxmtYdHmkSmVJIZco9IAdfBtRAyD2RMiZv5PuGXdxqt3cuSEHUleY61SqIEdtJIP/sa7OUKksC7I0Nub6+3f6BdD+/I0cnYWEo28wAxfimgwYgDk2gTGJFf/XLiVrm96t/o9thqXl9e3voZmd+IT3aXmT6VMHgcoLsoJOuPWGPZSinROagAPMVNpVjF7tZ7j/v7e88E/qr1enJ9/dX7d+3Ls/PhzdWtXmAq5hM4bD7YYrmJzEUcajhIvdrfPzjeP6JyZG68NJCLEihUdmu3W68eySqooZ5Pg2G1gj1p9ruzZfnvry9hCcgjIgAOqaJfEw/tD7iHdCAl6JzyY63B/fL++v10epf8YyYQWFCuokoJpAlxEJBeMjHdlcQChj+6S+SW/G/idTmeGEXI5ZR3x5HcXgvUW9IPMMWnJy47IhuU9myzUSt1HtsCAuFpT7oi0z3CAiLQhcyZYGaZjY/osDEmAIBvMgacyTdwx9XEOmwlFKAQQk8un8YcZOzY2HJdIbWROyIVZ/1ZYlaaBxWWXx4XV1XoONZI/oqTwANMIWrKBmphfKGqQVz/5SeLyr5vhi3TK99kjuUp+ce4xtksqlDrGFnKrDK3MojFg4BJhtlYDbJbWSV3MQvwUB8BVGx3ft3smTH7bOaTeQQAZgMa1mGtnmAimYNvA+D8/QBDd+Xt5qfMOVAFrXwOLIg+f77Dw/ITEu+73FIuKtfFswF6hcqHPfg2GlThdkgzwKcv2xZj/GS9VRvx5W7d4/rE53KLbzXnium/t9UtIQP1GEblUKL+Wwsj9NbPXu5+59XuJ52n9mo18eFwaz6QXZh5PurpiELaQeCy90g/DBQ6lSoO6x5ju3PJBFxftxuVfmNn3/Qaj11JWIIL/a2SMhnk9ZIKhtFQadFOHUomc0kyPXHBhnf1/AbjVWV990giu7lfqU+gCoTWqmwzSc6xhQ4tUrjauNzIESbDmWnQ5LEu5vYzEXF0Z2RFBE4UVtsQnDInGwgvYEAitoN53ptSSTRWBXIpJnA4HV8NU+WC2/lqcC0wZjycpH+ILuBSjMjOdnZXcXBV6vXripQVMSi1GNJvjlosvFO+eVRCljyekJnSSKJ6mBkSqBPk215f3Y9vWrNmbViPuYjdKIZ0E0a3IVsS+bMGYv6SqUx8yEOFVVwaUqpKlNQyPCRm+6zJ/yH6uRVkQ4Y2i/fO5ILi0U7wv0Ch4F5eZ95pCuaDdXUp+ib6rxDTZlMDUNwDL4T9wFtR3+5hOhtqsj5Ck7VqeWB62L88774/5g3W2nLU7z0/Oq73+kLuk5yYjDhVR1M6rSZv4eBI7hZHOyOTuUW4VomatCp7gDyNS0e1e6whpnrXN9gWHX9NPLV2S0WRqaQ25TSunoa6fZUjh2wdHLLSRJQEEA00JX1cXF/IQ5M0wi/dbHf3m2wgO1RHHVl6z4d7Lz49vbvGAC7O319ent/eXGErXP8kYmpSTtVupX+w//zVi08//uI5n0etG8jR7ZazhlpDTJLrHY2fmof7nbmkkpPx6F6jecFnLFF7nZ6NC20IMhXCE9buwDg5ITqoA7zQX7C61dpdN67vVNgdCR8GjoRD4dCFiuZEIzIZgpSC9PuCIJ10mw3SsKkIV6eaLHcUsGT8cV39keRof+G3EhF0yFAEKk6s5IVaucrZZNkILQmOhUhFCfAP/M98NwcrumOMnUT4kOVCy4JaeR08g7f+Fs7hVbAn1Ny/EbTMCjcrgqsRg5Tg4ezl8GE8hdmEGUBWF/uUraNM1RiZEZoSQloeW1zfhDuL9VDzDynNq/z8d15mMqHW5SGBctZrfrnow+VhxsS4yFr5pvCsfK82o7GKz5INxK1hBWEACh9Estiwt7wodhJMOKKUfQkHLJK5K6w34AmRB4T8/fDcfOZhv2IEHyZvSoFpmV9AXz72D46KdYTu8/1q6wZ0sb78agmBJhEvoClHPTONN9DHBkPxC2z9rVmSshYagj7Ult/5/qtPf+dvHZ309ckW/mhlQ3Hpl4PB5d3kenR/rmjtACc2xPRpxMWJ8x3uHJ3uPmvG10sMafq2sdWabasrMnGk7Zt9iUHdgzFJh7zS0i1HLF9/p20n6o+N/k6rLgVoyXypvyrP8VZ7p3vQ2SOu0LGAj5Iw3nqY7qrFyxruY0j+ofZE7WFVT8fTJi2MUfFicXP9+BongIskUwyD/R2KBFekTmXPCVgwJgk9FB8TSpvCYGJk4OyJDwq4w7cDuQgAmELQ0/fFyZdryR0i14ICgMQYu548Li50FZ5Oz++vyd28r2Ry+bGjZJqSFUVypxasWeSmUHh/FV2jZ7HOhoKz+M93Z0i6jXMjIVYlhbvJVF6AvmPmaG48Fozk2WtCm4r2yKLyBk6RmG4sUwcXTbtSm3VrpPZeHK1pA1mC/BXF44pAM2neoed+DBjORADDCB1g0Ib5bi4YVzAW8HKOULwAoZAD0PSRCfvAeqTpqkVKk0APSIhiFHV9Z9Wt1DrdNEDbUmTgQbfGszNJeo/t80v1WNmnTp8ds/Ws7q+fnn/U2zvabvfxTJYY00ptabpJpUEyTtnksj0Qh6eEJcB6A34BOgkXI/x5JyzXnTFN0KtEL6k6MV4uRjy8j4+3owUjDmYmJw6lInc7ifMppvT+p1//7OLy3XF3v1GhkzSV6pDlIdeBda25fmovHg7G048UmRsMrm8v3p+9fff+7fnV+dv355hHKXm1aks5fvHi4890tv/k9EiSSA89AWcRCDuPU5xM2VFc7XC3frieBRUm46W2Yer8SR0YP/DUT5Xci1AegTrcO2QLFqLxdiIFpLAES2SlUUhjVxAzxcN7Lmp4afV5HfJAALIDqFMAEpCx5yRVFXWOChvPKsRX5qSQ0SDvRhXAKxwWJjzsxGPLZgc5TCRBI7IcVsqebDdhJUBvzrHHOCNwJWiQiA4Sg9kGP3LK/ZcBQj1Dm3NpBIcyTR+bS74wXLRFx4y8H+8leTbmqTggI7H6PJ9sPkTvSZ1Gh5sGtOBC6WLnysUuD9DUUfHLdoCm+sKUNj9Am+MGnllhudNcQ5Lz10dlWaGVxiljZzjLJcgYyh9fOLI5gZvfwDnje7SgkyBkCGpZTqE2oh8o+GnzBWZcKmSTmAoMnvW6L0pLZlTWkkdupvVvllaelo+zwnJtZp4byr/WZySbSAPYZf/FCUoFiM14RWNzbRpOlS0wO9Q/TAL/BGJGB5CUrGDM8db9rHn/1/+dH/y7/5N/uL/3MN5ZCLkU/Lj/eFprP5MnI6YxAZiV7S9/fPaf/F//yz/75/8yCCX9k8/3sYEmD+e3glkMzEMb4WBru03lDmtBimxZ8MRs0MQ61121iQ2ofctU0an2etV+m2rKNaC6ElOOiL1as7XT69c7ahUCLUNkeuythsRQthRF9xiR06chw6r2pbckE0KHtZcFfyRWZzWJ/YTl1zojpAGY3Qm4FtxwyaIns5I+9HQjRbfRRPloKKVDExMHIsJUFhkL8L3LxgTyMLHgBoIZ5AxqZmcIu9YmEXzB/Dp/vBdrORyg4dkdblVkHY0lk8VYJJ2tuOtQU185oBiU0gPbO+PKFEc0ig/HLEkzFqT59UD/r+Fg9qhIJVU+Yotpod8M6wV7iXNz0TCcn/Jq1T0iCtnPGJZC4IXuO/gs5XB2V/1a8EqsrRBRVfZiAUYTo+xYdLhizmd+nMGsNv+X5WIMOa7WGcaEDcB13A071d68WutXawfNhqrPTQRI/c3V011l925rNkG7m71Djtv76WpXh6yd2uV0cn55s3V5pc5zr1q/eL9/9/LF5H7gvJ6sttqrtRpm3RgpG55TopSYwJnIAv1siVfsOLioOcaxjtuo7zSestFry3OjluiNSF2VoZVaUyd0yvDF+LXmGkpb5/bXW/09+orUvT5t63Jw/+7y26/Ovz47P5c+zooVBsFv3pPGK4q3wYrfXHNIrASbzvcORwcHHx8enx2dMuB/c/jNl2++1QViupwcCs5/fnz64uT4+eHx4V5rt4swsOo8PNbZpjigRMhCst1qZ6RIUVEGVaNIrb/RdDia8zec397NuVvJAcmmg3GhRqG0OftwMCYOx1U91SUhY80ZLpyMc4F070J7A/1gGkbt5nJX7kHQHRwOfs5bHVlDXInu7uVCClozXia+lhgbK3rsM8WAE2kUhQsehC6GXjA+lehvcdEwL2w3xnqDFJE/epDwX38Nn6f7Pz+egXKVJ4XhGLagfj4tC8vfHMwgmZMiI0yxDfYEvxsDhe/tcrFCOMhUgfxYchnAi42YxkOXg+U85xkRCOqF12wkd5iP/gBjuTns0e2b9wEW2uzHSnKQ3e+tgfJheRvRJzqxm5hBNs8Fm0L33bT5dS050nnIhEIS7Ja7JdnJC0AKCVtpehteAsU8PLsWeoSjfVhFNtt/vgvQMtnyfCMb1bvwi82MMv3MMxdH8M++qFpeiHPcv7G255L8H3afFQWK7o8RD9Ep7RjRhECPVE4+n29Ntvvj/+n/6h//6O9++tMvf/bPf/bl18PB1lZ3v7V1ePhyZ0d+6s3V+L7/ov7Xf++z3/zbH/3od/6Df/Vf/fD/9H/8vwyvF53a4fRqOsRBtq5mW7cCdbZKb0gGfSMDifmg/vFRQTnhBlxwaD14yMDaarVXrb4Qyp22fBSqgipgg7mouvUxOWxrT5SDOBfEUw15HZuEnTwuJd1OYvpn/ElLFfkBKvFsNWtL9R7UnlDoTH95uFbKv4ceBh1tdcIKIHZKfdB6fYpDYANqG+zv7bt4WNu5Hd6phxVqAx2zP4g8b4ltcsbsdQFkUBaysdYGqaKBI/QhfLFgBn2QyPhHogzDHAHree2rXXGcQTezQTcjb6cZX5DGXvlmNnsYKMauy6Q4IunUatqoUTaYDNAxTI/VJjzD/UX4NsVgmLa9jVat2VOFiNgfWb+gV8lNt/Uexz+Or9AKMG+bTjRhEePRnPu7kiiBweJ+GXOD4IwE5mNNVJWgUVAyR9dmFkITtmIjfWzybdS/VnvW6zzXRlHFZ0GrYcCp9qf+vkKrInCVOK71j0fDeb923WSlFBTPrL8ciwKbpnnWVIkJ8atbH88Xh/t3/b395cOpVpEyICJaeSpnK45Xood5VkXys2mDOHKjfs7jSBPFs4t3Z5dn74TtUJgEccriuxkNdW5/wE2Jz5TjrSe532dXT7/4iut4/Xh0jMuw5rx98+69Gt63w0njYbf6/kFpUsUfuM71jCC061mzXVVDomkm1fpBq3PcOzzsHA2H9x8dHr86OvjFmy8vh5ftvdazk2Z/L4nLSKWnQTuCGUpA4SCoiNaXGLK90xSqlerSXEJc8svp9tNCSvlHL06vr26YiSJtg7FF5yeUAtiBP7QR203xjd3F42T1VHLE40aL166Q3MhW9js7FKEIzbNL0JCAobiSy9hAi/CJWiYEW1EJuBB6AIUhKrbKS06JLGzEkJZgCkGgQuZcl/BCfwtZQVd8nfaHYcFkmLAi46EnmRHKkhfl3oJAIeOOhmf5xg+6hig5AKZs/IgroYTE/h3ORsQ0GJjLgoOZUv5mrjmEoW1WmhWUzz0B27RDli0BSShBZPHoEOlIKxoqK8lY7s+YuT3HMFzTdV65IB8XzC7LzYNyfPIm95geduLG7Ehuzyb5InNz7ss3/soLdJd3XkPQULyISU5KPPmhLG5GDfGPjF/IQsBhqEwov4FZxvA6DypfgkF54Zp8RUqFWsQx51mYgWB13ZVLc03t72Kpj92qzNCjgdE0wkWSv7ji5glFBucCZCPGkr5uTv/D//W/X/9s+R//s//Hu5tZ9bT72T/8vV61tTe4qq64dytvRYmdV9fN7X/2L/74//3wX/7b3/+Nv/YPf/t/97f+N/+H/+3/+f/zn/zRae8TGUi3k9tlAjTltGdv1QEFDBDyv8J/1hIeaYtFruHQEYbViFBwudV8Epyx41yTkRniJ48Du9iYtRCgXZai+PmWk+VsOBvM0Zat8cPWQLwQb65mIApIqG/A8tCqrtr8xastCWItXgTNxe1DoVtsIBFZIg/4LBQQXCC2mSnI+GKv/+r0lJB+SeVPf1hlgZCMMt+yG0AH4HYgOJEDYTvgTjQFfxxL0pCvUyHA6bG/xIXsZj7kAkQCvJaiqggaFS07nCHKMA4eaSqIj0Om/CmT7miiQ8YU1nAbM9qkqIOMNJMGOnFYhLZoSGqo7aL7qgzEaSwqVAezYp8R3uoWkZpMPvhoMsTMJey3ysKB+4Y2FaYTwX+Lb5kKwMmMJrgsmOwBQTjMLtpdPgtjK3FUOfAQOxptfJydeu2w3TmoN05b7WfN1n6bVsd3JN1NnxIMDukt7RYY46qaeiXNs5TNk6nHDMS8o6EMNnd/NeI631reju6fnRwfHZ4+ny8ODg+lWhDS6SYmIuIU38K0W+oo9/YbnW5CCCJRkeUXU23gX2vx/PNvz97fTia3E85w7EeAmZB8xrCQsDjARYXeXH+9u6JczO+HChhJHru4vDQyWVmf39dXF5JKtO3ZqdXYyQ4mUzlonU6TiaaUPkl8T6fT63b7GIBcDCXtDg+a765fL3Ym+30ercH2siEgblEn7+hHhigKkZbkHgGSwK9m1ODh8ezu9q0YoOur0fVldT4/6ux//t2X37z+Zno1EJm1Jf43dAy1sSH22qKpz3EVxjebQunSzlJ+BK2tUPZclctC8J32COS5PfQqBhmHLAKQ7TWlUBEwg0sFDbdUkJqjJgGlLW7EGbChC5DcAzO0V+7yJ08JnqOViYOFs5Aght24EqwxVhn0FF3LxWVSkCRPRFXzavPjRZ7iKr+F1xg0qJePIaazGbmmBKvkWUHdnEW/JprrMmRqbYaqFN6HtBuwHMpcHFv8OtV0XYHO0sQc9HhKytJ9WAYBBS88ODJhVppJeHIBovd/9RbcIixmPzLHTDpr8rfwA699EiJLG7NxQBGZEDPiFS7WyBw99DcfBRZWwyKnQViJmgjbztrCXfw12ocfEzJauFb4mnm5yu15QM6obYqpJ8q9gmjM335TAijVK3Jmy0Dl9gwfQdxsxFxzxoYb5AIqPitP+hgP69O/9x/8ra2Pdv/zn/7L+53HV7/9strs3H87Hc2vP/1E6N7gq1/85NmnP3hWaz1Vuh89/95Xv/j229e3j5N//qz/6f/if/k/063pj//wzx6ECkzgJKlNXctHofvmrBesHKZMvMCNPmSbsEOmh4gD6G0CSZMaRUDD1CbL+fXj3bwyJoQOhuJ/Ruvm/jI5KtReCcMTHesWS8WihSbzTuuyYcFE1eZTvf/Y2ls+qRpQa6777cf+joo7youAlSCIbH0m4USYSUCb4olsB2sFHZ4f7L882E8g/GS67KkWlA6MJY85MdOb2+iJOTWJcqFtELup0HBdfEtqyNDF0wKMWhj8iR4Qg23+jzagaoLzwkvD92k0xzLXQV7TQWRTFJ0smLjKKlfA7EHUJrsMrpHMIcYgyB6ezfaS2sMNRL/V7LW7+lnuqSQgKUCPFSOnYpwktck4tdDWWAAPrZurpLuIHCLULH77scSzcqeiv8zXQk98Da2j0TPUESlQd0yND0caU5iaT+BLpB/9GbBGJdNcb13dal2xgxfUp2rtSIsbGQf1arpuzR4kRIx10dKvcLmo3N6eJcD2+uL29lIRjETVW3/wkp1KW1j3PODruNFkMnr37uxg/+Kjm/uXL14o7yMayBGWnaRcJzYl2+3o2Sknse4y3MvOlXH4UckOzqgEXp0BlJVWc0JNBuGY2OR2atBW4kRWCXBCjJhwaA7v7s/D3Cq3QkfvBlirvDJ+IkkZ9+Orr7/lrtMW5v7Vy1c6X6Z58N6+LmJ1zQ84V3aVmWuxQmFpnND17m7/pH41/brWW9RaV6VRwET08faOQNcd1SMmmOty0SE2Twasqmej4VcXN691rnl/fn922Vktv/+dzw8TPNS9Fb9FprHb0VmS9p6aUYUIAjnFzvYQ7dUNVDIabsFA1lViATwiufjrCIUBoM3RL6NhCrSFbqEgaFChefauwB5S2IicQ7fAuPqTOogpJFDaayPEoXd+Q35C8yJDQgWDJ2CTjiFKOYUCneUgKBKZI+ZwBb3/inmELPvE0fOC1hwal6lnRkWuCHcSaoI0oACYTigdWhm6nzv8n0fn4pAtS0mISyamqIsfL/wfXAKNXATOgjJI3DDD1VbpHJkcgmxcX/s3N5qPwcNZyzQyZ2swbzMA6JDZKNrR44o+4QOjlOMdPuSCAs0yvfI6a8zjwg4zeqKVbEsOD1AZ7q/ys2QliZzhH82zs6VGykaUFYdNeJt1GdbavcrXwOaS8gkQISbishR7gNy1tVoBjbog3Q9S9iblCnzKcqM2WRYzEUHaJ0hJnGSUcvEu0rom27PPf++z3//3fvtnl//6cb918vJAwYL51fjsz2c//fOff/pPXhwc1f/4j77+bPySMfn63de/81uf/b0f/TvV6i/evPnTP/pXf/g7v/b4j//9v/PNuy9/9hfq6e+JGIsjBy2LE5MkYks3kLGWzCRIHS2TNBjhTf1J7k82nOV0IWd49DSZbN0sa1NUFvLuyj+piDQiEesPMJ6uNYydyDuTmAwWicUjYctOqLZ2m3vr3bYKwKH31sUkPsqTw3kDwJBc+wPN2GUjkgOEk7Oz3et0jg4OT/YPSt1lRnamCSYRNSqgdUhVbiOC4gjyEaroRI3DL9QA1NWhmc01iBU8yus7jY/VaS+sD2/z4HK38xwsgEHBvFiBTGfjbSuBCg6Sa6P6E1KDeYm+ifDmoCjdzy3p2IBqo97eV1xSZKQi9/4TLituBX0jUKweZM5qKC7VYKy0p/kggxHB1U2wnId5tcbLiBCSwGNRiVGlcIwnhTiY1bAxK45oF4nSDiL7Ia06VuOjwUx4SLL0MuZFBWequ3uN5mlPa8Jet6K5C6G5Pluv7+YP1/PZhTS32eRu9jCcPFS+/vovRvP5u/O7qzNmmuvxaJJ0NFQHOoviiTmMU91j6XiDRzW4L68XNxeTM2WctUqQgSZz74FI7zT2D/Y+WS6brX460nA0oZEUwJ1Gp3e0d3iqzY7cP2oCw1g/JaBpJz3eXLMW2ysUSMcChE3x1oSeM4IwwWv86BWKFA6SE6M5+8XVu/lkdHb55ts3J89On3386uNT1v2TZ616lzGt39rjpha0um50tw9UOdx6ajPajWaV9+u90UPdPMfLldoJ/flWXZLYUBHVxbLxpE7Rzs3o7ut3F6+v7t5eXGsBP7sZt59WbZrbztPB6f7Lp8bZ9VC/hKiokSAgRMQYbzF/biTYDFdWZBQZANYOiZFiYCwyOSxH2ywC2gVrs02hpz4odDVHpuDgho5ARecvrbdJx3bBAdkOouInDm7y5qOp5txknHJ+gtCmBTcj+NO+I+97kD/lgLkjslUoZShtfoPJRdjcfJK/Pi4jG9U44UtZSCTBVIsikJJSnV0ij0t9l6/zF6pkMoWdbZaQwdxophk0VuYcseKPBTwT8aFBYnSK1gGc4Vu5Jyszs3KjlUPrnLxwPSAkwpsnyusinxjWstwYzSkLxiFybx5e/sa66Hr0zuPhtYcWwd4FIUY+YohAeryF6SyJwmRibdULJk9AVwPeLLMMVyBeFg1OGcIfX21MKPmE1574L721BMULnWw2Umqfodk1JAY2Og9yj8kCmueG4kMX9iIHhv2A0oCbe5oSDjut2d//H/3b253x4JvhT37y+pOnT4/2q/N37//GR7/RvP58ff22d/z8888/ZVR9/uJg2dj62X/9R394O67tvf4n/+E/7py8fP3Vt/Xuw//wn/yj//2X/7cGPF3r8CqgU8CAzSWqgwbzY6ifxwXEWWsIczRVltyw7VzAEV0RNPIkkRM5VMVMYNBObdWcQX+WzMVygMY+Mo4QomKacItFRaQQIaK143KlfYgIJFHy+jGo6rM955OP4gWeebb6E2XT+L1ssDkgwfpw7B0py3ugQjORmbFAMbKGkybukEBKJo5KGu2RFCDUsl2r7yuGrAFwr6eNMFqvaM/1/d3NndTem1tVhkUVpspb4u6Q2OBCRLIkGAWn7Ao5OizC0NAwsag5O07B5ivB/XEOsJHVOvrSm0/6hsc70qw2e53+4cFBv9PTSsY8SztbsT26netlotKwcnW3F7dXuJFq0mg6JCzMSAlhjf4W6HhAUZ4E/6EF9EX9yN/oTNCbfBO7TVDGRgZl0OWgX04p+cit2gDxI5C8m7u7B/Umm3eHNI5GsfzMHkbz6XtFtkfD19d3SlKofSZtqvLu/Te3o+n7q+F1MqBNTg0bqBn+BiMyVr2qsF5fnWyhMuzlTGU3d3ePjxNVUhW6kd0wnw4GY3rZ/ukzLTUPDl/19qbVbewh5UZ4kqqdvS42fnwyHN02plKpayfPXrx8+VK3TsYifAK5sqv0JMvQEWJgy66UXr2meIgkFkJNzMDTEvaD5SntML011Lff/rJ3cPjZF1988b0vvvP4ncP+M+k2981pv9sTbgpPtzU44jNQh7zVHG+v5tXBY08C8Kw2gcCdyVPrfnf3fMyB83SoVOnu+t3izTej9/QgUbzyFsgCbKOThdqAd+JrmgcNIWMMgTkjju9qyWznBKEsCBN1jDO8ZO+RSwEw+KUyiz11PVBGkERpsmOhYoVsUD7tJOtE1cWuCUkpJHBDtQ2SUAo4GTmfDCk2LfTCdTh9qL3LgwCRjmOFIol5QhL7qIkSGqJbZ9QMB6HzbLPxkf+yCncVgljIX1aRbfd5vnKt/x1Gnzge5ZzzkSpOyyERCQke+spvxrZQY5XZm2E4f6YVvaF8Xaisr2OdKjhRjL/lVJl6MiHigovV+AOvyt0u3czCWFaQnw0PAME8EZ0qbAEah4aUuUSat45CQ/Jk4DEFUxUDWuXrYZdzusWau1/8T9K3I6e43bSdIDpdyHFxIoOyeeUYZoxi6SmryTKzn9nROEdcn9l61K82WTZfVdH/pG83WDS5gqOehfrHGBV27oa8yJn1m/Xl148rLdxlPscABl/87vNPfnj45dmb0Xj86YvnP/qN3/zzf/r//PVO60dffPH6Xw+UeOgvr//G77A99h4X99uf90/bn//n/+mf3YjNY+U82ns4P/vzL//41f4Pj3/j4O7PBqupltYG1zdtWp4CXHYyzCYmkyAfUATJHLPgXrRYW4/SJJ2dlgLfS0GSpTCVZb02jdEnkvb0UatqsQwCbaChDsNcVo6EahM0/W7jqdXi/8AOdK1aP+1XD5rbNQk79rOAInsGgjF6uys4HeBqEKJqGzLCbiFyHYKhjyma44qUBTNnZrXCK1GynWq7tSc79eXzl/uHR81+3/W6x3RvLtvMDfG+EpwtJimn7NtoK6NK1Ac0iosM/8mWJn8K4kBDzMUcPBAjk4brQuQM0d9rtY739l48O+w0Os0KIb+dgKga+0oD5SGDyljyMJRaXu0gTYTvFBB9Kyzx+vx+eM9Ew7sLb4Ap6Bt5rcAYlnk0CU/VthSvjP4EFcgTOHB4UhFvkPpEl8Sb4XzTQ+xOTHV5G6kTaqJVFb3cdfPVD1I0jpknzHI6u5oM3l7f3KrBNlswePnBmivvzy/vJ5Or28nVvWBW9jIzd9ygpocwtquq39hvt58xgzTboogIaiATA1pFGsl8yl9MqRkOb6fjm/m8e3Dy0ce3x0eTxs5MjwAqEiVorWiTck6prtnDvFrt5jPVXY+P+sevGoqANiBD3HECSB8nc1gwuL85e/t++803N6j/zc2DcnfbaHj9MBpWR8UgZlzagcBbiSFvbs63vkEVV6PpuF3r3m3fMnru8Qy09JJn5FKB6PJm9+q2drveusb0DjoCG2arRWu0qL8ePb69l6cuCOhwtFqcL851e6v31vsLLoLdnV79dF/n+0MVnUZCVAU5PAkOnUYEyAYhxJFcwYseBmLc+SErpO+dBDWDUTEkFq9/6GihkCEhyEmkUnpcoeaxrodGI+OhWbYUsQmdMrivUlJlS/9xiZoOGOGU0RyZgKBxDYRcGAuSSnchK4deQ4IME+SG3jnchXjC/nwDI8KT8n0oWfmgXJ935c68KzPJvzmJobyRsuSipJO4pTi31orhOFPQLmYNQpWz4vj73PK8t9LyRDMwQkwOGS5XGtJUcT8yQlaN0RMkk5m1uSjPdx5d6Y5MfvM3ZBK8vYMlJuCrXEdJCttzaDMfH+VzVwZ+hTP4PFNmV1HMJqnI1OXQHmOAPIhtgBY6XqgASTyxOgh3QhtMIzP3pEypsKi8+bDErCWA3FxitIj/K2lfKAd6Ke+lYXy8EFH1wqy8LkKA6eEBIAYNWD+yyOxjSH85yHoPba1++Hd+a6e1dX77/uNfe1G9Wf6//qN/+nT7/m//g//B1e3Tn//y5m/+g9/bO7hdP17sbM+nEvg7vT/8j/6z7YeTZ69e/fG//pPv/p3f/8nF5W+9QEcXzWdbb1f3rXqF27K1VV9sCf8PB/JEz92AC6JQwjzbCWeiUpVZ+ylYuUqAkBBnfUCqT49EK4ZrQZyLdU0QW+r9LBYcCSHl8FoT5rJS7zI4ubxeOVQoovLQf2q0FEBYijbZ7refamMkmHUkGAphcipCbzck2I3bAo94UBsx3ydMfKAEZMLsTU9lG1B3i80oOToZQohlp905Otx/drJ/cqi7CmRZzdGgqAm8lBrLMqXk9G1vD5myIELcQbHSWnWQrKAC+ldwpuQuxiPD2B/JTSUxT3h2fPjJ6bNPTk9fnTzrNnsMK9HJ0/JMmaAaYRvdTtGypfhB+WU3b8/OLuSFXl/qaXk/GbE2lAAQWG2psMIco5kmygI2FirhQXqZtFmzPJ1eXJMvl6w0EueiBNe4LMckbGzJiyM0j42dyS5cIjXSy8lKZCBCtea0V8nodj47Hw/P9XMU1Ah4T2o27fa0SlGt58c/+Yq34Vafm+k48bV+HewNYSj6rBGVlNNmTGGjfSGYILI5hTuru8XQcRLKWa1PH6dKYsxE379+/e6of9IQSqxSnSaaqi+lz6csa4wvjvkcGPUyFE1t1/ePD3lKUg3DKpwusVQPD3o1sOndy/69uBRaY59dvN/vv3z16sXpCz5e3nYulGkcO4SPsVqzGghf378ZbKthVO9124/bew31f3Hgp+urxzfvt39xs3y73Jk0VpW7h/kJGEsuv1h++fXoajSvd7ut4Uy++3Bx1+7utvSRae9VPzrsNY4++873242ubmwXqdB6cae3mmyPSWhWRCJQKkeniBWhVvFc2c7040WhypYWAdN+uSGbVsg7soJ4OXkhByGFZEMUiiqb712FGhotBxNpKaQXVnLVCB6jgKkqXGhSiC9Y2vZQOLtmKHyryDpMlBAqU0BYQ5C9gSN+EWB/zCWrsICibhbhp5DCQp5ywebxaJtHb+YFR0vYEpqlRGtZS6ggMT8e7CJIujBTLkQtZIwSk3Poy0wBjchIG6hZl8voUN4Gc+PZI4bFMW5uGS9DFb4ZmLjOE0HV+TVITkv5m6eRHyOMx6Up6dRluTOIbE7CY2NaIUzxPAv6zIJKd3QTcpcf/MD1iY/KsdrwpwIphl0k0uk2eODkKmJWhs5t5ac4MwI3/1HDyWJONQpYvLlMLlspGLyBjOs37No4nlvUjjgG8AlfESTsIWCWSmqCZXYmWxPUZe+o/tOf/9mqM5vs1P/5n/yYh+ff/ft/szZb/+v/9D972d5trQ9/8c9+eX//2jnb+ehw0pr9N//Fm96L2g+++/HVu7fbf3m3bhxN23F6tRU+q+wspgv1sQXp25e2OBHlt7JLgQMBFEEseoAtCiTEcc5SzoQkklqdiCidRmhIop1XU2GVAmEEBuGT8XPFxU1LL4lmuuylu7p1iq/IkZRtwPFDebR2ioB+hfKiYXlQN2I3dQ4jiFsMVWR9K6RdU6q6WI+3V2cr2apjeUpE52xStG9bQWCOiBzGk5OAB+r7omOrYmgcCfk82+l6m1d+I6tlqWUDQ4cCdxEITnLIv3e5PqKLHxIV4y83YrCYcKe05WH/4DuffvTFq48+Pnl+eqw9WbI1eQQe0kggSkV8B4ROHQwXE92G3168e3MuNxWN8UkaHERPTDmboLChMzlYa70ER1lZnNjbW4w2B+2egMZWtZYRt57upiO/16pWcA1HZjFJWUbAhi7Ct4DEAgoDQJTixuBA541ZzrYqD4vp09PFZHw5IaDPmOxgXKtSeXF8+PzwQIRS5fJ2LGYlpYdK47xgsLWXg2dkJz616tCu5Pn6DmPSUoePntillgjT21SJCKm/XIT25+zi4i9//lMkVJ3WncPjZadrYbfXN1cX73VbvBf3iZXtPrVVkBgNu/ghUlLZZUgThBRUqO7qooskUSlvB/eHHCrd7v1Ap8kVof7k2fGLT1/1j0Q09UKK7NtyNR0Np1eXze5yqzrVoIA562y8Op/3U69ivbx9PL/fuZj2r58kuuH7o53R0+KGB3feGL57HN7OoLwumVcqOLfC7l8c9k4qrRf1fqfa73eeffxrP5Q2rM/EV6+/YQhjB3dk3/zifjkPXQMDVrGyBVhnGozERhdaEJkCASIugmRYQGTSgm/lb8hw6BmpOOa5hAvFSBKFNPQ6PhC1wjFQiZRwLPF6DEHBEs4RG16cDaS0bHqMR0YyXDAiWYURIWEZpYSfm4gTCQem5ycCZpiHd050kCYcIlzEXkMmkEeXPTIHqjCMcqelhkQXO22yWFB/0nQ5L7lMYKiHbuhshs69wcncmxehzqif956X5RrPi/wfpmUwcdBrxGhdi+oUo3O51K15Efz2+Jx1ZCaLxQZYaeLuzurIUsxH0ZsC7GICclsgYvwNv8mSw2wEWSb5K1KbW530rCogSvRjeBT27VrgiHhob+hxbiwEfzMbH/s2d+Yq/+UxNpqNBPUn/jEnCy2s65oJJpvmOTnX2WK3/RVk3Bw7rsFxQcOAntnnFrQyH7ry6cUXbKqTyxvthd5Mriu/+w9+t1Otv5yj88P/3o/2f/rTm//m//5PPzvVke97x/XHtzI4R62/99//J//i52eqHZzs/3b1vvO8950/v/2L3sd7W0N1JgWziM7kZJvXtjogUzw6HfiWKOSwNW6YrMnWYGNzERLC0KgCu0sLWCkKD0etv2ye6aWYUER+tlkCXP9pqyvvEZigR6y6YYj4f0WTW4qEIJe19HhNO1LNQbfW/vqxCfiebUC32UxbvHnn+YAqyOXmTnazBsJk4BlcJd3ADZfhLswgAaKNLV6ihVjBUa053m8Pr/j0dmVuKXMwm9zfXl8PLm/Gd0MB7WvRiqkzTzVn1ipxGHC9SAzZT2NlZxNa4HXQC0xiYCFTqURwenL0mbaTH3386tlz5ovEQM6Re7KogB6/ZGvhMCRRPY8vvj4/+0ZBuQQ8qk4snEv4ECU6EomHR0hjSJClJZcJiIUooYCpobpz0OqeHhweKXkgjiV1XVY3k9bFUIPzrdVYhoXyEZApqpJvIS6u9sBnYf7c8j7ceWLgho5UtHwtvH79eDme0j5A3z2CTY963U+en3z0/Flvr19JbItY/GL5wvCKBmD1OVn8IYqSqnQ0213er0f2E5PYaz8pyZAHb60Gi9VwttJNBmE3tHxltYR++bOft8TVLuZPrz5SE5sKosvnzeXZzcXZYJB0KjEI6ZNw2+lc73fpUa3GlhSRhCBHGEUTJSLun/ROpye3ty8Z5Cv8FYuh/r2ILTsCu5UinclAZnqxpL2jSb37VBnvtMfth6e3d7M3lxdfnr9uNNQh1bJhvG4NOaCO2535dOf6+nFw/vBeZNF0/DQPTjIFrpqLAVbU73509PKzw5eftA9ftp9XtrWKe360/xnJaa8+FOk7XQ1vTut3t5Wr810lh0hwzijIOTloKo74IeLedibyGFmBrJAasmVl2fYgOV66eeF++7XB54hCSFgJ2RSzT4yFKlDT8WCsyKFLVA++kHx9n8B8RoPEwtmnCOhuDQNwhPQRRg4FaeBMdhMhQzM9M8ZTrymtIZOF+sOZzNPrTA7XD/6YUQQAMy4swZMcibIEEaU5ajYpQQo5reQVlIuOJl7F32KSMlKUD5Pxaz+NFZ9BiGuhlkXStKQQVY8IGOXdRwrjKayZEu3pV9Yw78pVABZOlX/yNwQjjJYMkOfrXRx6vBvIhISEkLjCnUAEOkSTzbp4IPB4cSmCpFM1LxF45b+wPNKEmZeHGB/TjbAvlDMzT2nuQCErCoxDuAERsciDAqiYo5K2jfpzdta18WHdEgCjpGuBYAFFkXEyMWP6CY/J7dnK6Cjyv8oL08MwV2rvfO+vfbfzqvZbrz5Z/exivlt/Mzi7m0r/nX13q/Gi+fTxd7Zu1k9/MhhuLzp7ozsdCyunreZnle3O4qe/uP/kd3/Ye5h/e/G2/fd//5tv35/97FJyrkyV6eOAWXmatfQrWx2ZAfE1pKYQx4AlWVF0R+YF+YwCWEqOhAkzm9l8UoipQlHb9bRcjONP3o4RXGEe5u+07AUOeKvKSqpJ8kVpDeJSJh0OdeRka4H/pl6mYFOCWCFiMf2HOxYcSTFLCVPi5ul0ujze3t2o0hysynGBulA1yFlk89BqNRZMuDKZ3T6sh9s718NB76wt9MQR0kp9ogfhvc4uwzmHQFqiP7IcC8E3ThAKHbY0Ogze7WDAxw3upAOabVY12hVrZS0lkH7EvSCh9Pj46OS4WeuZwHhrqEhRsgVIWyhiEn+UYFNlYaq40GimFMHErqKW0rwgYjbcdps04+96q1OvN5nJGZDQ9JhsfFJ7tr/PvnSkWW1D9gUHwFrc/N7wpq1LoWKak6HUMOPAqHIQ8iIGLCBHBBSME4ZCvi2dSBaTRPOPROInTanSV8Ou2zze6z/f2//s4+cnh5ZyIP2hyKdxLxoxAad0mcDGuKLGtrel99GFrBE/mM4eB825SgwETfUjxg/jwWIqiTeVlIn8MXys+NzfvFErb/dpNtnv9iSy6a1zfq3M6tXtbKQw4UREmenyie22RU8JezjcrnS6QsaYXDe0TNpTTaqBQE9tOnVMuLo5E188VU6uda7rIw2z39tLQx+tGeQw7Ozz6y+rk25192C/Ot5v3X47vri75bBUhOSkXTuodXl/H+uJIrs/v73+ZjaVrSLKWLMVBKSzUAm8XT88Ofr85fFnH/dO9qoHjQaV40DXy9DU3a3EFQzr3V6tv1/dP27NJ1vSIZ14WI18hsJGA0St0SB0P1bDjaToc9sOmvkDvQLY4BhaBuNLqBsMhNp+DIGpJB7RBrO2Z0MysPPmGIoJFJ6NZtF/Q+4hfegs55A3ISP+tQEmW1f0RsInHGb/iIQb/gPniB1p9ZxZl/jubDXFIg8rog6cxwbMheEj1xTqlAkX/oVBJ42cmT4hyOEa5dASV9tbNUFfpaQMCoHzWT9Mj6PCj0Nh2R6D6OdhOeWQzfxdmVMYugw9qX6hMRmXcmm6IToFXBml0OYYNcNOvANCV5oTQhbHr0/yGin2LdKdWfuByibvpIQLelQid3MI87G36KzpxHzk+vKTvdsQ5jwEQKJygBO6VjatPDxXeBFtyVPt2S5aVbJ8+X4bT426mlig7VDHl2AykeiR3fK6AO7DEpinJFXYsuzORgkoayFRNMZb08azzrimKVUqk3zni09/8l+crWetaaN7Pldl7HH06rjf2fvml6tfnO2ebjc+O63/5e23zU9rP5vfbi+Wn9d+6+7uq+Pj7ttRZfBucXenWri6zNPKTpthBws0Q4SkE66/ofu2o+he8QqgJ/RHR5qJnV8XqvP9z3eXi6aycnbJdmzvzLdlTj3icfVmR4FoNnC8i+LJEKpstCYf66oomFVDSwHXixWScyCwUO3y6VzLEL1xUnwnggsQoJIphAUwiayLxKEyZhwM2rwYBOLE8ZlNtzFeQEYWFTBF82y6qivCKye309Fr9EFduirHuGM9ZzYRUEk2t0OkPUilqigUDLWPgux82kFTKHTZXlIcbEpN5yhFFPQDTgIX5+WL09NnR89EefbakT49ONlZcC29d5v2ubpqikJv9PcrSJPiBK2+6PXty/ej8YSGEPZmk8GHNBGf4Q7q3683unUdnxx5Lt+dRmh06+Tg4PnxiYAijkaUDnS6s3FnstfZ3z+cKDqkeJ1YyEn6EOgRDDYMPjIegC9swK450gxSDpRypXAW/u9qS3N8eHBypL5+72Bv76jbPzk56La6SmOaTyqmqXoPiiiNQxrpLI5/EEbIOFch+3oF455EDj3cTEaWYlCwW6xkE0xvxvdM46VYh43cYZC/G92fXZ+zZHDFYrmj4eRGoZ7BcPI4W9PN+A0C7/p2rb+udHcqTUZCORutnrZdOlMThjDM3W6/8/KjFw5Zp109uOi+O//mfiYx+H40O78fHR/oV3zQr7a7jYq0YAb/ybR6O2syegpwelAxc3j1JO6ps/t02Kjast52b1fru2593D77dvZ2ej+wG+KvACo45buVOFlh18vhkwZJhLn0YhTdiVJJlkkh2cXDaEGFTDTALv86+RsIRJTYTbL1MiZmkKIKINqhx6FOkk3Z972J+Os/2IuS+PWDToXcJv5FzADa5hzGMFpiRfxLKEbu3eKmHE7uFPo7k9XWikbuAsIlklc2uVC5Yg5SbCQ1fHeXrdSTNgJgl2B2BkOHq6B6wmD4W2JF8xgjhd4XsTnP22iXOYmmspmwFaCS7IsI3mZ5hc7iJaRa4nGIV6Ff3uI6BkHzUzzJS7UO8SHWqHSzyQFGbYNrgUpIfDnMxon4LAQz6kKIPzk+mkqABZiZxwYU5VU+d0WIsgGRY59GcQFll20k9HKXteUZLi6mOvMXwV7WFP0MocHPIuW4wEyyN2EqpKCYxuyJgBakpih4fO8G24y/oZl2AQSABFdxWsxfwXT9OykB/rKJWRq1nisP6TKIn81CfJEj4AJb4vMw3gBis5wUs3MBptj9WJOV8Vdv/nKJaLeW6pcP7x8X+ycXT6ufD9/8q6963zn6QeV7By+/mPbuflEbnO8fdv7b8c3hrx3+3su95fbZn/zpn3/xt//m/rr+5sfv54MZ6HC2hbs6zuWXkmGbNuAznwKEbFBm+RT2wF2YHYHmknBg8CNjg/L/aoI2klK0uxouJ9WHkQLBqv9aDsEQvSTBV5RC8YjdRQOTLFvNuUeERM+FUuZQQW7aBQIHsYsFAodIyE3ORjbbrofChcBFvAmLz6d56fqEOto2sA8HiRAGEUSLYBZj4wiYk4EQh2NQ7sO5C6mD0h6Q0WOFcQBZZwgjKg4pbqPSfxIJFO3ZZX9XrL/TEB7CPxkGIND8+ckzdLnDpMVkrfdAnt3cQYC6HVKEQj9RIzCYx9lgPPj05urV1y9+/LOfff3627PzizgmiqIDnaiXAgjZOdq7zcNGt6spGDxTfala77bbcgj2Do5bcpvaWko2YG/96bE5n/bGJ8+04tKJeDwZ3mtOPEyPYr6RObFa1Q1JBWw2EeYEAUoYStsrYfDbu/1W++jg4NOPPjo9eXHY1/B3j+WnycVQVVtZEyEpK9xDUDAHgmU/0VF4m7tJR/5T8Q7aA+ayoScObS6mIeoOMHqJMo7F6HJPqrYRhoHFVTRYf3NxqR5no6HuICF+qdTqRMrDZm8fn4aKbz/dPz29TTRshImn1cnxen3YTS5khjCQELJO7+D4BFNmt93SSHnw7vJ2cHk9e3s2aO4d7x/Mj/rPTzVfaz42Z08aTn49GL1bPE1uhw/X1wKwFg/3cn2fusvHva159blrT/c/OhlPqj/9Wr8v7mYaKvNSJbJB42EwuHr/9ieN7euFSLL+4LQ1rqwm6wd1mLcm8+Hl/bfn9+9fX9x8c3ar4xpGm+KRYRM0VvFoMa1AUDlTwS00jrkvVhhExDnKaQ9tQVXybX6sqrwM2YWU3pBGLBNFD6GLSdl5JTnZDJcHZQ0Y79Z6IXGbDTu+OBtDZDZ6fr3DUdib7bwnayNDH6C8E1NYCOMVzuDJa4GLnmmGNI7NeTCQT8rcwgO8KuctD4YazpeHhCpufgtzosTFMgBBPcILZIt/EOWySB4C+24Z5o3+2c0i5JaCdDE05wg6Kh5UuF0IcCGmZOGQVLSmLGkDi5xuP1hK4VF/NbF8WOZZqIKrAuJAuvziLkWw3UDOhT6P1yCeZyvNI1ydaz0dZAJl/272KpfnfzYAwwBmSE1ZDnSwWWimuZQGL2nw6wW9jwJLkBF4Jw6GNoMjWn4eF7G4zCmALdML08onuSATDJR8FQQwi+JTwU0q97NZfaVa4VoVet7F56fV1z/+ctR//r3vfueP31/966+uH7buTtrzg+5ZtXe12hFt/vjzr1a/2d1bXF//iz99//K3/oZI+sWPr+7/8KvqqqPuLBpE0jYxcklhOVxZqRFiR4Bv8/TAJUXjUpZexEFIQlAvmkmFJV8+OolxSeCbgl+t0r5enj0J6MEg2vutvV5q5pM+oYE2KOBJyiKihmTQjzlxrQM9yU4QnIxb8Cr7QJIO042haCFPVKHhRr060nw3XgvHwyUui/VEKHcmmVvBF9/PDoKolwUHkswdMuidvdpgBCyNGudoENlJuxWiPWomilS1TpcpQMbk0msnvl/2a4OQvpPEAklFHlFttPePjp8dn8pK0L1copEnO1PEAwXwMRYx6qT15CCnteTj4cN8//i43ZXn1Ortddv1+tW5QsuiR2Ldov0IrBdOetDt7MsZxk/ESSaEqKICW7ffa+73/aaXF05TCR3WSqurEI9sNhlxIoKHwkvvbm6umTMu7m5SwMaKgSTHEVRsJZ6NFEhxqFnUy+OT77x4efpcdxPBNDKUe7KWgUzuGNIPnd3k7sRXQWy4kb5SwBd65PQqk6C7Q1Ck28ynjK0gHFdwigox2XEhOONKfpCuYoFlcrqSUaYKNF0JOWSmhQH4rKQ7pAevXikzxD+yElhzP2BEWg1fzl59vHqx06m1UqCDXG0cPLi7X0O9uJfHi5GQ/MXt/GpxLk7/pnY56l8+n90+VU/Gi8bF/Oxq6+u78bnaHFO10i+eHu74KKqj6dabwfJxQDxrv3y1/PiEG2jnmy9qi3H13XmWG+5PWNG54WZ1W122ltfVxfvq4qK1e97b/bS+fSjycbrQ/PLr85t3V/f3N7fD6XBn+zGqXMiaMyAhmj0rNVIra5U72D6K6zUEKEJjkBsS+gcFCj31LwSOQOUbJACSBpuIgS4LBQqaAiTAQ36Baw4mhI9xhCceS9h+osJ74XhBeRvvhIbsltFyCHbEY1A0I1ki9ThIUvOlBPsih9njHRlP8Cfylg+CMx/mljlk5mEImeiHqXuLuHuTLS7MgzdVbR1y/UPoXb41UXOEWKgeCpgJWRlhNplEIeCut+6IXJlt/po2nA3Pjw09/MP8Ax4zLS9d6HEZONc668YJzPwNvDY/JpULNn8zZT8x3PgbdDWJzWIylpt5nuOfsc5QdpFTDoLBy3D51MeFekQzK0MBTUpzupdJzRIyTo2cy+WbfFf8mAkjSb/UoBAMVU6sKAsP9afYbWa0oa1/9RoDKI+0jsy0zCCE1saTix9m46vzQXe4HIweqmrRTqc/+qh1uz8+++l/Vf/hv8esefRsurp8t9t9VqlfzLfeL+ZfnU+Xf/B3/+cH/fabn/wzUek7q+PaZXP+J++mb5XosSr7DD3MJ24b0XW1/z9R/x1jaXameWLXe+/Dm4z0WZVlyWLRdZPdzW6SbWZ3ZqTRaqEFNMDsYlcGECRAELAQIED/SIAgSFpoFhpBZhc7bWemDZvkNJtkVbFYxXJZlT4zfMT13nzf9ffq95ybbEVGRty49zPnO+c9z+vfV32AQW6IR0xaBg2tjpZ4qnbbWOp4cDRdmDbVPfEu2mF3nNB/2vMOHT1mBesOcRsDVlxd0aehMbwFksZlYjgmj4QSynW1z9A7BY4QhPGWmXcFJ7AIFlNBjZoNl5OI8f2N9Y3NDZSJWrN5XK5gQ5aKDLquGIFZFNEwgKercXsuoz3FokNXohC+IGooRkKRlpMsIkrFRMkSDiDak5pEzL7qvQPxZG7xLnX75TfkGhKF4VfaP3i3kUQDYUqMFZKpQjASpy2J5DWjGwGZ3ATFhcJoRLyr0DP2K8zYsymHcR7JARSzy4aTF/hhLktEoXA7qsLh0Iz5Q8lIFETGTg5T4T0/LbQoc0zDlDj1bSLYIKi7z9VVmwnhYD6PEUmENI3JvdcbZLqJRjLciLpKXuJ8rG6LR5WJWPvUPDwLShymh76OASrNEfRPWbpwJGrE/yiEgDiIRK5iPswX8MUc4oqlII/2iKzRTLjCrKBjwQO515gYKEnDNDHzMjgtRxihxgjQTLBIhxNQ5lhObOoKhGTry42p+DIUQK7FejGdrIYs/QuK70w86sVji+iJ6UemCoVT2YxrihRrnJbKVXCEqO9DC7DJ2pzgswDBnLM6xsowzdOs0YwuZDOaStSmlfakQsjpEi47lAOHMNp50D2eedojJ3E/3stBMFuN+h30OHj95QxtfJwP+tVLelHo5kLKyqwzooU8UUsonThaBx6v5fLtBtyx0YwC4sQwUamo26cd6dBL2RZRGhOngCiHP8QUq444KijkiGUZAkRA4NLMHlMjUmTzQVeaEM09f/LfrJSgVoDLW3wzcYruYnooFAp8QJDMv8E23hS88g1jgALh3aZzBpsMn6XYidBeaeIrhyQqgiQ3Qq1YaB1kbEqcbnLN4dxcim1ppDCZsxmmdiLX0R1FRzwjYzIUxVPwoRkkK6xoM3UYEl57LAHcFLOoMSbIfMF2A/u4CNAPF0Dl52SuDp8QJhjutXoobmrmgbP0sMJ04c+Lm+qFxmNmULfTnxxiTuEFH5vramjmPA1SYMPz6kK8CQlCLVChuRTYJzJnY6ssj8YPrvHsLAgGMc6WbvvimrqWsl2EK0yObm0EJgJDdQpXAP3FA8D5uRiA1+X3MecLWvfgl6KXJyfKzmOA3gzImL/MYBkQjywWCIET+y8BypzA6DFyQDmg0KDmCA2ynbIntxErnXV/47Xc77y1/8kHvedPHowz/YNseNGZ472dJbEB071qura3f3bSGLhPd1PWxk52I1EofX5y8tN36Mg3IyNN9RJUoFbMU+gPvhMuqTGiw6K6MmVsBEiLkahICRS2RMZVqANUN3aOh9RLmTYXnjgpykO6FckSSdsTYtWIeKV1ndNnYw7FdE0JFQmH0ImaI8JwoTQUTwaAE0ozPJcLDhgV0kCY3BpAoPqNg0zal25cf+uVW4VcbjKxLqolDBoYfFScjLsRtG90Y+GR/IgMUXqtYh80rYbnC7XxpOHcQ+SnAgJVg1V2JhYMJiMR8pnC/jDmb/J1gVbJbTicgX+wH9MdYpcqvA2n+E29uBUU6wEoY5ZJJzMEoON3hEVCJJihpjg+abbGRqHNAamcOEDYKdzbsKmA25GVyckVDUdT0fRmrlBeK3ZxTIqo5G2jWgEtx1MUs4nF6XFCmzEvOcXoAUAJvAQKQqEQcbGfUEdEHO4YMqHa2I4TieigH4CHhUJOf3BKRcsL14i+VSwjkwDwkkQymxFlBDpB/aCaaQAwpPTEHCsgI8S2RZXC8RhvK5MnNxSUCpel1yUSPV3ZQSDuDHkQdYNQg83N78ZKFVSfdGX0qVQFpI0VKBjgEmh8rA3FmIRlZvOJkjVTUsYk4hKrD92ZdWIX0gNaDhiidokmrlY9Mb8jlfIn6lEsqXBByRHEGkE6GFI8c8JVE9HI2E7Yi9TI3wNpF8F+KBqgMkip3RzS4sjdJ0E77IsE6WTkI9dlPA66Rn6X5XV2BwQIL8+rk+WD1rg7vrGfvLJ/4Evk3IHjzybHxRNLE+4IUv2ls3B3x66qNanT3ng47JBH3u+tZ7ap8kDXGpuM4E5/Qd4Y+fTKQJQkKL4MsEqxof7tYL7UmI0V20yC2V3iCMJ3raF+GgAQ7EA6minmRMZ0zbZASiGNEm5UKJvcCGz6Mr5D/WKtID6zxrZhXrisUF2bmdOgK+GNsBsVDsKDGJlssIooMUR1sQFZIUm9gT3zbdQLNjZEr5VjTTjDkI5eA3uKUpT1Q8DHTl2tnBm/TsEqKNDERjCl6SC3xsJACCPhQOKm6l/G/DBSnYfNAeTlAbmkwVxIi7fhE7yD8siY2TWQpUw03I5PIQ5O1ZCE87zLMPT3aoRMofiWtiID4VJicPxgnjlab+gPsQ5dhB/wR+jN3JSPeBioHVLl6owWMzfzAvrhGpHRh5nWn6svOQ/4g1FxIiMkYASZkttKX0HzWxniqECG1Qu7oMMdxMCLWkCNfBXfp5o/Ohwv5LpfzQNvEk/MkzAGPPYKS1VwoP5kckwtICzjmv7D9xuB7av52Kv1Z8eBq9GPPmt8+eo1R6/92dFTt7N7PXt76NiqODOheDnoSfXc3rOnkXj4SiRm+fOBWGDbLo+evPPpaFBxudkBhsoYPBKq3FhgEAxAU2EmDuwdQ0i85h2G4SG3lmYhxHeB02j8LLQHo/+Y/lcKl0F3oFYdep0HR3DfQDDU4g3MYn6SB2jjyPZmcwLBKBwsHbSrNBZyKijji+mS2RhJoZXJmW8tHO2qdnc2X751/bVbd16+uk9mbbfVYpOAsrFYuN0fUEiHqghEm7BBZPiEmgVCwAtnY4dh46H2AkVKX5V3jZzYABaYeAK/bRDbTTQTTWRjcYz7SvSDBLQdJW7BvsBtrkW8KfZsijdQQ0JtWaYzP8JdLOaTgkApTTg9TyavxZAmhf0uPQAYeyBix5O8zQwjSkvhwHtIzoQMmp5UJBLCnLWWT+1sbBOPxEWx1uOaBtpDwQC5a1FC/mPkWakeJ/YpQB8KlgUGUNW12BPwM21pPRJGliCCMsaRoD/K2ML+WMJL6Tn4yPnleemy1W1rE0DwSAX0LRiP3IiynU4ik4wM+7GxHZjjAxefgc4hVeKxLGJpPK4YRZap0k0lZjnBEBYlh2jry0GhEuEeNBfuy0+GAu5jZGISsdyFSH2GrKACJoAvkJ+bi7MjZLIPjRMeP7gYPqgBGpo0AqQcXjsodUqLedoE+wrdxKAXD9HvNkKql2doGBPDkMWJbDPCAeaE7YOA3qAzwmZCzoV/VOodsgmDSXeQOnzwc5EDVfvJGQRKkAKAEteis+g1x8f40CtWqbv4yhv51Mb2rVcTIwp7Dw7bvZkrGAFqwTC7hbRPa7Hx+HrA3h/3+/N2dxbyxHD+0jpMFwZoiD3jHtAwWAtSs5sdk8G8L2yTndQvehdqCoQ0K9pUfCiI0mJyDgTPAvOBVspAmxELOAkQEpgjoToC82VEvBopdanbG3SDzFbSNO8zewyBGzCvXJUb8Razil7K/kXMJ3IDDYfWaPbMPURyUIg9fgSEAwKHZbUlA4RV0nPwGAZJGR5kyFXMmME+8Qa+GJWI0QCmwWh2jtizas6JLy0pEwTMEdMi6mMYvM3SYwvmdAZnDOL4hw2/0Q3RD8QeGK4m1DAD9Bhjo9BEYq3iQfSPORF74GBew6IMOPOTcXG+ppV/fMDwVyesWKyRKw3j5NEMUwUbVG6dqZdlg3GpHetKD5DsLw3ajBb6Z1K4Af8BPgbLk/OX7qblAzAYIYLKAglLgRfim/j62UUR94L+FJwHt/NFiG2gSXTa60mRa0iMjBaVMjrW0G4Q3dgaDGhCNbLCauIoxGdyQg4a53IUAt8i6nB3Lvv1X/Ru/fbrBO4/+ejRW9+68slpeWKVMhvzbHBiL5qVPAkpY0e7MZyPBqNQdn193xULu9Y6/aTTit372/dKT5/PApQAszBjE5ZK/BaWK2oTwZ6NJiQblFkpjIogMo+Cb4Bpwtgv4iKhISD1DvcsiCTSJMKcBuiqRInTlOJuYqs4BSF4jLxEg/cmnjgADThAGeCL1kdBpQjwuI0RQPmH5UFlOhWBRqYLmUBudzye3N+9/sabr33pjbv5RCpKXhHINXP0Elni2ZnZXpQWgjaBGBTlB/iJ0ID/g9FWD96GOBYkYYjqv0HMHNLGxSCwy2A7SOWy8ViMUphUCaNGQIT4HkaLRUKdKGW75plZT2I34TFdq1dv1HuDDt5W+kEB4ekU5YCj5L/j1cZtLc1M1WJV2RKvITVrEHCDdmxMsisMz5FErMf/LBM6RIxYQOUNiiEFg9gwEqk+tntsOEwsMTxcCQWEjCmYC2oKnFmIT29BjNKCFzio4ioVYoBhSvYFNgUbRekpvJBMLlkLhYEg1QAB9+lQNB2PXVxc0tZ+MOzDJFkHtJk+ONj3UFk5mcvRr1hORRYfyycwwVSNBj0mAGuYLxjn4diz2nnk6YHhCKZm+yH7E1iFQwRaMJFTmCfwz8N8EYcd0BNdL8mUhlnw1GZ6WRqhDAQDJ9DdkJglNQEgXEAbFfRi+OYj5PmxNeqSOhcPUV7OHoeiSIHgKxYVMfgAMtq01SSbrNIa1PuL7tiPN4mRzkltaHWnIacnHAul2JMkLoBEBPNgpxQTFWlQljricnU6U9arXXS2Wzx+bW8f0+Uyn4pvbqRIM5D8TYmD6cIHQA4dlu04845CgQmCDslkfjehV3QjQAFEk+1LhUVZQloCQoRVmmiEJxPfRfKF3jV7Cdskx4E0ghcRjrR+gA9sQ9JjfVhxWCIfg1mCfaYHLOFoWD+yIQYT5C+ldIHg1AVjwSECDtD1kOxBGnYB8ykw5griDDyyjG/iSkj67BFU9SHJHijsiPxMD1Y65lWsGUIkGloMQDfUZXURSUZsc2P94wEYvN7lCN7RNJmfxsQEXQEiPC0MgLPxK3KwmIGpCcGMSAfUuboDTk7DBggZkqvAjJan5hsKMqZmQSr8FRMBK0bFW856oUBIK2IEemimVlfT9hImc1+utPqMgeg9HaWbiifwWqcZhQmUZmzmTK0ak2WeS3tIvI0PYBmMkWMk0KJmAe2rAXA4d+IC/GbBzDdXZZwosrKj8hmfUidJqTcEiBE+vL+z9qXXr6YO0jjvnFk/WULYxVGPaM4uTuykvPmw2Wicf3zxwbun1c550rFFnyJrPow4koYEMA1BMOOzT0rUGAtsXpv0Gz/56/Ibb18b26mgtx33l13jqKs/yPgWB6mcPdi+aHq8djTWpXEkw5i9895PmheHPPJQydEBVSed+0KLUHgZpTYW8c9kKWt5xKpVGogNIEoU+q+SEjTPdG7BnEVqCdyO3C6Lgwj81CKAbOGMK+JGshiPaRuQDEQJPpdsO6ekJdtIpkVkEFKdVDEZNJA4QgQSTmRFkOPbBVAisQjmHUpF3r5+68bBjRsHB7l4GrmYAsxMOS0jYwHvBNF0EcF4O4wHiSUZgp0E5aFPkEzgW0S9mNq80RDFefLrhUwYew95eGwIcGbhTKToHZ6nPA+9sAheRy9Auh71+ySMUlp40G8NaTWscsdzKl13hoPWoF1rtKlBPCRpaEHjgihtbEf2gEOpaU/ClCoMexw4IyutarNZa7baUA1RQJQcpTbNbE7ICr1SEkEsM9ASuxUbPDoBYjJOggAeYcoK2MTGxkEG8yVIp9WHtgVlRpGGiY2i/pmqJ/CIkiMophrUTvdRphbSY0uyCwyZAwyqcqQrZCmBnCLaJ55cj6cuy8V6q0ajysEYgJQ0LnkUvkT6lSR2opxYIFR1D3zY87Xf+t3T4rHdGnPGfNgPJRgPuxw2A5sQE5H8BfCIl2PKp1kKblYmDQYg5Q0BgugnWD2WNDfxh6Coiqji7UGgkbjKUI2OJ8UeOVHbTDtVWxAs4Vz4SoQCP76FPUIsqrqWEyiAK5CvYVM9AqHa77Ip1FOv1eu1Pv5c/I7h5TJCVUAHRfXs2Yg2wdBfiKSJqQpODCi3jajFyBGaJ4hdgkifw00xbrjfsDf/0Jo1rjS3skHcfzGUqCC1DA1cobWCjdSxoqqb7e61nb0o9XMHPLsKpMPPvQxsIBDmMbTpmSXwgmg5+cJpm4FeBd/hmQXCfIGKwg52NGyBuWLh+GZiAdzVLHABXUETInwx8MVrGZI8pEUh/c5YKDd9sUmUxf0rPUo81TBmZskY3jStwjH+8UsIxUVR21FpRmP8204YAEXs5AoGrrH/IALBkCTg6pYczjqDYpItxKqMKqsrig1oxXh49EUAAZKAqGGtMoKp1IHciWAon3EmYr6CIFXPUnnCiEuGGfCa2zBEZoCrCJmBfCYJUUSTIoGXoFoDPVATgrUUBchEXxxo5kVYxQvtK/NK8ybk1wqsfvGpJlVzqH/ibEDf6h2kPH3IlPBA2kHmGtLRmTEofHUFxQzyEEy/hio65SbMpvabPAcakVihMvB4E20NpQHe5vXPInRNiTomMffy+ttXrt/aDoTxS5WO+6XD5zVrbmPRhTLIqJ056bCypMNVNuvff2n922/efvWfvfL+D99/968ej9vxTceVjpyrJOCyXuTrKnjy3t//cuvrr7xy/bcOTx+e/B18cm13bffyEyudA+77sfAk2aM9Szw2vvaLv300mR7Gcs5Lp9W2mriil/OQb+4rOOKYANWZANeYIwgDAFiAe8OkYQA8N8xGbIwJE57ohdnbyAhiA4oejXLA3GlPXWEstKDp1F0YhNZiG8S+KjnMMSVTEhMPEg47nzkVTSKNEfktfYCdJ8mQ+yKaTJxjwm3ia+tXrm8Qd0nFrb3NXazkqWgMIwt7Gv0AoJEEI7uZE1MHlA6zoaXVaOa30AWorsmF55RaDaci2c21TcozpFLEtodBeqLjZUoJhcL0yolE3VjUsQoxTrYO4ZhYvlvzcrNWKV3Waij7qrcMVlKomW8yexUVgo+E8H+4iBzeSO4d3ArcFKqHbLtWp9qpVRsU+qlRWxQBPJ5K5Qq5DWsHuoCcFRWEBRuKJcocOmKCiMlQXg6z63bDwAiHMTufsv8jLE9EUXJLB02GaZaOZqhKyJPpiBFHCUCKxugrMEPjQkVgezKf5PjwB9QJRcMJ3YT64JSigY8/6Q+tJzKtDgU/O80BVTqpO72IkVy2tpVJr8Xi6WAkRowrA6PMKKvt+c/+V/+7YqX08MPPf/mTX54++5hKm9EoVRTQVyFuCF5hg7zgwYBGujHAxOX5xSRIyX1sXXK4AGhwVnaKqqry2O6FtCc2HZ22pG3OPbiLoTY2POOXqsOVkROcc/KSw8Tp4+9WENiiOyLOBwmCyBJ6bJJ2NnaFyEJxwF7rcO1ee+odeRD4mUX2s+SAiS+8xIWOZ9659I/sKbXdetCQ+AtiD8wFqYs/IW68flQOGkE11WeTSWWwPMjmC2QIJHazweJy0ESV0EKwXMYoOPdPhs6BPfYFCX5FIlc13PF4ILkQFj0jBtDYx7XGPIgHqdEoVXjVYIRsAvQc6F6bCkAyeht4wkGs4Er5ERs3zJB4NeRo4RYUwEwLvJh7fHOwSB4CzGcfyJwi8uEigDvqkQqNKUNVocygneEpHML50lBkAJMXmjR0ZH9qdaEpUxUKKxAEiR4jrBMjAeyMnK9FNvDKCLiIRDVK66ChY48wgxayMnyeUrwHNxDogtInqV8igkbFJUAZKJ0r8CzYyIxphcuaYXMYrIVHIbxCiMrlhEF6NJ4A1kLZESynBB6SfsHEEe/EJTVNHGoOFgSbM3W2GSe/GLnGxpde8HP1h56GS5s3+KUB8k+PL7YHKxCX40+eiGOgXQyb/MGjmTP1piiZj7WnOUDvi/HrYaEmKQ1aL7Y7ph6iwB3+/FrqjS+/7LyRemiVT4vFCTXhYxuLtbB73o9mA9QyqF+2F77oIjI/bj3xdQbvHj4PDlrf/YPv/Yf/i2/lryd/8H/60GrU6NVedxSZd9vRQTZPOJLIIhf3Rv7Fa18tfO3zx4/Lzd4iZAd9W92ndiAWusSuGXFUOpddTAYTlrpt1dtnCyzBwPE06AhsOLZx5E5elP9EiSeyOcCwYc9E7oL+cpJretl2sF72K9onD0apVB4QVBFs+ZQxGYr7Ngl6IxsGpzIiyZo/t+7O9Swj7LHRTeQI4rkiAJAiUADIAlPeMGZvNAC5PZAoiQjxuGd371zL3HYWNlNEuoS9kWw8gyUZ4Z4OhBgPKKKpcc2n9FtEasSWTaVFRBEuyhqxA0nHoayznNN0GYv4k/QpjMXzFILGxmMKBmDIwHepLugKJMGbqh5djAoQY0shRDb6zWfnx6cXF4S5D/G3cTz7Vu5WF0GoIdXj9ET8uM5J+bQarrplD4E49fh2UrKSPNMG9R7qrRZx8NhnAi0ittoDhMBQBK8sUabBEA5RYm+k5Itu5O/QvjOmY2Bbvd9ZAqzHlKlzIO7Tg9GirI3daFHPpl2vNzkiHYlu5tbmyYw7g9mLShxLqtfbE4KBeHCUEYWd0m4GgQzmQAxRyIevNJjPpOzhOmlxvTElsOltO0fzKGxvFPIblNMMUIgJCxsKlo9Uu7Hn+o2Dq3euv3L75esHN376d5Hjo89tu4vS4iA/a+lHAFH9bZYCUpdYwMhx/4g9BvDSGuMUsR2YEuQ3EAZIKsLvI4MRXBCrB4Oe0y2CQj04fHEqsS6YnrQhceojgwWYaUiD4t3UrXN1PSOyESjxNiQmwKaWR22k7owe9xiKxRQm74fbG3V4Q7Lgcj1yL2i6g4fZOfFQ7gjhgCPdYRQL0yXb53PR3g6fxdhC4MSmyfiI9yKHOOCNZZMbqE79ge1ZntbLDWs0IT5QQivxrCpWRekLdtXSt3BD1iR306wTc4zWzcSqMy7Jx0bh1OxQEwWYADYADLPoQkumRDCx+ua30YpAISO1MwXyxolAFHYlfDMnwiW4BJKXQu2hFtmNcC8Zrqr8eqBNVkDBl2wYOpQbrBAKRQG/tEywiFoue0prVnlQSIIX8xPsG8Tkxhrer18Lb8XbtH5Ic6gxBhuFiTIxAXMvoNfwAGyQ1ALggXlfZnG+AU4hLjwANEHK0/l6hycXXchHqklgeiTs8/wG01c6CCyRj6QBKJoeilPcECYzGBSqgFF8zbNpdGI0Boy5Ol9Mp5lhrqZDDJzzmstp3/GWplpfZiT85BVzyzgZCe8ZNNcVdLYxpfGmOdOsK89imC5PxyRwitYFwiAiXkuFGwzYUNqyL57euvOPv+HM+3/w+PGADJIQIS/jG9lgeLwMDJzhmYO4vsJ1f7nR3H/plt+9UTm+OHo+qhw/+vCdo7Bn8drv3bAq/R/+X54FHFmi8LuOFvfqOxr018VjOa1Vaz8/L8ZfvrH3dj53vXhZnM/zTQyeYW9/1Gn6eiB9KxNLb7pKj08qxWelpYUtk4HFHFsRbDXOlL1sQ9hsXROJC7KzRpoBJnq1TGhvLAH6nOhIy8KTMkEGyGW3xBYUpqtjwp9ZC7r6/dqEJsO4fYb8m9G3g0JxbAoMzNQVQ27DCYq7jxkbU3kX0BOPkeuFy1OJKJLyXv/ynfAVNpqi8hEagh4lDffpFT7okEY6ocowVqLhWE529CCyd4FLL7bZERo/aUaYB6iIQPWd8cKl5lZTaroT3oTJSYZr1oNcZMJ0kHw8s1BgiTM4Qr8o1hfiQSxTULpjaY+HzX6H+hAwJRQEwlsIDULijmExQsKRFipVu0/CVX8omZMA9xmuDLwHI1p79W2KPRDBiBvB9tjkIQ/pdEN5BZgRtfOZPMqnYm1FDIRksDTROYWoIXQiNgReZpp0cvpwOVKduD4B/kyi3Wx1iuUyZXNq9QaS1kY64+J4rHhTFIAAnVcIQ2xb3b5NpSMxtRANEnxBIndSkXCIfryMIBKhBX14NktgrUGOJhgLzSAUjOfT4USCWtWkFyiARVnSmOWmns8/uBeMk/Lm29tbd337t29eP6CAHX3b7QmVcyy8HOxL6XDCFewGCArqXRdw+SihH/FTQc2DbU9NZDCkMWFMLGl1HjSXaCIaILYHSqIKKxg7IHNc3jNYMklqsjjMVEscm43S/Viupc3J0KDYAfsWbYfl7g/Jgx/RrsUZJFePVWEy6Y7o5blpQAZ/IXqBtSbtgKLXg/aYpl0E3wZ9YdgvHBH5gBgox6IHTmGmwpiMGQdz4dUrW1cPdm9cvZrP5TrtLgXyji+brWoDAR6J3qCJS0bLEfqOw1qOu+3xuIf9HLVLhZaIsmeQQKxAjbECNkRc8RqSR66UZK39IwAyIMiBRi7mPbYUf63CNnkhxEKyEbpIuTMgw7mSciTKI6XpjqYdsBCJAySoIGUjZSGyuRGe2XPc15wKkGmC0MHZw4r2wWzpQCQjHgPSpQYkoxLYCe5BSGEkmgqn6p95Fu7L5cBzPiK7BFRnyOwGlob3dSOdyVsYNITGaGPS5/hGLUPZYwDcg4FxPU7lSKmp5oUeXi9W3EJ8xnACDuClvsUASKA1xl9gGrats9GSOImp0UgYhKZMV2Z+9K4O0VVXb+p43tLfZsB6f8UNNBxeAVP6WI8JpCMawGZ0Bf5kcqBvvszMaEI5XvxQvE8Pq5ErQoOh8sIMYI46ynWT7sAbr1zrt88+fXTfu5a889La3rXEh+8+nB09oPyVOxClam591Iyv+a/uxqpP3iuf1F67+8pv/tNvPf4s9Gd/8Tft2fHv/8Frd75TeP54+PHfHaf9y+DETUY6iZxdem0pipetumzWz5/V3484NnLBrbQzFEEM8yRJWs2HYuN5sVR8cu/RyaJ7sfT03CEQcOzxxAFfxEvqFKYcMW0Dx1x1kCFdcWjJ2LxpZh85Ahpkr7MSrLWkdVGwZnc1cYSKatqcE5fq4IccLfyJjkmtW7MJLGOJaVHONTgekUm6JUlxAe7gxPyIJUcfyR7Oi+liGIx71rbSrhhxHiA8aXSqqdnt9k7Pzk4vzkq1KqUb2FTI7ezhCPYInNeQoEv+c3s6ommJ4s9HipT2ueb1RiOEAVpPNCKLyjyOieaU8EYp+nC2kEtl19g0tKCV9yJoIjNTa7HUWuCyPqHhiNuTjKY2Cxt5qkkrEYusZmoJj6mc3+4AD+0mMT9MpRQmyEIoxzc/FPzCF3lxdByzRxh+UolUIhzDD8Sec0VliQLcVjg2mozwkTAZbBYMS1hT1Kps3MebPOhS8nlo9bqNBt3HG/Vus28NuTitzjvxVsQVwBg18Lhbg+55qXheqzQ6PTAH5zAdCAhxysTiFHfLJAh4SoYD1BMi1YxaSqEw0hu3o3IFdrF4lAIXHrnI8V0RHG0qx+HHe/enfxlJpsKEXvq8yVDstbtfnl6fUzxpMJsdH5Xff/fdfquIckx+HOvEJKPTIIVH6X9GGTcvdi4Z6G0816ClCj6jts8pNC15J+XLhhULjB3aHkaHI7izfMW4rRFlse1RvrVndZo2PRPGVLlD9aPgNdDBLdDeCFPCewRBAq7UHidMkA9xYdI5zD33YUoMRNDvvDhLusMpaQTuLgCNmdVPjZHAyE98FXn0CBgwUDwNpFVTi2SyHBEt8NLtm6+/emt7Z6eQ3SQxOhLstLrDl5sD53PyfBvWzKKDEVZIPPZMF7uCeL4hnWAsPzVKGQlAgJ4IXjBQ4TT/BRr8A655fAXNat8IhuRKBM6RPfS32U4GQEAiUY7ZbSIp8Jq/DOjoNL65AZcU4qCEE0wtzOEwvYdDBi2LVRQ8GdXd+AA4kJHICcEnRgPAEafCv1CoMl0FhDrf7GgNnxPMqMUOVnK69jrARmQGoXxw6MUYGxO6MXiBEgAiYyJX4QONUJxCMIoTSK3GxQZ4WxBrZHwjOEud4j1emxf8oUGaYfCAGpAMhIZtsNA8KC5H6s3TGp2ocTW/1AV1Bd2RP8w8ax71lhm15kl/mScRJpsnMu8xUzyM7sdpekZzKH/JKGucvkph0ZPo0pwKJ5Xvd8VqeGmekE+4ik7QOWIE8jDyIW/BsUACryM2DSRcO9mB85nHVfvOqwcIS6PPTnZ7ja+8vRGJhen/hNDw/gcnDk/oj/7wN3/x04cf//xk8+qNWOfxmV1LfuXlyBvRh53L33714PXvHzz48LljYKlfyjKIoQ+/24RUdPLxXbggG03Xhdtx/ynqF04huoU14iO3OzodhOYdSxGliL/oT1OnvaAcCOPGI9xxtHGArTnSUIqxeiFSGp2e7vAsnjQAvjRFsHAIwVAj74gA+Qi0IDAIByXvsJXAKkwPgSjpDoH+pE2dd3qLSChUvgCN1VVxFclDNE9JQjcS+gRnOaZAVSWgBh810LyOQCYUySYXIQ5eBimrgk2VNol96/K8+ODho4taTU3pMXM7vcT1YBpS8y2lNiJsU9QfczJ9QOiaK212NOtJPYE7zGhLVaPnIDQ0nY2xSFDhGNtRIBjZ6e7tS1ejIhiwQhhqOJleK6xP9lpWq96vLou0FN8qbOxubm2urVMsh3QsVr/f61br7m4fj8Ok3u2BcmwuqDymmkd+d4Cm4n7coENK4ikyaa4QqHareHySonY+wdHJwSyZZAlgVf2xSoTCIuTtJdTfT7VMNrysQISXW/0BWb38swyzGdgDqkcDfbA/II8ZHqBwcfBiVm7XDy9Oj6qlTm+AzIivMoq/1B/OJdLNZnarQAkhKpbmyUAO0ASHNmXEljJaVbfwI/uzSEqE165VpBFLTdqsZzI877tb5QsaFvfodrC5cWstv3H95pu7B1darQ4RPg8/fc/q1wnPUYQrljKHM+LzxwLBGOUkPH7QBVh1T8XnVaRi1F8AuWiKqVh63Z3PEqUz7lZYMe9ksgy4cecEI9F4PED9H+r3jdt0zCYEwSiSWMcIg+KCUhJcrD1sQk5OuC/MARstq0xdUILxrfpgGSM8eErsv01wAr5pexGduWW5I8YUMqHqP8VuQyEyXSDXcISgMmvSsGkGhz8FaxgrnUmuJzObKAShpWtja/Mtx5hKf2g/l5Wzy9o53Wb69bm6iLXJ72FQfnUsljbHP7N8CFICHLYQACI5UjMrkBKc8BrGpT/NjmLGBd74AvjQILD2qpFS2Ro6Q0gqriIrtIBG7yJHY2FA9yHKAokEWX6EUK89qktzSam0qLxMDECHeVESGvYIdr7BecWbo7sp4UsxfFxbb8vso7HwJwxoBX4avSEM6e36CGTgsBWao8IB+kZg1E/VF0IhEFDqFMCBq/ITcxDXAAwULs0rTQN/8pqZgneDIOhvEN6KJQhxDCLDmnjHzKZ0CA0FfqMydji6uBFPxtPpRrooXwI280KzpaGaO+mZeGkmXfc2OC60lgZhnojBsnz8Z2UUp8CVje9BE6MBwABQOzhR35itOA8xS59xEXmBCPWUvC9LAmNm6lgqAurJg3KnE44MoXiBzVz6amrYLrb9ocG13XG4+WMU1FGth3X7zuYi/vKVyqP/225o9C9+5xa1mz/5iz+PHNzYun69cDUeiiQfjSzPlfzVL12r/uQjIm3gL9wREykWd8aAlQ8fPpFGcEwsY/Rj1No5g4wLvZggRbim1x0RV9Lw/dSlEDDi/MGI7bA7jkBYJaCZbeiBlBxUQ9Rd1hBdDViD3ftYO/FJnc8v1pGgDnWVQtZQNMVyhoeWGen0kdxmUw/1ZwZzwjX5j2A2HQe9EeZJqiEVHnmLxcfIvCBTzc1EY1pH+CN7GroPx6O00qWvDE8VCSXJ0V3OmhBZvdUt1ZptVa1ndfA5k/8/QrNQjQW2Ng5HWDHzwFppz1ALGFpddG0bEoQ1VJo1vKNo6NI5sNUQfrSYI+33R9NgNBVJFQIxTLwQVSgYdeZy49HWoFtpEZOE62Mjmd1M5Daz64lYBgl6IsOJ19uny7G7PRo1BwOkHzqUYfSmRAM5SYTfQPWEOdLmpenp9YdDWA5yQb/dLJ+dYjIepNOdaBzGQPJog94w/Q6u6FyCemw5inJicZJgPg9gmMJyDH7hah4rBo6ybG4fr7AK8JDY39Uat0cDRozbxU69WKu0ux14G3ioMJvFFHiko/po2rdoPDwa9SdDYmojsVhyHiMyFu6L8IgdnBVl4iB1oSzccTyhpAQJxZ7MZjxSiPUaw0VzftE4P3/S2R5fpfdBYbY9c/R/81tfef3l7S6VLCrl0nmxS9zreMII5X9ANDDhqZAQFq4WAwZ07bEzNvBEna64x7s2XK5FmuPJ4WjY6Y5ntXE8QP1Zb4rGaoFAMkj2M5YybH0KM4n6SO01PREw4IQDiWQE7YakA+qMUmuIQBjUPXqp0W6hS7vITm3Ytq3OkP5hfRiAyhPCXCfuIIYx0ZpNenF74vRRVCQa8pFVEKKplk2MD95pFJ1MKpbJxbJ5enlCUDgLkpnCrguLW35o7x4fJ3/5yfzhEZdHnp+PSEQj6Aid0masgmT2hkBCM4ohQEX3BC3E7ao0ilRdLd6v4V+I9Q97Si/4Z4QuSNmgF0fqWtqayGIKfhTUgY3iGDwVVQkpSogOQ5Ky3V/0bTLOcPGywQT0nApEcg/2EghLR1ZUPm7Dddh+mIME1gyPIXFDLgiD4WNt/F+LeBJ40c206VmIF59xpBkpLAW1C65MjhMYQYI3wQaEeWHHx0TDtKPlM2wMUWQAkDeE00ehROCjES0BdGCIkbGddAMj0vJC0I/tSAOV4G9sadz5Bfqja4zBEcIlpPZxec2VmSwuwrOI53IFvcUV9IHegk0AmgxbXxynJ+Q/b7IWnK9p1USYKwjj9AJOoEnhI204PQkzpcsxaeI9fCo+oftwHDdl6TFGSEqWj53Ooi5/dzGl35XduxhVHty5MgiWnlUfnRZ80Xho9OTo79e/ub6TX15Wjoejns9R2syHe4OzYfN82zN5+Y3I06cPe52Gc5h6MjxHrA3PxjS9a4QCAAIjRB8is5OQTaOSiTdjUZgwu9j9NBzGTVYUQ3RPEP+JRJir55kbQYvC8rhdZNKBV5GpN+w5bI8jbGaeMxBkiB1BW6XDiyL35EuTm5cl1kxyeWaSBaJaXICyIphuXHM8YKPlkAp/kF9Xm3IgMCcpiOBvGZXQDoklxZ5D6iLWVrNRtEzMElYQYtoQ4kl4HroCYx+BHyT3TlDkg9FIikTdMdJhOA7UYzOXsMRiGvqU7RkWO8WgpIgDwbfkEdQMZANIUJ8ObKRw6hIr9gbGadEBhXE4nQSbsi3jkVEhV6CbGH5WadlMonNJTCbomE1nNtYK0wHp1ON4JAz/jtLtBEej1zUl6WhOFOK4iV1mQsH7scwn9EbEm5pOZzg6gEzmwlBFjjGUCllhxaLOdKvRobdsu9XOZFKYYWBElU6r2evAnPd390n3TWXSVBXiwQmkwiqbHqdjrYai3tCxSYmiCZsP/cEhlQ8qQ8PAEuWjDs+iS94I+pb8OGxCmZ54FhEnSRWzRaONv3LYG9tNm1tn0qNMy46izaTjmaQzOXXN8XzjBzdmXWwrCxIFOr12+fLCc/a8OD89yazFX3nrOoVNSzUSTLxf1B/9+L/6u6Tfc/fg5vW9g9Ttl/HPfPH5F08e3i+eXFCATiU9GUkYLPcjRlG3FE47CrqHs5EnPkkVHN5kdRyz6q71k779pDJrUxu0Y/sX8+RgUrAx+uPfcZCUgV6RCcUwpI6iaSQ+J96KaDyRTaXyqVgs5gkGBjIqzbg+k0Ep8QUNGDrN4uVZsXhxVr44LpVavS42BGoR0tdL3cUiknpYbvQEC73MaxMojGJBzo2iAMlzW07wi0/mhPSr4DjgACuOJVDsUOxzzuVGIh6mjDa9a9yNWjqaiEfjxHki9WB0VFiqimOzY6B7YQIgAkFBaNgpIV+WBghRfBAfrhCWl0IjfgqbzEthE3/pDbYwHl1dhtdgD1gDC+FPvK8cxnmKNg+wo+gySEtbaM7VU06AxiAK0BXYx5JrJf6jKABdoDBbQFdBr1doFsYjzL76RHqF3pQdAxDmTCOAC0+gYZBOWMowOZnLMmPggIbI5jFBqHhIFGHEjscspVRS9j0DJ+qPFrLgI4NH7WBvcgXuzmuUAN3a/Mlpejq9Zg4YDGxApdM4gMg7DUxKgIAPa7GeR9fQvPGlSeOJGb95DHMloTdTx1ZZ7Qd+8hbX53he80s8YHWuxsAHgAcsRxfiL82whmEmX8dxLr4nDI+GDehSZhn0ty7H58hlyCs8J0fwkDBBv8OP2ZWeE/C5nl1LJQPXXkklKv7c7s25uw4jGC0r1NCKRB0xd6hX8l7+3O59UUrtPd3OZ/zxMVmG5Vbz4ef1UHKvEJo/P2sNaI2geUNtknnN4cDQOosTiYDphkrLpEL61JyZf0jK2Nu8U0qWKnMCoTWwiKA3GAKABngw1ncycPS1wKC5Es00kVogwxaxJSqcjBLiJgeN+TcZG6ygDEQsKAd4IUAPaSNumnnY+MFwe+PeJLRPo1jCnbCsg3+mewi1IMAtdjIcaPVPjhyexfyNX9r2uUbRYILwSvYSBTXIxcR56fMRvhklWEX6BuoNvAXJRRkHULrqsmFtxq6RoZWkc07ncms6JgKGXAnoUU9D5CbSoxQUiIGAU8aP/mAys6EYhDZEaw5UbAPR9CJTOBdFTRMRej8F8SbIaUDoJd5lYvJ8ni6o3ShX6peNbpXK/kQQ+sNkBGO7iNLYlrRdmiSyVW18s6R+462Xposxk6CLebXXrve75W6b4YA0nUGXIdy+fXt7Z297fz+XzicT2QDtdf1B5HfCXTF405lq1MfesyROo9as+YOwJFT6GeEzXYJg0L8pgzOmCe54gBDMLkIPJHMaaZdFJdOAp1vgXR63W01Uhh6+hGYjHk+lE51exmpanVg8ji1NpYpgo1h0abvb71ZL5YuTI08qfbNrN0kdODz5OQL9kpJ+2bVcbjlxtqypp9Eu4U6dp/OIlFt7u9wrHs00K2qcjg+ZDbrAMkx9H7+HTDsgfRYeu7cnsS23pzBuuLrjkq9WnFfPAG3gY0RHUrtJCkHPQ68JmsgHozSLoD9ZjIRt7NpUmgjFE/T92irAJymPQdXXKTXGcfTgrSYyCaxlnXr9K/VK5fzy6fNnkdDzRKe9DPlza9RqSmyk01T8YObI6Hh6cvL09OSiVrEWLZ8/RLtecnShVnL2qlXaE1RSsWQAOYJSGEqSYRwR7PX4zdaW7qtXB7XGgK5JyVB8I1MgvqDm6i3G1cmoMZClxaA3wEa+92Iq6KcqKIlycCnCZ0zkD1KM4pNkK4H69QVcCGuE18Im7UKhiuiczckfok+DZnwI7ok9EERALhBZiARcIrSQM4EffEHOAoRumNcKy7iibHNwB+6G7YL1ZXuzkdkdYAGucyAcoIbA2FGANpKeIoi0IaRG8BGrI31TqKDYTY6VWUbQLiOKto3ERrgVmA7gyLY0JQQDYVF4KGzkvhJLAQ3o00C8hoWGQEwLtgVQHtg1vEUmIA7jTYM1ID5BiuxKY/jSTiISkTAsOlVocAagmRdNmyZNj2Bwm4sL0fmv34Ji3ZYjuYlQjjfFF3UYl2FCdboOM7dnT2qGhemcYlw55lNzzOqeuo8upeM5WcG45glhyea18aD6PMHwPJBPZHe2MrFrN7v377tjrSi9AstVh7V+efReqF64++r2unM3FHb17/vPf1bJnvoPkpujyqeTwKAQcFhNh//C+Q3fK/ZF2Xk4q0+uDqlv6Gl45sQcI5LDEHH44w6BcoiVngcdwRkoAKjpCVhqLA+qRCtyIfTREYKu8K2aB4Fzi0vB44eOQVex/1AWyiQzT/l3nDlIR5jzA5QexTLPReDHftww4KqIXNMltMSYj3JHH1VYMqvN3NLWD47jxlTPJItYgVhwl+xC+AQt/qgMx37GQqIRUHYXHgCM0ToiEJipfboXGbCohq9EiWB/WrbJkaXa43xMlpIi+JCC8VOI3eIwDEajsVw4sZ5NQLtY9wlfn1naLQg3qJHKSkVMhOoVbsRJUL/RBx2uAGK2L5REFI5QrksPhaTCgs8oTLwYqtCq/mQhZ/hp251WMEjaGjUTndV6o1IpNxu1GbUT8D54A+lYNBEOR2iFgu5BiNWMK1AmknhFVYg3kywXAfCMzQasoUe6bkPTtOV8b+fgzp27127cXN/eTsSSUSrK0bKAFkakObndMZzR+aFyJ/CM4jQn2Ny2oEksWANriDqlgkMEV8EA1NKGAscq1QwRIoupxhtZumgtsG6uuJwPKQk7oZqFhfu6hxPb6sW7SYpNwHGw3BA4xPJQ4qLdaZdKpcuTC89vfP/79V7l2cNH9z++9/GDz+r9+vbO2ks3Xr594/pWobAWTwVCjmr/fNC28P5ndtbT61v9lt0mToic6V5z5rRDAVeE6h+Emy+toHsUWvcsY7PGwtGrzoZnVuVk3m9aJCEROYSpEqTp07eLmsrTRTISpvdxzE+JvpAYFLJ4UMU1cdNHImTTqbXGiJr89HwJQz/KQ5EXxR9XCFJoLUiM7MadzmzsS4ZjGUR1NWvAlQ2TaBdr4cCD2dDXqY/b3fIsOCQiiOBPKYnTaaVSLF+epqMRn3dGLwvpU2KqzKgPkdMbjBSyG9d3rlnVybA3cZJl5o4nqM03arkGhyVHeTQnGRgNaAqmYVKjFXTIh/JI6FfWHrhpAgQ3VvCkwSOwR8AiOOJbrwVOyGpsG34aTJSFVBCuQfAPUcKIZ0s2KSV5yYdBxkDtRXCl/Rp6kHyQJBmIdsVP2KhANmDJRdn80p+5qURlFGaEsxAaDAguXJa+wbV1X76RrvgDCzLcinrmgDUyLMnDQLbCXA1cy4GsUqPoEIpFQbtR63ZMOkvPhL4iktC4EjHaPBonSPJaPaZ5WoYn6EVXNKi0SvvSoZCrNqmsQKADLxgvbyF+Cm1xJ0zkSoJPASDCF32s88xj6Q/zknvoNYCkKeAAg+j6sfqcn3oIMPDFkTCP1WE6i80P/PO5rq4DeDz4nLkPW4kXGhjQz6JwCMNAwZNlXKgLqom34X+yg5FEo4nAUcv6S5NSbSeeotPF6fHD4tNy3hcPueIXH7S20tvji2XxSW32OBWbumNR+jHhw3vIXRsOx7WN5e7yMyjaFXeFW/6fXIQs2xWdEdvpG6lgJ3MF+4RlgtEMEMwHHgiB4w91Ocd8z4wK9jSBFLphTTTzknbhxxJCaMVCFeZeyBFErKHghGoQzSmARdGVRADAJZeIqAxpbJgfIEFSRYMyHGPyIncKsFOGIxdfBJX/rfqnxEVD5jpAiSIiI7JMyMNfakiIGTB3CUZyLYhTcx02v2OqfudBazZrXbSINMG0REfWdrXa7NpHR0+IcIGSifrhaJJcKMMc9hOUk0lGM2lamqTCSMEo8A5nm2fCegChc3OEEtUckFxBwTFCS9EipNryMZ7GfCqbTiYo0IRH1Qv8EBuKoIPztddotyvNdnUw7NLSkP0xmPiJsMS6SnA+dva+1SOPjerPqAhId5SJNiWbaWY1pyULFhcck73xgujPPlGr1CmS31qyFZSDMRtGglmNpruUYn79lTdu3rhZKGwkU7lwSFHoYL1sZGwD15IkBuiOGha8RRmiaCBSJeyFkBhlKCMnD0YwbgeMYTIYWcYJCKOR5oOOzPzS+xbejFEe0Y5FZyngh2gS1M1AUyqWKniAASfcwmTDQRciGyZgMiS4tVlre3bX9/Chb7yRvbv9+uu3Hp3VnparR+3L4qe1Rm1j/ca1G/n1zWQqmYuk6hUcAI7N9Z39Wzd69qhZxWNwUqmeYrhjN80aHWTJeWtaxQ5WxmznadTcg9PxoCRiJVVGdEulTgxWCtycNAZd1ilFsQ56IJCxF9S8xAjyCQeW8TCxZhloHkzCoQR9wrohKdQ/CmjQb5UIH/L8oqn1nStUx6dyultZzjLBSMgZj31Z33AbhU4lRxwn1ELpiVRhljiZ58tGq3lROsfsg4CRTKdlnBRnMXvepYhdgQLhbt5gtd6s0V/JH9xMbd6J70aXhefB01LvzLbqk2VfzjcCdNQ9Ar1b2WLyUsmMLE+tPBvCG8hSrMDAkiDGgDCbUwgj8wsAs4Ih1dMTdLOKHC00l1zPtZDQiealrxa2pokSoVUHBU8g58IVjBzIzpVoZmRxcFBAh72Y1GTS3zlP0I12jLiGMxZ5B+YhkUxbHYREFkSeQ9JkdllKRTuwwbiWMFDfLITi8RH7hY6iPSNTUxceRxw+ElQP4gB0cXgD4wewoDOwcnU+V+B0Umy5BcCkj6Fo0ABtgy0AmDKS1cG6ulEOMH0oJwBFQwiIaiJjHXdnGJojQbb5+QK7eUJNMG/ph/BcTIV5MGBi3mMU+sgcBiQJL8WxmG8mXB/xX5+vriMDj1kEva+3GLFWRrK/+UgCN4MfLewlCNCLdIeB3HROzMXMRXBE4vjJeP9K5vqrV0sflZ+/Nz3pUUQTuS1+LXJwYb3XnSyu+MgR2OnOSx9OIhl/nwyr5GwY9S3rvsPSYo+lzZDDa09NZC0313DpnaeZ16TBfMQa4WA8FjHBAA9LzMBUUkAGfdl/ZCdgPvFOMmzZ9xAEhiSsxR0JDG6sXcSRiixjRMiHCXyhyK8XACIXdkKZKJmG2Hik80CBdpeYfKR/TDGkl2BKoGolzjQyAMg8kwyhtZmox5BTlcaCEimWhGP42BHTCDWCMLuMnfSCoQBGf2crtn4tY2PqHsyG3RGM9Pj87NnJxdMnT5rlMuI8FEuoGfp0LJyM08sklkvG0jE0FvQO1TOh7y42Gy7pIdifcRIsyHIq4JU9IbVbmWM8fiIWXc8W9rd3NmnwEYpSJohQGjoCU+qt121fnlM57bzSqAyGA+aNp0DbJtYT3USuKjI9Hd40JeQIeJLHE1sBu5F8NuxESjbC90snRAoR8QByNdAnBakMeQZ7KyYy4mCCKk+0ls+/9tJLd+68tHVwjY5cmJBUMgHeZQQ+TRxB8dQp4vYLD/m/VDsggYlNDQuFapFHMN9jnoIw1U8JjqoyR9pEQg72FGwEshWBG/xCSpGDHJc4PnXXcIBfFecM7F2FPLHfcBJLA+1wruCGgsO5xLaL3p/jWd41o4nZta2t4fzNSr38/OjJgy+eVyvNtc0deBRlSylU3Zw1cDdvL+gEOepatjPiDIwSjx991hqepLI+V4pOB4Hn1f607vRY4WnHOejArt0be0n6n9E7k3qak4GNoEmqEvFhdm/W6A9zsXgsMiLgknClyGBQnw8HTqs/arcxXKVT7mhMOamaEmLKAEyqmcL3CB7A6RCIxQMzaqbQjg3fLzsBkmd6PB5MUzTAIf3C5Ro6PMNHZ0fdoSaROEP4z2W16Qkc03qHNArEGVplUtEO+qbDEVn73X5faeKVCg79CcFp8y7MiLKw5Ils+He89NEM7wyHOM27c2cf3zL9X3Emo/z1oY1BDxscCCVk0ZblywDP6tcKccBh/mS36k1lWcl6IlSTSM5jvpA3hXB8gHwj1MaFJfgV00ciZ9dxImWrkbwhFMgXMEX+4BtS4rLcWxueiNQgHZywgCpRnINUBYgIkAk1QY0nELWZ9zkJ9ZH50Wn8BfnrCryNdKmridi4iwCSjYzxVTte/zmLRus8i774e/UFBTJ4RqzTdKDglUuhgBuM1QUZhtE/QC6D5QJXXUEAK+uaSQpDNVNMB0DGWDQkGaTM4WZuuLjxc/z/b8srbsn94O1mVGJZRurRMbq5fjBLvCmuCKvjMbXfGCE/GCp/MAQO1Eh0LXM9XZj51eRwQT5Saqd2rSPQnU9jbn9uM3P7Gg3I7S1a510cE3xz5VrekfN1ykOfvRd3xiqTuk0d70DM475ZuV9KTtwbr+8GM2HC2KsUgN8OOazLxBXHJOCfljx+cniGI9y/hjsC8SF2/8hE9eDbwfdrHLbMGHMIAaC9gftCPbmFNVG8A5vQqPlIvm5RCkGZA6xDlBvyE4njiOX8G5StTmKBjQXJr6SKO45TenbbHeJv5sQQUgKTtEPWkUxCCSuEpM5QMVxU4CHLifyYPnIwWZaY63BOKloMmw/zg9YhxQXLkhkDpQDovYTjzZouOxvXNl/7+g08GqVqCSv91OV5cvL8k+flarlHKbkw9iMasfqpOkyoDePCpZKMk/m5nGJwaNhYH1oWhbmI7YNtBSOsNKUTGBeCA15UjBz4lzEgxIOh9UJOkZ2bW+ub25F4kjWzcaOOh51Oq1gpnp3Qs72EuRx1k2zQcITCcTQox4IQ8GCmmMXQBBYRyuY4se7Cy1hxBPDmwIEk3p9MCVVq2+QjqMmV2bdgOYGNwA+068F5mc1ktja3DvavXL9yfXf/IJ7NR3A44E8BzQztidbYG0gFPhohhtgSCStFNzCeC7jGNk3gC3SJ1Qb4FhlSRmnpxdLFRhDGgxV+mlkRaCVrMLIAt2aRGDUQj3zApgFYFAmLwEefRizJiKsqMgyFcG+yiZDLsSE5iZZMk9fv9KlETHyRRqrb2tjf37v2tbf6rV6lVKxcFi9IWlvU0ErG2USyNSpj0Ht2UiT0bGNtuz7pf3H0dNeZuHZl3eo2aE/mcYUivowzQ3xVl1JK6bVZ2OunebUjELBwddvY4+HxGmh3PFgM5l2MNcpcIKe+VbQb3VnfHttlqnQHA/F0EhWGnD/8r2x/2s9PrWnQ58/nC3RozqRy9A0jWlRgKZlZ5jhQAx5LCcBZJtPvFSrNfK2L56GOwIJ/B2cRkbbO4iKXT26kE3mjQbHrCYnozgZNC7Ww2Sg1sZGR8I1XhogjTyCRDo28ywkCURRlKx6cB1NTR584WmqpTgmAZK3mbbej2hh12BEehB9QBOsGOGLsBkZyfgGP8lNBM4ISaegA969BSm/qP6uts/khSNbRoOAqahsxCJ8BiiGaKJcHtjCLAmeoFRzC+oumzKbjZECdL1V/DHuJzWBdMRFOh14nkXmjKTyfaEuNECyD0nDcoePLOUwIJlYdxTZBSMI9phYGYzBSuxpawa/LYah1jEEYCj1Bkit01RiESpKgYUf8KfVIcr0OMKjKdfkUfr46DMQy7PLFLcQJkGHFA7A+qxgJOormgwczN9IU6UJ6RGZH87V6Zh2gCTSDFVJzZTErUNsYIhiRDuWJzA11khg1wM9/3WH1Q5yIf/oWW0LPloLNN0vHW7JQ4KDQduJBVDSDFJFa8/T0+bOAqzXqLhvPyolrgfh23NFtnTVbyejLzWYn4nDcunb7Z8/u5R3ra6E3Lp/em9SsvW+kbpfLrvgyP7tIuR3dDlw6uetMD3ttjJHsdZ4FN4AkfalAeFKZZmRNWQ1BBT06FKB+0ZoE3oTomDq8wUIIzSEHqKAHpl8ack1QkOck7sSjGCcc4VQsFfVHEikSewgpd4Qxno4xpzsH3tk8tqRCFzHrBFhjIJx3UArIKKccryIK4OUBSgEEAH6Ih4RztGYyR0eiEmLFQCMZDFEbyd6UDorpjGfhLWKU3BR3i5Ca5NlJ7QNChIFkr2xW6nbrsNiZulKBINWbaZVF30Ucv5SJIWCGJSUetDuw2hidrQ7R3Bubua29vRwRLi5Ht92nZwzyOGVGQ0FvIhLIJtM5qsDl6H9OCwCQIEH4P+OhAF+HMM1K8fjs+OT8tFGvQyC5JGU0Q8kkPchJqErS7VLFxmBCoYBjMcQ+CfUiK6uP/GLRwQ9ClCaFxWa0QaOCtmxQKAgyrdNWTC3kSTkKZnK53Z3dq9euw37y2bVUPsdMsrM0cfpiYzCRWkStEmQsvQA8xqKPvxL3MPJoE1gnZYALI/UzTp4U5sKaS+5j36+4vfg9UhszC6VIMAHugRb2D+nOoh5VGQJnVMlHYjTVlMFIwN4tWsIE5xkOZ1Q1LcTStKKJUkV4TBSVRaDkqOiIrqVuFK6eXV4+enSf6JeL89N+v3VRsT55Okxmc9de/hJlB9//6O978/nu63emrubTVtFyTxXA400klnm8t6O1nj2t5VKRkDvmadgKqLe8bYuqgkqmANRRt0iQw/SAiohixErPunUFa1LgPBxbNuaOcwchtzRyxUff6du9dhs7CGu2s7VDyCMfkccl6YOdKVoXu8Odv7BGdAhl6mjzFoYZEVqAmQ0bndMLmqAUkbLQrFQG67VZLA42TNzT7shq9JqX7dpZtYpmlC7gVAhkst3qSXveszu9KokJ/mUcjzQ2UyGyBHUc2NEJhQvwhCBS2x1qW7AHtckETGzZFTRpxbWErDdPKMAWF+AlvlnhJiKvPmWVQHu9MoKuAAhbvPgG9GI4CguK+1eAbIhAsp0xBZjdrjtyT7QfTmHxtfowGekL9KelQQ6AQmFkH53BWXqhg3PCQCVfw5WZ1uUMJZk7GOMPQ8C4xO0NU+GZRE0gDtcn2gcTArmXhAFosAQaY6lY8QAZl8QPhLwiTQETT6pvXothGPHfDFuARa/g1YkcyMV5zXHwIeMKRtvDroCLhllhMszVzNU1j2IBwIqeWZ8a8jf4rNvoDY4XHjHNHKspXC0GSMR9NLcSGjmO7aSL679O5FgGb/iZpl7/NSq+eEzVu2VeeIuIQ4107CDVyJ/bCN58uXBwfeKzXgq0y+k30+vf2CHqcn62GDrHJ82PNh3JP/jel/u0QXk2rzo6KV/MOU602/PUR8Eb8ZfsQRuJ/bmj05y5vij5xpedMBuZZYHLCFEZEZvXSWVmBUFCCdxfgMCcS1ViHhgnRajM7PGm8ME8vyiBmdHEyWKoRq9TD6k6lBnwhBwxUgEgMMKMyRx2hynj5w25IlwyMp322r2AUn+c0wAXJmQuSD4UjmIs6JRpgJW44SDqEInbkx5S9hBviGOIf0j0I/sSnZvwYC2JoCbWHzmEYaDEIHX6gkbawB7Bm/IpLylj8PK1lxpXD2uu9VQwkE7QsIXAFpZDiZWABFZZVVHAcgwMzSbYhO68fvfq3kEhmwU3MXa3O4DD0O+cxgK0BFFrdTp/RVVqlHCbMOORARkz6owk4mGz06k2a9VmdWD3if2bOaLsBNLNaEZI/QIlMNPiWd3QwBJEAHQf5EB6344IMB1MKBtHFgQxb6Ap3gZYmItIFmR/nkr14/wBWgcT8HPl6vWd/WskHMXiKsAAxgPoPBHzwP41TICp0WZjvdh13EHPiLtFm0CkiIkGlZ76L3AHyBcJDksUGgQDYliyMTC1CniFKqAHIB9tDdOAosGQrslaULkuqoCDM0iMmLlRpNl4sghKmpHYivJ2fHweClEqIxb3UzksPgkNLkulp188/uLRr45PH/kjS3SqodVhoYhxItIom036feNm//iv/v4sFM71e6OjSu3aK/ub++lqpTOhGbE/Tv0G96gdc6XUKAVz/XbCH8+lWmNPqr+Y2meVERXfclksYmGPzebDsoglRhuLZ6YqSDQYoh9oIh3lM8ojdSjfOujVipeVRg0bYCxGavQ0NUvQJRgxlhI37FfUIGmos/HQsshipuL9ZEBt3b6FI2BEtQ3VkNVUYwXEBo5Ai3MAK16r0UPnorbUlPKpyP61y07jtFyjatL1W6/tbm8g893/xZMPfvB5u99wuSIZCilS50Ll5WH8ASxZbB9a0sPKF94xVYpwCKt0qbgN8wVTBslkaxcYmz3KYvNCGMOgV+Z7yMCgPO9JVBUrY6oNyAikRDB8IibAa+CJk1ljDjFQDWmLjLg4TInYPMyvGOIxyVPRdD6kLpd3GeRTeeWwD1NSFEpeARpWWwYKnSnyDhmTMkcK80A0J4FIlinuyUvGxqA0Ah6ajQ3x4SXmXlA0Acuk903DhicZEz9IBChrOFAxZwFesMSVHMoq8Y5hALABXsiHiE2BEw13FGxJytE3kMZZPJtoWP487qhpNCPhh2ZBxzMHvNAN9bfQRDiu2+g6AkHzkTmDd5k2fekY849DzYRyHd12NdecwafmT3OUgWBpRvJswjBxd3K0no7dFnNFkD3bDfvwuB/K4yq75YvhiTqiMuHQXbOX/a1XU50pqSb+mveZjdld5kOrPrbSSp2LO5aFbuOyVr/Ibng7B9tPA1fP5knHYQMDmky0JsUa3svNyLTFhYcqoMQA5YiJGpgntBPRgoYMBoD+GIKEAOZJxbcNnMg1SZElOikt3RPL3aHzjd8RG8zXwi7KFFG+lVOX/hgVg7FJB2Kk2qdYrim63myAujEj15nKOfTZIzMGNkDLvh6GdqfDclC0q29PexYlH5xDDBLcndvTGReBA+8kxV4wpodRLl2kKCCAWMnA1L8cUz8ROUw5iqPZoD6ZXg7WvankunqnhPGGIsmxZyn8Q0DLhDIME0qbTQh0dE2Bw1wqd+fWnVs3b1DHhfXvd+2JPae4jnoAQsRI0oh+zAvOaZkoCdOjIY7EJsYl4peLgYYhZIphhvTYU2wWY0LaMJLgHiO8HfCwx2gLfdK58IkgUlJsBs7RG1j10YRS0XRPo+UP3d/YqrAxvoXBS2rpuUnBkuNhZ29/fz+7VgjH4nTAgYpFZloJ1DcsMhLPEA/5CYOhrDK+SjwThGYSjIQHly/EVXn68QMb+4ZKSitwSNKAQpBE91KNZdvl8ShVSZk6wt+pXUZ+H4Xa/NzWS0w8egU1k4JYy8Jwc3gQ7IJ/PqoqMSfEtXtIgqUYz3jkaGC671eeNZ5//Oj9y7Pnnz/54PTyKEQs/pLGxAuK4nhiVFSI1hrz169lc7n4o3uPHK3BnbXreHPi3uZb+zf9B5sPjh6cts4rNpGW9e48Pqa+dWDmXUsEsr5YilZAS7qKXhY9l8ezy0Z9ew1BfpNZ01aWxVLQkUimX7p5d2fnCm4bCJuapRTjePT5F5Oh7ffOKLWdYo7j3mCCAoVUIF9aE4qLyMzlW3pHk2Gnj+nGsls9CrZO1d6hdlYpNns9DsFDJClAjFXFpciCoyB7JRiakeO79NTabQXwNru49IK7ifW9l/auXYVFOebJ54/KpUeVqHswWxAGjR2FNYGQoCzNqdL3cOq4k0n3IEq2MbYyo3yZT41cbPaiYEVQwnmiFdZR4M4rxW4C+FCDeROTCr+ZCBijJHyDpAJqaEU0BKJKOGdJOEv+AqEZ9h+B12rjSzngeFR5ElVsvyMETBO4SS09z4yq28y2LLI0eptS7I/9h54gvwJCDXRn4ThBHEGaE+oKo3U1jU0DB0bgnrjLuBrxrwAEPTfhwQE/W0/yKQHsLBpHMjrOZbiI85L+5LTQm7BpXBq8EEKDVoZhoAHxzRSsjuFgOSGYEakCamxPEC/LxigQiZlyPmHCzFzCqLQUkqE0RP3Qf/Olu+tP3lgxMT0DJxveJAlaWpXhEmaetQIaFfhpZDS94gCm2zyRYBUpjuVmvZWyrq5nqvVFRBoRbY1h4V5xfOvgJSSkeZ8MorPZ4lk873jt+6krv3PDM/CH5uetk9ZWKth7btXvHcY8qVuZmwtHzTd+ePWWNb693srnLjwvtz7uzWZFhV1hetE9mSIQjc2+oP0KoM/a8Q6D1/j0rSdi2CgEyCG8yT4yJ/KoTClzzczpMP/Sh2hA0TR6yNieXm9W70xq4UkoPsXdHJAfSdZMbDSyrAWjhEWgM7qXqrMDGXuRsntdQjQSWGYhGCy51qxvOXq2o44CPKKul3tMyBEkwoAozY627aOrN5HcEBcyBdocYnVwqiKzSBJgLQ7BnlU5Kp58evT83uWi1sPs40Sb4DJcfqyim/0RmxOfLxZL/BMjKiKRg/X2V968dfVWIUPlngzboZD3IuUBo/hecYUrBoPKahSFpBr+jIhMiAh3GTNEPIXLS52EVDa33idjFvUF4LUX0+awH7U6BIkQrobaQ8G2dqtF13VSiQha54sMLMoQIUVaxESh6lPfFC+08jSR+mXZQeIGgrig3xPI5wijX8eBiWMBiVAkTFUTaE0QJJEfi5jITPI9Z8koT/AP3ghTDRTVq20RQqp60VTg80JdCTpGEsVDcTMf3bgI4sQLzSZ1BFVkmkVHalKgCJE1GPyVXaFIGVdhLUPWAgQcoslwhGrJaAAyCosJLR3c7FKtDwaeRNJXvhy1h4SNXn769KPPig/GXsuZdoQ3QweF/M7uWsgZ7VldXyTALDw6Klc7xTsT782rN3uL+elZ/c03X2frn1w+oK1yLpvtWvVHJ8/oaR/djNOnqEI1iUvw5zhYcVGqwjObucPe3Te2o/lO5XmL1PZMfoOUil6vFgq5KGOEAY5cuXx6IxXNkFqDl3pGhJrTt7t5QGlWb2gWCDMtC3oawOOJkKLJsuCLDQBCLHy0aKvStr3THijGDAqicQ/hWdRSCmTdSRxFoym9f4wxjwrgfatar1M6BP6OXorWwjLAITZy+fW1dW8wSp8xZi+Rze3d3Khflik6mFw4IgAHyAbywhTJqtZaEhEqOVlRPwxOgpvpHUDOBe846brMooPSgAtkiDTM6kuWZa+spBLeNztUe9pAEn/yOZY7BAc9L2umY8S/JauykBwnHqAwAaHVChHhCEIEMyQ1KSBVVzdXGThqUCFR4FWSNKLSXMwZYj4NLBHhIUxFsKFL0daKjk8exDqCtimtBHACdRqLxqsvSdhsE+xFePr8M1pKyJ0r3zytOAN0q+NBNXq0BL3ShBj0xwyNZcxECsE8JPvzxU9GwiMYCJOlUjwPXQc2YRgJf8Jajc9ZrBYs5vH1p5kHfnEiRzIDvIbuzXRpqs21dQvzZQZl9py4qqaUi/KTfatjuYr4LcPgKuCuJt+8q4O5um6ghZFeRVqdws/lFWB1cKs4+nikStVR/5PBmzu3Dmuh43eepabzL79yN7dWXMyeDO3TbseVDG16wu3tA9fxed0Z7EMQ856z6ukG46FxwDG9vX9/d/u+P//oLFItNiLUvgUkZdchxEGFFowDHcMb64sPZsU+JVsYP69ZmhfTxVOgEPx6JqVQSc2EgjTTsA7OFRrpibFrDCj6Ne/b8yRBnmRs07WPqonjGTXaUSUpabyU8EpUCn7RZaDVGNKSw0/LPj+2RKz+Q4tqaXjx8BD7hqiG2H/MFlCFH7RViqGOZ/2AKn5SqJd6dA4ICzuRw5NeLkK9xrj87Pnx46OT+89659XFkCz+ACje72FL1eqBsBOKAc+GxGXQ70x7DPL1LLZ21t9660tXDw4ANQzmiCcsWNgdkrWEpSGjcDSxurPedFKvNyzbxmeLuVnB5QEEWToK+MkxQkakphC8rtluEPPUsPoOZxnTdDTUgt7IkqUyHWaHLsWUqTXGJbEtqMGVUJ99oejLF5tNEeRqr4Q6M51SB5piRATM0IeSxGKFXbJjOVhkJwlOxMTUI6JpN7E3IDrZudB2MEkoZnGkZjnYEdIu+rsE8+kMfol0DFMJcSbyRBPFuEBbUK3TqexUsjBAAKJQqRF4aYlzpVtKNEh8YxwfTzJBmiIqCpU0MPFBJkSoYmgKBFtUVG11O54uEZl2/eTwYbHx6MP7Hz6rnjuTBMfTSYI4/UKLroiOEVRPeVJS9TYyGT9dOTudl3ZvhGL7tYuf/fjvPt3dXzs7af/F3/8/aJh899b+3b03sOYHY16SO7wPS6fPy3Z/enFG+m6zcHXNl4mFvcNrBztbv/P1eS9cPOk9PTw7PT7jqmu5wtbaRi4Tqns7ETfNkqPu8IIMRerURa5e7W2mKWmJgQGgJeWadSmX68M+mEX9AVX3iETzlKqj2zSh+bi1o3LXKkDx6vJ2i7I+uAYoDzJ2NJu98sVFrXpBDDdx7K3ZjGwuRJoRbojJjEqw+a3tja2dQCS69BGiMAslfFdu75ZOq+dPF9aYnqdhHKlIutJbEFkROFgx2iCRDjjsUtAbcQGZFSqWggijMOaCX4urBk8kZ0IBwL8UdAhAP1dApc/5y0AYsikna3HRWw3xiHOoDLSYiKEnyAjIgqiwyyBDMxw+EDVwLpAmsiBW2xiFdClAC8svOdW4XyWLOF1hvJiI5BOUSsIDliPfgujv0Ng19BLFJ45Ggi48hr3NAIWvhgPwANrgXGbi8I5ctu0J+9F62H8SAEEdxiSC5ziD9ZA5kSS4ItFP+Za7ik8NuDIWpoJx8wC8ayQj6QEaPAfwDejDJDAeSD00Z+lEzZl5VDMDALwYsK7Adfi9+uIy2mKaT80P7+u3ZtF86W/zT9fiApyuWeM6Whe+OEoH6Dl4U3yDA4BuE0DFEHRRAsganaInGti/dvujzwepLedXb3zfHXvp03G7+fhvvnp9M+alZV2bgk7RJFJn2/eyL30rfPAl3/icMhIX043Chdv/mT/1SeCNaj3UuJj6+qwprJduLrBGH9vciBukKxrnq8Q9ZhVuCvtRWK0ZH4hPWC0mGY1Tx+snGC8sBWPEKaVD8OwkebmFrXModlIdln20Uu2qelfaGcZKjEBKVCRGUuxMETR+/wLExKrE4qFleVQkseOn881SrfPsWW/o6k88iOcjAj8YDCuFxsYswmbgWiwL9c5CXhqKUUJ47p5MsQstu8vaYe2df//uk48/mnTRIiZ0/qL1LvIc9gIZR7CxIVARSKSYf2hsNHURwAHo0fx7SomFzc11knKxZDAmnlMzwALxSykqhCLNB2O70qxelE6qjRY8AGs48X7UygSdcQoyUGqorWVyVBki4qjeqSNHlrutcquFnYrJpeZCu92lOrPEarkOuaYmFnaLDILVBScae1sWrakbuEWZQb5ilxI4LuMT2jXe4ID8YowKOw5iN3Qj8hG7EtkgikNWklckWrBgThwJhCPm0pnplT2ekT45SUFgPEqKFPHrKAv4Xiz8d/agMyNEOuRx+zkdExD4oA02n1MYGgYww2mA/ScQog8pITTpDC3mKdtGUUKlrGImshH227VWG9jqDPqeP/+b/+/ZxdFk2D1rPinbpauv7CXWUx998uNar94ZeKl3jW9k99r6q6/cDrti9EN89PlM/C29eTuX/Osf/eKdv/j4gw3Hyy/vNkoOR5f4htHv/8ZXB8OzD5//IpoKXX2zEM65cdAgXzsDiafdx9dSWFfcG/Hc77353XZ19t/8P/+s66g2rS6bztWv4KmgunWw2SDeBkk2HVDFuSBWqIgzPI6zEOio7A3agxaLpVq5dmmd0D+N0tCb23jdEzS9jGULoBAbndoj1L4OAk2I6jMbuMWaCIl16/3jZ08ePrx3Wj4aErYJDFqTJL7viU2R1kyWWKZd6kVHqA2Bl4tmA/Hw5rWta+XGoHNilxpUsAVKMWsS6UDfSbRaJUURokz/HpI3SFQUOGEhJOMMgU3dKOR7ZpEFPCyVXksi1TuQrJHu8QKAnIgJAhX+s5UM8mt/i1z4yOxkA3DwNLa6vvQ+eIRNSsRlvjmWh+dGbEX8vR6i6TGaynupXFzqSUCb2PBVyImjFLUPZqDI0I4CVQluy/4IQmUYOqB2cHxERgSskRQ0AoHMqBgovkduvEChUvQBZp/oxDmiVgw9HQPqN8K5PAaAo2gfU3sSLUHJByAXbxqYXo2XzfgPg0dMRTVZva+B8UpwZibPKAGANLMh/Nf0aQ61/c3c8I6ON//5pc/1U1/mFL3WsebbvPfiI/O+YQ46WfNpNigH63L8NJfnRK0Drxk/648cy6YD72AL2MNnvX7JvZzcePv6D975q9Eo9D/+H32zWD372b3PG97ZH70dX+9ZbpxIjko7PCrOwMPZXmyaeSUlqsm724nbn1fWiva1YbkxeXjmb3UBZ78rIMARloSoD+ZEGie4AMP1FNojNpHcyJACcBgFGqEqAWhIykt/oSwSzoGZTJoWRyCkiKoQ6+HSrJswFiEAHjytDJrYBgbTOKXTYgGcvb1odExhC8rtD203+ZOxqMq/g/ixML5cStP3FwOiMEM23lBKf1EwHY6u6iCwakgNwUA+NqCNuwnoMDyguklsppQELU59juLkk6OPfvQX/24y6abjcZYEgRTlm8h1OBPUQPgZ7irSlGnpN+V7iUxLPDsmGKvVHxAxSXQq0Ix2bFYLxqFvyA0dluSpdrtzcXn25PHji+JxsVylyjIiNtJ0Op3OJskKy0SRDZF9iLRJyvJJU09kYlQFZH6KRcKr8J3ZVNyfL6hwqcglkYT4LsZq0tPwTjOBTCdYzgvWgi2ISEb1zWQ8msoksV1TklnHSVBblYkUF4F0lYqPgo5UhqLBpmdaBFQEPEnxRGOgbeTG5gb6BNcAvugYTDQozjoSjiekrl1UUFbaExsbkZ9WMHigadKuSk3iAcrJYFKo5sCmkrITCiTivmgCowrJbBQywmKEEg5m4daokwlRrZ2W6p4/+Xf/Z+zmX/+tL1P37bD4MJ0MXLm2/ptv/5Nq97BjtaZT3/lF8+Sy9sHHl7l4djezH06EahPXL5+fjgYPF6StXHfcejX8z/+Tf3Revvji8cNYMP7Rw188K987PGmSVL6/s1FIrWdzSbphUhd95F57+vwXze78yte//KRR+vThB0fjz3JXYwcvvQZZD7p4fRzhXIwa16p66PNFEoVYKo6bm6UNLBNBOtAEqYOrguBOCmfRYonqo1YHA3cWgggEqX7hT6Rgf8YnL8uy5GyXI7SIEp5FjXFM5engmOarsEfP4+Dnj+41WhS4tXr+HiWfA85lBEEhkKHBJPolOhcRuHM83fmta3cctaPR47PTIUUVuTACB9EwgJrcrjD5BW0uxpQqxSaukgzaBUReCioJdMJWA6WJ2bM0/DD2HIly+lsi8ArE+BOK4L9whwU1mxtM0uJCKPwijILgS/gJz2TIEM7PoYJUdj/7TvtAJhIsHIQvu6CNkIcmtXinsFvIVa2LY6xXZgtGHkYjuRpxcjJ1YzFFnfJP50ES7dioBHEjLdIuGdclHGVEW3kVGiL9WKxLu0+Xw66KTXk4I0CAaAgYn2EburLQH9xX6DhH8vofDDt8KtGeX8Jjxs6g9bw8CJtkNQ28+WIGBMv6hvFI3OfBzSzyuX6LKfGTIwy462owFd4y/3jF+1ybnwa/V6dqfplDTTdD0IzzW9O+erDVQXqb07gav4kiQ9UUczbnMJWsp5RApFRyTINjq1v65A9eufbTd6xPPz3/re+9Esns3f7K950WoRQPbrh7G5GJMzypjE8m0cgiHGu6ShVKtUfWKpGDD513jx2p0UWg8/PPXEeXrnmPR0CY91EgEfsLGQATxMypWiF5tSI4xnH0LTDuzcYkQ5KkSnkAgAgCIQKe6AapKch6HmxHABiMAK4h6wW9pLDr8wSqUADo6VBrLGfsfESxFQyyC9+gNwr3eskI4RtTYjCHPf+MbB+CZLwROqXgn213apxMHRwIIIQ+6U1QAl4Wehk6sQOyigAjGDdD3JCQgCQBaxAzUqYk1uviF0ePy7/sVIreqGdgEXdAFRsK8BBNhDwCiwe8OFtMFilZFchRPxQrOOzbA+QCylzSCQUq4IlYGJVUpiADNEi+1Gzc6rYRDZ8fHj4/fFKsnJeJ9LMHqC0sVSaZWc/lBpubVAJO4EV0k0tEeerIZB7Ftk94C9sHgEBmSoWj3hhx3g57uuipXYkaoA9wRvCosquKyUExGBUgDsL4Q35Ky0XW07kr+wdbuxuRKHX4cYko7p64q9U+5okQCpkRnpTgKlmBRLD8AULRsAUbjz+6iBJ+CZwYdVquAm1bVI3JjNyF7sSujOyLFq0LW/3eAMmODjcRrCNKAka0Z64hT7H8oMkLZnaI0iNrFNynZLe4FVWyF5O61S912zQVuChW2/2ep9Z9tn97I3fb545NO4/Kf/xff5jddPxv/9f/2W9+6Zv3zu6VjmyyE5fT/vGT9sPBWdxzhnTXm4Q+/+SJ3zWJRn1/8P0vuVOODjE3rmXXmh+fPiaBZXNn69bVK5cXj599XDx2VHZ3cq9+5U26IXz68KhRmWPGL605P3jnJ3/9t+8BA//5P/7KKzffoMHm02NSAYfO8ByJ++7V11PJNAUCKZqBbIpHCA00RECnn4cZ+ULsujB9OEtn2WLxOaFZbqoKqSOO2j+78YAg4Ui0xFap/cv0iP2qyhRylC+VWYcN9mfDcrX67KgJn+tSmNTtXU8k/CGa3MSo+8faqaPQdITiHXKGr1273XqlfnjvuG41AkQyw90128ZVLyVxNljatFRG/eUT6ejADsoe8IjSKB2cwUj40mhEEbxpUE1/8nKFPytkE8RI1jT/OEXYZVCeF6yxMB+cFeFwIeQXVpnDDRPh+noNWvEpwgophWRpYYPVLMBI2CWI5HBHAhgo9IgtU1jHYzhpeCnshtOSaUmpMXaYZ+HBthZwEi5ClA6d1Ho0gVIYCceD7QR0oM5ri0+nywHVKEc4wAgoWiCA6HZG2Cd3QzzJfMMt4Ex6GqCT2/In3xqYXugVL5hUrZo5ko/Ml94Q8q8mStOiV2IVhnFywup0TR/X11qLqa6O49fqHi+OMddfzbcO1nU4T6dyV8GPrs0oNBpGqbtqarVZeWlOlGAHvorVMYJZ0BP2pb3z08/f+/xHuf/5f/o//ODe6Q9+dJTYiAOHL9396jx2o9yulCcnw64zkt+nfJLbH8K1VKL7tXu3Pbpx0X5zdua03/twfP/U268rMEoBJmQ2gkjcxJ+9wvYseOLOuN+bIMiOymlEbVKfnfIr0xkZTBQhgXmyFAIDP3RPeBrjBzsoJ49bkMxYESpSAaE0/Ml+Hk8HztkQBuaY+qF86rFAJ3N7+ezDyuknxfZ4GAkt/ENSgeNTTMDBRSbqIwCHRjCeEZrhMuqj5n0uP8tT3dMa1mpWtTMDaLuoi/IPidgxHg5BfIQz6IUQRsR7qk2QKV1rNVqdmj9MONqU2sE40lA2AHSRCeKNqIH9g7gjRobOgsBCyDUMhjA+HioaSxDZjUVLMjNbEHWJcvw29YBm1BPCq3d+eVEqFludZo+eXXxGU2KYE8WTesTpuzGOx5gwiXfgJyzTRTlLxcgM/daQRir09gnvJtfXUmu+SIyYie503hpQWqxXq1cb9RoFlCFt8ol5RoSosD9QyGe38Rrm8xv5tbWNjcz6WoS2A9TbgceO5OziKXD1IpMRbgEuiawUhKkoWAKWMM5DV/ylQBKC45X6ZyQLRWfjAqWb1nQ46fSG1lm98qB0+vjwYafXIKFTOQNOL6XP4hT5Qd2gOC/PQoEEdYLBBoQAgGEJc6saCtCz3sDVstuz6s362cXxETUiBh06GXjW0uO3X81Nhqc/e++jR8/PrLmqAh62Jn//t3/3Jz/8aXwZvbN5db9w8/r6qxfFi0rpgvIRyXRwbyPXp5YTyMLxPs97H/zo2WWpUyS1PBQPxq0i7Ygs7yhMe7SLWvG9n5QPu7+4c/dmxB8r7CcL0c3z573ewpW9JmovN5sHo15mMwj2T8ZVugeAlDRCbnTbG2EywOk4hhTtgnRCobjiXiR54vtw42bB3+KL+89On1c63eDlCXV8skvqm+B/x/aCAsxWlubFnAKeIBxvhCkO7Y1NJql8jyaZa+XLQ5oNj5w0jkuGo1FqdhM4WqvWF+0ByhuRC9jCqU8dIjcl489vJ08/byiOBqkeTEIIgTRh2DhasYdghhUvBnBVvU9iqahZwIIsJosKqoGiNVd4J0QRpogf8JotC+CwD0AVOSj1W+K2QEav+S/ZF2kd6VDuHyGatoq2AXvdGE8UkqSXZDxTOA6chxPAqsSITLVOp0cFGKnStZxSbY3C8kZ3l8WGWEzKTpHM711OxQAwAhNMpujwQGAZQmPG1WIrbH9APzseivtCyIxOPhBFDanvGMK+PqIOiOw/+sZwBPqzCnxL+DTobx58xQyEvFocA9MGrJkN/c07+iFOIBzmHX0LgJlCsbvVQRxhDjaswMzS6jy9qWu/mD7zh/QVzbW5mrmLUcJ1JYbGpZlJSMboIGbS+YRZ5h3xCbOa2rg4+OGh8gMyv36CaKmKE3SPnf324/fe++rvfO0bd/b+7Vn57//6qW8zM0ls55Opq86NZPJ6sbs9rNSCPtJeAkfLca0Tv3wUdTuuVOqp6Wf3HV88dDTPlw6LmAf1GOananx6nMHg7ms3b3zzwB2fUFI05gxCUwui/qi1gH1GtYART6mLII2EYMiFiqMTJsjWRyXgcdUfG3ZI1xEMDUPeF4BjNqIlrI+uJtFI7GAvm8yz/ogqEUwuD794QtNFTE1BpAQX0WCLkX8OXwcWoqF4YKTKoPlEbi22OZ/BbbCqdmqDRqXfq1vl9vTSXnTQHqYYXcFXrTjKguLT0UHwbwKDVp/ADNyVY4ucBCNLT0hH4EhtU7RbfrISlCxGNcA7xdPABrSf9FQYYYIR5AHoiQ2GEkTlCvK57B613mc08CrVKeFZ7A1asvyghYOvICzbTtuIdNipZantCoI39hV0FjobWKqeRvoCFXdlOE1FIlTv2ctvpdbWfdEkpk+SfhvdbmuA7F0jOgg206c+KEFZPj+5Y7tbBMqs57Adx1MwFgqzEXfEU1O2GJMAKgV+C/zS8qhhbFWoEAljOKXpjgCgYZuPsBDk6bC9jYNBu5/dqHlj9XDcAHjLeaPdeXJ49PmTBxflU2kecncrv65heSJWhMf0U6aJGtf4jWEqxNJE4CgzoiFpO4EpHF4BH+5Zw1KzzzOcnJ3R+ao/IKZp4bnxcuq3vvvSu198bB8f5taCX3n5a+nN6z1r9KMfvdP7uaPn788uPj+4cjMTy1/bvZEpZGsnRdCM6jwedxhOXqtVdvZfq867neos6ihE55H12PrjR496dpGeXoWN/as7V7+wn1Z+1Yy6yndv31QrR3fgondyXjvdvrK7Q6KEK/7Z5Wf+9nS3sHb7y7fHxfDzw9Of/eT/enD75m9/O7yedTQ7rZE9oqhTKpFhGbHZ0QyJbul0FShQ4igeRQF78OSzRydP0ZPyqXNieDbXsfTF3eGImuDIm0Q8A9mtzL9EaiY8QXogxV3xsMcTZAMA21SLQ2SmhlO5fDaunPdm8+6YVj5DXKTcK0JaQtjvSiE3g/d09uwTg4tFVaZtsXhaEiOgSCfFVw9flGAutZv1Yw/IDiiZX1gCkrxgSwbhhIlGxOW3xF9QSsYJQZ/2BJuX8fOZOIHAD+LntWiCj/USSNXmF+5B4uQlkAGAsEe3CRXFws4DBi+IhiODh4lTZXUge+kI6frYeajGTMkdWuWpaA7R4BOCIlzEZCCNUOJ0To+PCBYhh0rJQ6UuW0WJCYKmkIzkZJ5oFZ5pRgIJY4S1MN4xESC+EfxXzlueR4/J8/MNVKEK8FPPqm/hOlfTQXoiPZSeC56NGIQuQvyHIlsYtuZAeGye3Rwv5NbRL368mIjVRJqrSTTWpGn2ecMsiDlKSMPbuh4XNVdmVDqI/WeuCMvlVC0Y72oVJLyZ/DGjygig5VNZumNLZ8LhvXhw/1/+7//L7/+zf/Efffft29ut9+83T/5dv7+bdMSg27PAwR1/ojfpVxeLtfoo1uwnum1//+J8XvvY++yDcfmBxzFAW6MoE1X93dSZJzNSuR3zkZ+sUHwsFDDrzDoUi6QgJLkmOKDo9oyhDfmWgBls8XOKrIOKpE2pd8vMx1bB2DyhKBo63BA4gD1AWx4YhupdYWtwzjJbyW9969bvfvdmLEwJi2mDBifLTmBBvTaKGgUt6qnB1BcuX8+bxQfAw5L1GnRFkgHKN3so2hWOLgOTRLuRrtvVbq7Ui1XaZ/a0O6Vl2dLWbIJS6vLJQGVqGk66JxfltrtruSgEM6aFiDQSeJIfYuCFzKdmkQy+Y7BAusB+CCk5kaBnNLlCvkKiVlim0nuIQ+rj7x31aQo4a9GZnX+dem/QIaeK62E4Ja1WCVE0+lY2spM6bq5mc0BRd9zVqELoD5R5V04Q6RxDlAKUJc6cg1I4AQmld1N40p+Lhq1ZamCvET3P/FNjTEkOfj/Zw/lsPhWOo1HwJ7fji8DOEWyu1+p2Oza1oJHjAQlYL8+Pa4XX5BCB/ck85qx4PBsM0V5GTcrlryPwU7tKkdPsDwQoGqJg4uu2qezZwTOyu7YNwvMpnK9HRc5OF6WO+cMnHBx5eIVdi+6KoZEPEcHLvvd6iEohGpKwpqopfVfr0OWM+gx9trqSjzd28x998snjk2eYDLfXctNF/fKyVjsvp0bBu7//VexHn9z7wbs/fOAOPQiEvYzR1R3e3t0NpALFRqtcHIWc3fXY1akj+vFHzyBIzAAUXgt5s5VWQ+iSsq/uXI9d9fx9+2Hx0UWAonswXaZizLoOp+3wIDIIZuLd6aB0eFQqN9587dUrd3cvxv3j42Y2maE+HOVJms2Lark+GV9dK+wRe9wZY5ojNYRYG+yhSi5PJgubO1dqpdM2el+l3Tg/Ge+sUSliGYi5yAdMJz2hoBw1lEVgB6iY+zIc9mZSERJJRldv0QoC+YhPcDM9J5/HflS3Bi1r0CE7BNylEpNyMGI3r1/NhddDicikSfC8ZfKqFHoBQouQVJkHAkPJY44k7AqshRz8InlTgg1Yxg9gfYXjwkPBH/KZJP4XLzhBWMU/PtS3tAejyvABRyn3nLfhEgJQEF9gyhv8hMgMMAGaGCjgkcAe+K/4HJjUZDEZzAYhsrfI2HRE4SvsbmoLwyRkicTgA9hITBdiMiCCGAKCcnyAUTwulJmEJfScngFPhsJpfN9Y9rE1oSORzqUmMfA7yfvkmvHUKyVAnAocF0HrTcCIPyUirYCe91cf6dmEyAz5xW9zAE8k2zHrwIys3jFHmaM5h8P5iEniiwOEH+xr/hBPNGdxJ3lR+DLMd3UDNhkLzoGsC1MKv+MITSMnat4kNOpKqzsyWj5m8GZBOYVH5SOORKwg3AO0nYenVAUaHX1+779Z/Mtv/N5/L5/d/N5vbLdPZ0fl9mnT05mHekdTbyidcMfGveigSSnhQXhWDrU/XLY/H7cejJdNyuWiTi8Xftqaej1BmDihe7hn4DnN0eKdD744e/Y8T3fvmDsSN+nxwlVFglPQhbcRLsmXwOQeHI+m8ttQJAs3D8H5CKCTYNQfGlNuDueZl8IqhM+hH3S6o3a93W5azMDQsmkiTlYtAQPqPYfKOB6ROshq+efuIT29kRdIgOByTgEmIQA+Twx9BANPjnpCSSzfdFOh6HWwVD1rzS6VcujBGYENiNSkoBIHERqcs+ZwcOlod/xDgk4po8mkorOaBdbmkRLAuqn3kAQIRBYIREE4ECY2R7+LoXcbNA2eUrF/0FeiAE9AF0XK/LRb9VaLbrq9IT5cywY4YR0kz6K3YXfHJgANtLtD+u96fG3dS5RHVKSK8iuGnu5ajAN5KFChiFh92EmFEmquiNM5HMpHQuupONY5KrOjPmBNh4qplhSmfRXVI6BS4AX6V/Tqkrb2DO/i7KReK80pgx/0U8sL1kGkPxGoqJlchvj+HI2o0hvZdC6eTGPRpjBmJJlw0ZASxZcoEpwiqO6IkguyX/0b6wVyIFKEdfppmzNq1muHR0f3Hz4kQ01udyX+huXEWDhx1tX7QyKYLBik0mDpaNPvdHtUk8boQxw4g6F4hQfLIcVTP/rwLJSKzf1pr5V5dtKrds6rrWU65NnfuBN3p88vzxeDwNqW1zsJb+3sLWbDk+q9UWtO9WPf1E+rtJ5nPmpPSblFfGm26gRuHV9chL0JuyapsVns7BccxKRu5/M0BSsfVglGwR1L3bvMZjIcTD16fjy7/yxAJnLY3+iMfjm8Xyw0g5PAy29u7u7EJs6+K1xw+BbHF6edoXN986Vy/fKi+nw0HJEcAG8PU4Mj4LIndIVTv5Zq+WJcHlH5YdqsdDbq3mhygTKURqPbjGXVoIc9othG/GgORzwV393fjwYjBztXW/V2uVSp0/OsWKu1m/VBl6pRlNKDbDB2u8gsdHU07AhpbenVKhObLE1UsXgcg7FGeKLIC+ECgIrJg3gCY/wRxIEgaB/YZ4T1wim5JySTCr6MhMk24DiAyfyJuUpnK6afnYpwBy3rfJlt8fK+2DCyVyDYYC8A4+T/4Vw2FLdRIhghDgJz8SgkSQbEsChlMsPOQD9mcqKXcQ7CYEXHD2RFyFJxhQwNyQP0w5YDhLDnCTyBHpVJRAFhtEldCvluuqRpBVf2YUolxByYZvzyiHNT2XwQXxB8UOz1mHwEM2LaeVoYGg+pJ3yBv8yJXnOUAVweg8nRsewroFYJpNSf18TCPQXVuoy+DBcxc/rrx+dm3E66kzlCP7imES/1tuZa9+L+uo7BeM2+YUgskrkDz8Sq6E2+xWhBEPOnfoCVmEsoVuomhtAdZIR031UFMWrjgyTti8rHH/53x09v3rn5xld+e+v6jcj1+K/q3uEwGz2utkrO8cDrmnno3u1zPxmcv9Ov/3g5P5uxeUJuYqqgTxXCVOk+tjS1/6GHCfWdUcLmE2mgV3Y33vzKXi6HYIZQwIJFKHDLqCAxVhcZEwWBuHWy46VKwB0Yv/SZOTUwlQYyRUkg4gvHpmNizU4PmyfPS/Fx1NvwZDKhZme5hMypHIa3cKrautTHRMDiiRe0qZ/HCK5IRGPNyZAUqbjSL3v4lSlR6nHjXnbGMGsE1ok1CdJdoE3Z9DMMg6yG2RhEzxB/jD1pPpgPRsHl2LsgscqEFzA4ai1CVNoKrI9sIPgxcB2w99BWoUKtF+Qsu3bf6l5eHGNguSwiqNa6Y1uiO1A3JkKSXN2eGrsMLdKHuRcyHwwKqRzxH7skctBoRPdaoqBF4CI2U1kLrmN2nSxpMzJE7ZOzUjnup1llOB9N5RNJqjtsbG9nt7bj6awnFFd4hPqeGW8QKpGiPERkeKSJdhjS650U1Hr1+Oiw2amw14jHYRAD+JLVoz8wyWXS310eerAX4uvZTDab2ywUttc3drKo+/Ek5YCMdAJ3AgOWAFcmk70+vwaDWVujxiUxG6Ny+ZKJOrsoda0yZiZiAljueCyZzq5TXRQKBzD6g3G51ml0OkN8tHhK1CMTow9tVrgkUSHOMYrRp+/bgSSafdy9iEyXFMdPUSCc5vTHjz939O5R8GUj76ORZTy2TgmEmZtohuCNu1+/vn3w5Zenh3fOH3z28N/8yV8+LR4zBRRtKt2nNzXg6svGso1a/dQeHR/9HGVze6+wn96CAuA84bD/ono+sxfEYXknzctHTSLB9q9kt29u1pm2s4dX1vO3Xr86dD47KVULid9J+ZPUEHrw8Qd2q4ud8eToKV4t0hoo8pdPb3qCPrHufrdVLTfLFG8e+5F6xpOGNfWFGyRQx+K1/szaXu4TVqtNTX1J/MnqpRzeP7iyld9yDCcUvatVqvRbPjo/8l4eTSqXs36TUnZgKhYVyA4cIS+x4+5mHHEkEeVOzyw2KxSGGEjpPtBE5h5+iU6RcFlghetIcIScwRbwUXxBQCeOwE8ho0YkKNJ/ibErWZUX7Fz4CCQKhMsOSsKbjCpsaTY0FzKJ3WjYQCSVeIRpBI/LIoMoItjTTci6xAFG6AJxBJA8mExJXgSE0NCZUtFbXcgTXCgJ3kCq9AfwTrUZGB53ExkR+Ew9ETLIXKElRVOpKYR1ItCnHqKDYnlzH+14FiFKzoGhiGyMSKxOL/TNZeF05kk1RJ4QpAKV2H58JDVFtjHNg3ajfq40Az5iDpkupoVPJQwaROBPM3OaMYPPBjLMH3oF2OjZpQeY3zpWh+o9vfHitBe/mVq9y505nltxknCfSecdvdSI+EOj0mKILaB0sgQI/oTH+6nEDjnRLhcjq8u5duCd+DAhNqtWu1E//9uffPyLrds3tm/funn7rd10OuHydMM71qXL2R81+p/a1k+Hg3fs6WP4saLfKQhPJCFMxRFUkR2ARNYdTCmyQxG+PrWnzfPmfDe1lgnZvSKZSqTAt3rELIJhAAXGFGwsGDkRZYdy5RNeQ6luLDAYFhBTYBiueSLgoTgacYqxLDs6PHne7LfG6mfVdy0Dy1Fj2i5R3p7mS8Q6k+3FKYod04WZfyqIu9R5r9q/tLzDSWAUxl6CxU+pvTiBSIr0x30R3F/LMMm7fWvR7y/aOKQpW8u8S2yi0eF03PXaDeT1GfFlzKyUUwQFgi/ZbFAGj4AgAsPRPxiASEjCEpYfPd18Xq0Unz/29jrdUpkYjmqPC9KxUYXf9SmJ2QwVZYjxipljqMZ9QZMxNhB0qZYF6EdMkYlnE1WwxjyoXmiDuChVP+70RmwaXGdhpzsXiuwl0td3d0PBYDK3QTQEtd/VPRN6J/xSDjdtUagWR/MQzajTrtKsqnj+8PGjp6eHfbtDdphriO/CN5zK1kSZSzjQqu7EZb1x7mtHQ5FspryzWb9pDZhq5pL0L2ojc1GMzcTUKEZ2MgnJ6hbMpgvM40wJX4tMvR2OJKaLMl4S0iI2C7nbNw6u7l+h4QzqDvdIl0oBv2f4bNwdDRb0gwS4VMaCiWc15J4nbtjz9tcLW1fvVmquh1+cV7rdeZ+CqbgZ53Rh8MVQHsat5uTs/MIxvojmg6ls4etvf+drb3376sZmLBJrtIfvZn/x8b0fW7EmStR6Jt/ODNz+ZMSXIq1iM1+YLJtnZ6VwJJD2Jd1k3mHoQjO1l006MXQc/vDJxkbuym8XipdVLFk//tkvw/HYWpqWZLnyuHVWL3mnmYMkruPUa6+9vvA8LJYvPKHF1nr20eN7zy7L1Orfysue1Ww0mfqAl6gsuitTZXxKYZ/ceEjABBXd8kQNlRxeXOVQaChIUiFpi+MZ2hul9qiAx3LOmLJkltKiOaxCrkSiOVnUu7Tl6Xoo4efxEv0FUNGdeeBqR1wpnCoqVEJDjOkUAVn1LUh4IVWdGNAFko1MJFAb5LuCIUhcOAQ3EE1D0Biu9DFyDTijSAcBlEQlaMlAFVIz4pDeNYBsZHLEeDCew4ydUVozV1c1KLQToAk6RLXRuyJopOw5pjbxFKyc4DseOPYGx2NPH1M+g/hmpZoilXnJ9/RSyWg2JfREWKeRoHhA/+wL0JlHZ80gH793Qids0grDAWdo4KbLDw2KRwAiXgTiR0FzHhn3r2EAsCv83roG2Mp1eGqDpJL9uQX/9SwArQ7gL72A98DP+MlNAVl4AwcbVQBDALFGE6kUmjqdYeaHv/Sl2zBwQba5+j/cgAubi/PZi3u++Jy/DLvVFJtDmFtdWLcD6/XgWi8t2epUQYQZspkTdD4UL8qByv+jtXBirHHn3DtBDx0gq4151SbCvtI4anxw/v474/Cfe6L7u5Ftl/MVVzftHD9rDz/pTb4YTWsqxUHalxNbEgVykNgJngTQR7q2PPju4WI8ds/qdtPpW9DVPJrxltslkmr7k0G1WMez65iHQDold8tr6w2RyuiO4yaWuoUxjkx6SugTW6ogZatt9xOBaXzuhrYP1ui/Rw+A0IzqnT7PPODBjT+wVHMfYwYRAtALAi3NViYYkeYDN2lfsBECe+1pZ96sLaOJjYw3QeFmWaHoqUVqmZcew0NcxwEyd/yLKIHFEC3q4pS6mV4PtqOR016EF4FgaDBsYJoIBkKQJVPPl7gOC8m8IifA/+DEsF2tICSo3YFHi4tdnBatJg3BrU6v16YQKDZ8xGTaE4r3sxGYCkMQ2nQsGChNoAIZ6BAeqjCsQaYys0W07tCcyBCKUkCDxDOdAzdAuyKqlQPgFxjuabJFgR7CTZG1V9tQ1Ma5kiGgApVxU15Vu9YsHl48f8bXybNi7XLuHPmntEKm0DG7hEpJeNhUFZXIVarR0D+BTCRCfOiH0yUlid5WUJIaIi3C4RhAQs3Kbr9XrlV6vY6Xhr10r0JfxwREtL/6mSsxAfBBP8/lcjdv3bn76uu7u3sBH1l1CgXzR5IOD93ZAp5Ksdpo0gSe56Q0AGrVZEjTNnju1BPJbxcH89NHRevskpD4OX3bk45vvf3NjUy8Vqw0Gs3FJIhCVO42MS/u7u9Q7ILM3pHlWotnx+7BznohEv3mP8n+0ZPTZz/8yU+jERowXD85PIS1t6xqMOS8fn3t6sbtaCj36f0H9Uaf4OXJpN8+V/xP8aL2nd//1t7Gztn55Xufvr95de3eZ4+efNJ7Xjr72jduu2ee0Kwai73/5o2vZTa2vp7J4IZfS+cLmdyvPv35n/zFv0YhfPXOa6cXl6ePTurtajpB9ysajeK7HSZTXkrek3ZobOFza9i+KJ7g+YiG4yAhDJTAW+A+Gc8QfSvPC+Vtk4lovpDa305fueJPZiOfps/OT0iWViVCWMp8okRy39wXWcBoetYc7xOu8KnaYkM8WCyB0D7tAbDHeZdxCFqAIeuzQSViJ6UCiOSEJNCOcI8vCA6C18GcYYhRRCjQMXSouguGf4BJQlLJ6DqYLx0AT5OsqowhyUm6FwwGDCasQhIgJymJnVpAsDzqfRIDuvR6XUFkJFT34BLVlCAfHh83GeVhpdQCOvi38JjIXKbtATcCE3AoecIYGh3I+4HgNDCYxfqOvuXqi9khnWs4bFzF/vNo0uCN7Mb5Eq61Z8QF2aKK8FMgk/aZtruxF8nMIoWA3gJSceRvcFIVXbrdGD2LdgiOEdGASiYwT7liLdqomjQ9N9/auyvEYFtqV/MtPYM7mbnUEbzFDfVC889HZgnAg9VbWjZWicFoPLynddJ8cxe+xRgYnnGxcBwcXF1nqR9DcUzqGjupVOJIbwZTgWmy5Y6iNU1m7aWj7+72hq3Pjubvz93/1jtNzOf9sdOeUYWMCs3MPRob3loyfwnExELrJNeFxw9NqJ9AukouEEoHPElyABxoYZFUJJrNptJr8U5r/dqO15uaYq6WzgJGenGZYmfmwTBP0EiPmh9U7XDMbDTIuS/hCnmtcgkLEDo6B0oiJ6LJT/0VjHhU5PDAASb9PohsHl7lbnl2rIYcSu7gZDmoNad+xfl6KbVQHpxH2pECLfw8yXAiwAbCokPGYGjqiY0i6XGuO7PpIzye9ZAK5BB2UDgEW7tFc73C3uZJa3JSqgD4mnpc3xSJUciLVG4WQWK1cW9r5VhTLSP/FHJHmH8JwRXAdRF5rY0Jn9A+0Epoyfhir7GnZDyCCuGCCqPgWbTI3E/lM6UU6fFEtOgFsuCy7sr7UXsooSytN525cLiQTG4W1rf2r6Q3dmjvrExnGKI2GUxCSwc1IcNRsw54vTg/f/Ls8Wef3zs9PWo26/bIIoFvwgimYxdeWtq5LtmKGIpk0yIAjw3Kk6lJom0vqxXSiJMhgtA5aemJj7FbDShG32icXZxgwadedSyUggWpPLaDtCNUCUsJSK4Fwuz2wd7e9VtJkqpS2yqgTSg4hoNQ3E06bi6fL1+eUf/6lNrkTShkYtvsRxgiR3n+9M8+H16Ob3/r7n/xP/sP6tbx+w8/9YT8W7s+9awLuSgAhaS7sbmFkZ7A+WazZHdsemyux9c96+FCJlJv5cJx19e/+vVXCa5aZt/76Itf/uLTQb857FYmqJYejD/u33zju/n0VjSTf/L8+eHjZ6hfG3vO6mDgHzlO7h2Wz+v3nn2OqzHuW7z++sGvZofjU8fP3Q//8He+TULW/dNfDseN2zuvR0OJQiG8U8jSkizg//rzw2f1Tu/G7duvfeVrydTmJ1/8qnF50m6eobNgccusZfNrhVwqSzdMCmCQujKo1rqtLjoUGxvzLa0kMItQTy6YxeplbLyKoHQl/KkbNHTy+zHMPX/6pFY/L5ZOLitn7R5BB9bI17f9HYSuiYfK6DZTjMXWy951+IYC2T65ndAwUawQsTBI1KvV4ksE/OI1dMfsG9gSVKFDC4c43NAvEA5cSiCBPCXQ//oCEmwMbq3IW/YkYZtOE5itwJCFxVKo8g/koUCnWOSB/gmihgo+S+tA3GRYpCz3R1SvWEStRQhbNiH96MBOL8V/lbvJoAhKk/4hBoX9lSAcmAxSPDYQslQ9kXkk6ur1lz2KyYxcwxFJrYhygKvZh0A29xLaigHwc2UO0jzwxePKpiYt2vBEveaLM7kFSglZGCECFFUHn9LTTrSVISoIReeJImTkjEcYrqtzZc2ZJlpgrXdf/MkT8JeYAICiTwX3+sUjIfgwM5oGHWLO0+yBO1LIgBmxWVgLg2PcHKWJUNwn2h4tqgM+kyLHyirOWjMiyV1eOxfNejFIT8PuOPBCHdaQk0qZjbGz63MPZ57+1DWYOOuoX3g0UPA5RUYHdAysHzyayubQISYX80XROWcztrEnlvTlc0F3LkjLO+6Eh5gAYFl71A9o3q3S8xWDBjnYHgI3kUGUVUVeGJkd6K7AIjE7C0JcUOvdm1c3lqMeuZWVXhclYzqPk/6EVIftiWQ+GluMOwO70xkth7iF4G2K36HmiROhdUY7eAogMHkADlDOk/bcncvuOc8ymmRiiVA0TtfFIN2zYnHJrzSagr15aI2AhUpQhJ4DdyAyfpJyLN66drA5TIQiz87ozVrpK7lZjk2Wn0YEMwiMtWBhSMSE9JR7xYPDrhT76MHFyxKR/UWIGIYQdEvowayRlpeFkrxiwFkOOBaT1jQsOTHRpM2qPh1ZUqYzujRxbGfU3iQnGp1Xn6srIQWrl9jDlrloZLuQL+Rz+c2N9PZuOLfujSZYESkSU2xWUDFGXmgE2xTS36w7GBRr9XuPHvzys4/6gzZ7nM0TwJLG4WpBzHEYh1VHXqSo6DuCvMT4VzyPTDQs3PVmqZGIKvtJO9DbqlbPz08fPXloDcfXb9yRDR8RCH6Omc/CbU916hG7NZdK7WztprObicxaOJGW+WilxdM0K5lOpJPZZDYfpQFK7vKi2KZG26BHXxwQbQmJUR/P0Rx7Io1br489juitW9+49/SoVn5IvvFwmjqptobtFs3Soap2c3ExooWCo1vrrAcLb9x+bXtzI5h4u9YpUXnyxtW7/9P//M7yX/2r+0ePu+VKNE3Sx6xfdZw/nz95dr72jetff/vVP/z+P60WK+9/8LMf/PAvAoPBV155q9uy/urHP5G1IO4IJpsvvbHxj37/a6dnl8Telpsnsb3N9Hroaf3d+88/LCS2b+28Nmx3SbLPxgs3r73qevIoEY+88qVXR7PoYbF9eXrZsSw4tOrzEaGVz+Yy60iU6uI2VLb3HD3UN6McCCkCCCbttpd2zKQSLOQRh3IkYeDdi7l8V3bX0vHolY3ti/OTYvX48PDBo0ePOv3WbDjquOp+Wq3hTHKKAeAMJSKG84eSVbGdUSsfRRPsY/UFtIIgWZUBEYGpQSHeF9yAVyJrEbBgU2/oaAQeHa3X+i+cYTPoiwtIfIWuuT4FsLH3qGgMFMlpugh4BTXS7QuJDyXAEAtPjeUEIwD3lrlWOVwjNtXIAfpTxn04xuy5pJmGC/kRJ48kMvQIbC1CQcEjxneuYMYhJRkXBNWCeSTkHmQbnF5D0olc+A3JpWRgwnGZsGS90devuZ3glh3JFYw5iJ98xNcq1lOeVR9lnygJSIwFnSyXAUxS4JgS8hbUHAb/aCMBNHBV7XAzXdzNILl9ZGjVAAEAAElEQVTmi//MlC6rWeTrxbzpQTjHnKCx8YopNmPh/ZVJSqfoCy+NBHyZ1zRO3mRedTleCH0ARKAWtz+TyT89DsQGkutYZURQZla5GThOsK2p6xZATAlZKmosbT8QPZmqfAigr6sKuJSza/AJSxodkKgthCfAEyG/lAVtthqerr/Xb01LJWzHSC4gGZYQmYZHs7OTCo4qGgX7iSYPR0bWtNHsbmxipl1j70LxcpoGg56pnyQFqPfi9GJsN97Y+BIJxlj6iegkQFq9TwWzdAGbdCvE1NgYS9C0UOH8FG6gd8aSvuaLAdROShi9wHxRHApkSI7nQ/+04575CNTsVPy5QjqeIh7JJmKXKxDTWEgWmCCs7f1ZiznBJgGJIw0Hpp6rsdzezgbVuz703UeS7QwoPwRVyQQkL4tRaZhf7RfNPFKWZB7kNIoEhEMhVf4k2tW2SWaGr6B7MVcsKydqRrkLFzJ0waf474mpImafEg00MovS/5KEUUR9HprCEfBrLAbjGUOnWhxldBTbu8QOstzKZTfX1pKZTCSBVzaEhkABVHpaWoMxLJMLICZ6Q2HmmGxrNdwiX2lOoCfi9ZBcOLIKOIa74xMRbov+1EGASCr4EP0peVLhEhjAUDkMdt7v1tv1cp2AGC/FLxjR5eXF4eFjeEB2bYMqFvFk3E9rAXlluB3JFBOYZTQU3trY2N3ZWcuvpajVFiJrB0KmOAdlnN1UE3U7MjGvPxtP4mVu7qnZIZWn251qpVqzSXR9+XYm8vptl/vwx//mh0SKl5vBw/Ks02iHIp2ZO99tTzay1E1K8sRKdkskA7OIs+M92NpB6CGz46x0dnp6Gk+kA6E8yV2379x9+6tvv+ewHdPe115/LZdN/eVf/fWz0/NM9mR3/5Wd3PW4L0OWwO2Du3fv3PiNb/zuu48/8ATu+6OuxUDFwcunjYP8nW+8/u0Hh59f9I/vPS2vJaNEzdaqk8vLciwS73XrX/zwfD27t7d+kMpmSPOgAp0nMPcn/HvXdlNpAtxaqGmkNobTW75gmjS4HsV5sbJ6psGIL0z8cgTDAgXcaQrRGFH7O+hKpgtqQEQELoY/4pwdLnoUkxZAkHMqEV2rZjaS+ZQvc148JeoMw+XI7tEPmhgYVgGzBQYlzgLwQEP2sjYTnlg6XyA14rllh/LTLPNKrmHrs+R6LVrll4BbkgpvAFWoqwIyXkt5QMJgHwiUjXzD2usEvSM1V7DEDVluYRHncx2MP2wP5esieRgkR4pdHSk8Az8Jy9OokdmXtvLXcB/SMVx7j36PbCECLlRRFj4jeYowFHQIDDtGouECGru8slMKBNGkHuOM7aaHuT2hUg0RFxq2FHIzcPMk2ooSA/8BlfVoZm8bPiH2KDFaDCDAEjPzkrJJaHcQsT4BV0fzUW/Wp2uPwWQxOkbAa0ail2bMugmzp9niJU+hV5oew0JXr820Gk6hh9XHuo45QVfjY6bZsGjQH+ZqbvLiQO4tlzVmAjCdKAoaI9KoSQGGhNx66bVIGd7hkiQsihEijKsGBksiBoE1hqA7Z5BAOoLYmWp4z4q7aJSMgDvI0kK7DspvBBZzP7ty7gzw4dDrG4S8k6RvgmEYg2YQRwutrfhjcfKwdnbe3tq9QqWgs3J7MDjpNvvzuU0FkIAFs6dNTZhqy4eN0/2DjYk75o87cxups+eYzrFC+whkny6oya9uV+4Qhr0YC9yzJgpTZx6mIxol6snFEZcjUEsSAGthSyqXJughX4RQfB9HYvj3U+9rhq+M/GR0ScCM9IhUOICEgLNh1O8SyEcJdrFGcgnHUx6vEEnN88tJe0xn1cPL8xreR/FM8pkgaGXN4LyGW7AuEL94CuUowhEAjmmadDti3SIaeYthBwp8UOgQ/l+keb6IxCAfC5c6COGh9Ws8GM5FCW8JJ3yUCsDCJgkKw73ttQYYeYOchTlMEouS5Ylsow98GPcW5WYsLPejHoWKaIbD7iJfjIRJF1G1oVgyNMdbG1NXTOItMLn7Yttrm1e2ty5qZ/iEye9iXFiXJKSxB9CtKeDjxlEuMWJMdg6mJ+NsMsRLTaRZo9spNmuErBKKBB98dnR8WSqHw5Fr16/TYiaRzsLuYG+KD53R5c2fiWbopbu7ub2WpQgRKcCkdk4URMYtsUXDgBauRDQy9/pXleaGaxv93b0e4fL9VqVav6xVPLfyrsmg0nY4PjsO1DqO1sg/ca15nNHjB+cO/8nenS0g47J2Aeu9sX71evLKemIjF91xOpJ//+Evi43ndnsU9Idc3tKzZ5Wbd16nVeh33votWsY8efqhZQ29W/Hf+s53adCye+eOyxt69vyoWDmBLX33+/94fTNBy7fzwUUhnmM8uWQS4ah60Xxn9uFX7s5YuZjlJWnt89IwFne8dOvNvcJ2KuMbtos//vRfBxaJL7/62zD1o3nzZNz3u6PX7ux7dxNh7yt+P70jqNmtPIuFPSM9fcpmJHUJhgitQ5OObn/UvWyeVYudy+LpcNS9sndznl0jpYUtRowtnmr8LRII0Af9vnQysZnZ2EhtPXv2pFwrnlWOi0Ua0NEkVd0swHoVA0KTJvaUSHhFYLKB+AGisa+9ZB9wc71lMEa4BCaw7Q30CIIgd9krVvgoFDeCj3LHeRMOb6Cd98EsY5uGSiXtcg9+EZrBhkXwx6YJT0DIAoD4ZmCczaVhKxwGA9A3XIGBAXH4AthUC0Lj5phuhrj4lmiDhpNwPBYSnSWilbUT0d7kaqrqs2n7LhUEIBuAGI4BruCus08BUc0zw0JAXkmqMvMgGYOYPDC/xRvMt94zW5tZ4Wul0OAbIJZCjy/tmNn0+bA76NlxcTPq1eMKpAUK3Eanah7NQPnFVTUrmh2z28Qqzdt8YF5qzpHuAQoOZAlk3dEhMsPqujpON5RpWJKbNBfzp/grtkxJBoTAEqMJieAJx1dnFAtELT4kUQ1hDtl5RBVJoEnX0bOg2aAxkHRKYjoyJFYOIA2zsxy8Gi5kwuQYmoEBEO4ZcEZp2DteAIUk90dJdA9lgvG8mhtOOiOvN4CShfhN4jUlsxhmIOiNpMOtUS+M8Si7li0k6aY3sjvxEOEqiV672qqUsbZ1qvWre5QEAz5Qt1UTRDxYlg/0GQryzHk0pJuBbavQn4CUeYBR8yBCX/xcftJ3nFMqUmJOREhm5DgiYYsME30FLQhlgfgRGItKOtIW1x9EELfsbKtVoxXX0jHi+ZkQlA6uiWkp4QpcpSiLTdwEEaqOhm0BbKy8bisoVjo7MId3RYIFlfexE3FNmj5hdpLlnrcVG82yQz0iHcIgtHY6n0oJNPmKY+r1+NOReMIfTodiCSIQCcdhC3AmfqUxTmGYDaZ/GgMscPYZzj2hMR5lTxxDD4kEHncv4Mb36lexFzzBnIfdfEG8UzSRXM8VcPvgPInxHnBMH+O9zY3R8IrPbzU6NVaHxUUTw++AJsvjYHwIkwfLvmKKScTHQweJwQ4gFnxKiwUddC9bTVLeQp4qf1YrNUorvHT39VfefHN7b58ic9QABXLYG6w+bXHJOSPKY6OwxgPAnueDhpOEaxiNyqExJfAqiNPpDlHjMTiPLqaJ6SxPgscWfW/jyYonEvZs70Q3b+XPetZnvxxUrY5rOCfIzDem+TFA5GhVLgo7N5Le7MZWdjO1QbOQ9qy7HNLLvfov/+W/pCz/f/rP/yd723vWZHJ2WPvlu78MJKI0TiPWqN0aPig/uv/8cSycyGauk5Vx3jhqVwjcqsDL3nzjlf0rmxfHZ0ji/+R7//1UboMCfufWybsf//zyF50/ffyT7b1wMudHi8yGyO/oFA/PEpFYNpOv9S6IRd/Zin3rO288Oa381bv/5snp8+9++x9tXMl4bRzAWB986VCk11O4mG212ecQJsrjmH5EruVw0qLuKS3vS7Xzes8e9Owghc+wMxM3lymMyPjyB2mfE6QmBEKe2xWgJpzbF6a1TiDmo9Z3IA5XWI6c/d68u+gBEMjh+pbhkqbzis6UQVjmcyM/SkBUAS6sA8ArsdDMqflIcoqR+k2wvAIuFUnGOwJMsJJ9JQGfNZQsBD4ZeV+yMlSlS6+QHTFGlM/dcQLLVoPOjfzGp1p8CbNUGgF1FaMmT670asAG7EGQ8vOazhY4CZDlOdyoIeiq+IclOrCvwECC+keq8YAjAVMpLcYwxHNTWvWRJG2pFrRb35jpSQ9mBggn1N4FMDkf+wb/EIHFc4B3HhG7Pw/I/pYSYL4RPQ2+A0uOOZn6mEtcBELKFEA5O+rOo2IR28hz6TDNxerbKFUGTDQdAns9mjlKf7y4poF/JoMDBSv8NB9xmNAdDUnva+Z1DUlpfCDjjn7qXN6Sk91N6QSywME1YwUiIYmETYIOlGzNiaiDXAaewqqZJTCsQ/xEeh3fWNQUeChjs7nyi1vykaYFDmNMSagSJIIiiGLVIC9zTHwCZZcp5WJFmzaGFJz1PpBzTqDb2LvsL2bdyzLdfBHBUhvxvKwjFJoYtssUJu8M49M3X7lbrvYOnx1FUqnyZW2Aed9N1SDMyxRi4DnBJ6gJuzhBDJgxhIfQAFV3FCIu6YGBk9cqKZWJ8M1HCLRM1kQ1ksk3AtYkymD2IsYcEp/g8PTTmRfQdPkji5CPVH0/WZaYoDu2g2NQI7T6BJ+4kdLa+A8iAddeNof1lGIMy1qtNVJBe4QZtCutELCKjC/bjpmoJamaBP1j37KwuBgxBR4gbY7V07pKvoAX4dR2xf3+ZDicIVTRFwb9Qy5MVwHaVGIfxe5vYRmg1Qz1palSsSQ4dUJ/gN6wZy2HYxrYiNUvm8tOxhWJYMejo8qIGpQT6so1ev1aszOdeDL++P7ujYPlci3vSsTpVYJpKRSbRtLDxNZatttLEBMEW9Xg4C5MNTW1KD8HX1RtSyYN2zGFwvAo42RRWw8eFqWdvpvLRYcQSYKpIYJEKL575cqdl+9u7+xH4nEv9Tjw7FEZcxxKpNO5fgEfwmw2JJOYTVktVbtty0NxiUiCHAsC/YMUzwxiHSSclc72JK6Q/OXjyZdBWFHCYRF72ff4dnYvXbO//Ov3jj+iliyhLq61ZCK9vfbI8dT+eEp5B4qDXb1+NxTwdpqE31v43qeuSDQemMzpppJ8/dXrlKBoDfvJRKT5zs8/v/+FOkS7R/tXrk/n1szVD8UW0ZT92ef//t+X2lQU/MY3v/3F8wcffPGz//B7f0Ay2bhvfeebf3D3q2/97U/+6tN//Yu8P9m/5kYRjfkLMPqBe17I7Ueis0at9smDB6VaOxOdb287fvs37/zTP/jNT08f/80v/tX9j4/83e723rXJtAr1bGYLfm8EleL58fFk1CfDIh0pLAPeqRtv/JBqWF2rUm7gO+v2lpPOsDK99BNQXbT6uxv9QjxDcjboifBAS2GBlAwhpNLwRnRr+wrKPoi2HHqmto/2bc1xCxGddcPkwS+BA/lBpI0pSN94FQTmYJP6oADGYI1A2cicYgCianaciZpfkTA2dH2gfQX5g9RCJf5GCgZKEHnYsYJ/vmValJDKp6IdoRlH8KZx5nIvxACfykISO8KeIzsXQ6X0A7gTwTw0fIqQ9MggVCtMbgOsWDyuZHxq5mFqYAx4mwBlJCVa8Sl41DGAVVCaUUGZ7snETXIRlh+ijOgYjj8A2QjHHJYFqB4LM7Itm5ipkfVcL3kNY9ALDW8lHXMAKgJ5VRyjvqZMEyZdnoaCEiFi4AENwIbBI0LLv8OoeA1wA87MjSBa/zRtggC9a7icec00id0CVZonc6TeEbcQN9LRnGQuJQzhLQR/8JfgCCkrZsAcC5OQhUql7vCYqkIOEMP6iplhXwbY2enkVMK8pWo6FE3Dkps62MwnLJM/IT9jCeQ+uhULbOYBkVXTxGC4BQ8osjG19BF7YbTicliK8Q/SFRXJDqM804mM12kPu02b/qkL4i+XVAVN4oWsXNI7XZA47Y/H7dpJ9CIUDIGu/a5E/E4XHxURv05KGfB0ALsKtEG3UARsmrOIQ5yOCGKD5lDIGCVmbdgmT4XFb+4k10rqC+5nrQkKgYdcQuLREchtZoC+vahHARg+0MMwUqpBCxrlCuvdE5vUZzrfBOcDXK3YyltWt4Mjl+4z7mU+Gu9mMjZZD+0ORcUhSGJd0D1wrUHsxqgj3gcDhoqZHerjM1yUKPIx+AXKMn3YPeAW6O70isIfnaKnSiiS8keo0Q/6E29FCBE1EsBLwhAxKspYp6Q1P5NPdSu2hjWeEyLDS4QibAiXdstvOcN1b6wWIgAHlynFqJu4yTEcTaYbqYxrPRkcVd12nHqguK+RtQFZs+9FJYxD9Q5kR1WMHWtMdpBshpCqosblMlDJNgcMB8GB5ZD4AKqM7TFCBU+VTiX29/Lb+1dSmQI4rlKwClIw1MZGIiOZVKZwlOhbEGc6ts7PWup8uKA5SjxB+EvQH+VzmKAa1OCmj6DKTfB7uOeNXvv4/PDp8y+enTzy/Jf/mz/FL715kPqt33s9k02TfOvzUREWzWz63f/B9x4//+yjD351/Og0jZvfjZ8n9cqr12MFO+xxRZOhu6/fuLp/8Cd//Sf3nj1+9fYbkZTvm7/1JhV26rDJYmk6axMPTIFs8gavXtu3t/sfvfvhL977ITuZuIR6q4Es8+wQn/D9gzffDPgX9IZeSyU3tncujqtHtaP+cl4sdart2Ssv37jxRrrRLnrpKDGdXF/bI5an0jvu90u3b28cjs6enbxTbR3u37pNlFmtUQz5g9U65fModUeJkItOaBBKhucByxecLEIOOkHTAwuJjOzoZr1VntZOO8Vc++mN5q1bmzev7d1AYJDXXq4xqtAiaeG4Fwhjlcjn19neQW/M647iO/rk8J68O4T/AZ8AiSRedrOAY8UDADOnMIviTbLJsHkkzYNXWANkxNdaYqtjm0PAYILAQVCmSm8GMbULIW69r2P4yfYmWkKuBl7DAKDe1ZFc17jvuJoABt8YcKxeTpLfEP+pGIK5Hzma/UyYTSLojPndqjXPmJgQQIARGvcAbWHYxVhpuBOGbEwGBAKORg57bBiA+AEVQMUGTHwRJnqKzsr9IJmRZunKVkO2wR5FvzzoXsNlThjGSvYH+CT78ybSIAYI5GvCqJCsg+4IEYVIjvAixDQZnnAlUQZ4KgWFGhvEpvDg2Nzk1hb6r2wFBrzFKMUJNFU8v0FZ/eBtvaFfOnkF/StOYZiBOISxkzHPnC9lRYZvcHx1piR2eAjXJX8c47Ci+YAjM4+SP1l2OBjhxrBtlfzAngFjVhSWgX7QHzc7BRaoB6ZagRgZhKySA8wNZelDp0NHVeSroowQYpkRwwo4JBCNJVPro0A4k8hbzjlBKrAeVn7Un9CCF2+0zx1xLiJWxTMcWJPBkFqhASQ+5/ziojR1uvf39qLhSKndCSVC2AhmRC5LX0HKXqIrTABbVQUAa5WHxe7iC8EBSYOSUhAXAocJ0scJpIYD8lfDGUhT8InfI6HBsxU2iaMIY6GT/oe0g8D0TOABXBdfCYFITCY+E2xPMdIJJAos/QNr3Oy1OgS9WpzntCdouzKiUnKL2p3aKBA4C40dCg6DtWeyAMPysST1JsD/kT/M7sbdyvzI8Yukod3BFzdUJVXq18IA6MUewz+OIqI6+HzmWuDb5dEcs2jAE0tH04VsJJHgAfDmtfrWJeU+u62eTSuwdmfSrg4qxcblqNYOVKhBTUIQPBw9F2nJ4SKgk2LIbkoFkDNWt8ZU7Z9QL6bePa91zhtWg05VA440YRiaQ0OAmnloicfDRcRjMWvoelAOpmRmlb9lS6Zm84QVJh4pEoiv57YL2fVIKCZCZzLYE4QtEcjZ79VaTTIhyPbS5l5MeOP8snRWqvap9uULZeORXCJKrbWt/ZsLMlZI1cefv6Ctx7jRaZ2VT794+PnTZw8a5xXP9MjhSLiatdZD78eJjjcVI6Yr/unH9ypn82/8F//LvXS6EIxFszSmiTucoWKp/Pm9e08PH7/+2u2bX7mztrvzo4c/+OHnf/PTv3vv/Y8+wFR15cpN57g/HfchasI0AzbpIgmyhX/0Nz97+40v9/vNR4fPdg9y6/ntx2fPLyuVD588fnpabw5b22uBf/Ef/3NfwPmnf/bHU4SZcQsTDXJAv94pl9955bWNV9/cgyS7KGDj0a+eP5sl/i2u36++9Pq3bn/1sHTsckT/4Pf+E6vT/6//D/9HvNLrm/s+D2WnF/XWZb1X8nZDcxcFQCZ7+fTAbvfx1ROtQVx1mCputMHtlWnyVQai3EReR1Ihfziq3cXKUdVpMCU5Ew8k6xUmTiy/iUMt6k1a/dFJ6dzuWjjDhRsE9CkaRDsE+jVCCeGmvCHtn4a7IAJgATRIuEXC1C4WggNKwBFbzqC6TA9Qi7xgBsuACjYHhi0uDoTxHpwDoOYtDuOWEIykH94WUHEto0+KL5ClGqJslzq0CJBw8w5NCBDZwUxzLLiIkZ/ihhUt3EAD/AtAkocTMwMpScCd1BPkPpn7J0h/av+9AjIYAPWFsCLDTiAqZFIGLRpfMSEkebE2ApR4KGM9lxtAsj/X1GU5Dvgz30CpGABPws+weqcD8ph3eR5KmUy6Y+wWfWIHGR/ivx6UUaH3MmvgqW4ssF/dnmP4WNiuN/n14vVK1tb86B1+iE8BHWgS5g0Zu/WO4R5aDqN+8RFTrbVcOX4x5Tsp9xWitxeGLFZbVfdARE09T8s3YEVEjIBy4iBakpBHG/SfuOyhqzvy9mioMCMSEjYt3rJiN5oEDIP0Yw8v4sF5jMAh2kjwOZ4XcjH885Fv4pmTBUTYHt1JGDFhnrPxYDgAXAAUXILo0PTK8kTXAnRyIFjVocKfTGgkHKXKbT+J6okh3JvJBAKxsAwnjBeuQ+YX7Yvmc2qY0VmRh2V1yLWTwYLaS7hz5PIQnzb0iFgJ2xBfhFSJMIHwsF8TROCiyztaC0zMH2bQOlmr4cTy7aRfJAFPLqpJkAeFUw/G0SeVhHU7K18WFw17PsVdzpRR1LptE29OCVJkb6Qpoo6ZIOwj2KR4aObITYMUSqpmYvRywSQ4lwMaU4acGKwGhEbqrimbwIKgii/clHTHxUihnlg0EYrFkJb5Q4VckYtIZYrFMluY0HNUhCSEF3qkqkmrZ7UpmENM0qDXslqnjeN7jz+9/+jzav1sNiRWmkpxuI+l4KJM0zSmVrlMhUmNhhKJDglgK6Nk9EXp4rJcPKki/vIkmHeYNFXOYgMjEbCAsBCijLgEe42QU1gyOgiyElI4k8GTSxOk05wvup5Zp8R0KpZkjTCEzQYjCl4MJxiqBlS8rhQr5JCRJghIzedWs1o9Ojs/bXZbas+Dgu/YSUWndlf6Ktk9HifNr8hiK7dqh+fHj57eP7k87HRbxBJ5Dr6Vu/nyXt/TeHjvqPjEEXXWMFnpRcTxX/3f/z/f+70/+MPv/GHP6v383V/96pMfVipVq28jAz1++OCtr3+5Vq39+b/9S1o2Q1TtcQ3UGc0a7//s/Wgos5OnyBodupLf+Np3vYvwf/f/+lOq8t26eyNw+oymDWejabNmJRLrV/euXhxe/uWf/eDW9cLrd145K508evjg8bPLQNpNSht6dK3asMqTz35YrFTLX/nay05ALextNJu/+vT9g8T6lcLeSzcP7tzZLdfam/nUo1qbiZz2h5Xnz8JE+Gci1NAIRuPJRJZuGHWSi4s0BKsTUAKxsEAgTyQeZB9T+rI7aRebx2vpUKudIEnY444rA8zqUbvES6mDGR2ZKWSKGIFDxV9I57cK29lYptS6RIZCgBOKiPAF7gJDxaSxk2EJhHwjogiaJHtxlBPIBgGgAQRSHS+ogap0xOpLlxJv4H2xB4R8TpcyaVCNd4ViEnkNVPECNgLyG/xjuyDzg6qE9IdCjmjUGaURGOYEfLlkZkLEGIUQYBDzSRTiOoYjgUpiRdrJSxSCMdIuSCENgMfD4KNvysKQfWOsGWrToTFIouaBNACN2LyQtgG8zeXYE5JzXVl2NLhfP6qQmRP5AsJRNfQkvIe0iNaM/s92BVWoY9UcdVU6Rl4NxE/EZGz2foZHOSel4DBizjTzwIX4khWLvQYIIGdpnmCOOm41cSsw0zy/OE3DEO5rGuGlgmOZ2QVzOkjX05rCF9lBRPLI4eojjgMTHwyZoTN/5KdJRsWIjmdSOXdjpa3JwzjEFsq+81q2BzfJcEpWr7yg3FQna1SGUrgTcTQBqpMso3T6I0RH2iEsZcE5cD8PjUZHAedFrYTBgGrPtIpRPxceJuTHKYxRozGa7e/G/Fbb0Z1hcgmx7LO+J+jGZjfpddD/9g+2kwll4WMB8HtC7sjYGZig0SL4ExGJJVZSKYsp8wSLKhbFjKDfMN8IFZJPgBmSk5lvcpbdCB1YN0YKzF26IAseBrECzcGxoJQpdM+aMh8speIxmTlsZn65mYfpxWDpGTy/uHg4LftogrJ0a+KUV09vgLGsQFhCtJkQIkhPBq21NCTm7KQz+Ugkm4jBt6VrY29fbWJjWGM342VEo5FrGF6ub4RrHLWptZ2dRCGXyKUJDZcKJ5+U0x+LRFIJNjJmW1gmSw3rIkY0mUkjU1PMmgWod+7s7GznN9c+vPfLy/MzRCMui0SE+CXH1mwxsAbFy1M3SbHROEOmodhFpXZRrpbqlGxlLv0QK+khmO2EC5wqWU5tcYg0RUemAC/F5wk2IUKMxANKV/CxGvZOx9juaQa5tbYZ8YdRX6AyEt8Q/sHhRqtdrlQva6UGYjNd+GQftYeDbqterWLjw5NML6eFMxImaw0P0lw2b6uLK2Y265er5cPT54+ePT65PB1MekQyBCjl/823dmaj7uGTI/K2olDzQLLlna9v1jvWu8Wjiz//k997+02U83g2+vjh869/404wmKA6MyFpn3126I94gGmyXz797EeOwxJ1xT+53/j0k6evXn3l1u++vpXbwy2NOWW26Dj6jivrqeu373ij/nKxRvAyubibsWuvX8/VD2o5qjfHQj9997Ofvv/vTyu1dDqVSoUyRFpFnbGD66cnz977Rbf88eLHo3tf/crb9BvwUE581B1N22cNK3BGH9s4ytDxyWd0kPvWt7519/qNf/3H/y25BHciL28VDu6+dPdg5wDT31nx8JNP3iffBZFhQEDDyKZWLjX/XZ4wEDOZ9kPDy1rXd3JKUWM7ldnpUIG1XEHGWdC3qLtIhgkmiNOoLejEmhaAFjez+dNyqD/rsXbGAoFBFfqTYQAc+nU0AyKAQEpmazn6leO+YhECGYNSAI3wD0AwUr8EaSGQ+c8fQiLO4BpIbuZPE+UmAOE2OkwyCSfIhyfalyk5RJ9eKjeQJEj3DnKiseI7ZmEkd7Y6ZcIwZ2PaIphHDR+xBrNRlT4GG8AGgkzDTzEgyfJyUWDzAdow2YEP3JB/EAkKD1BrkIP7ClQFtBqIcXGDq7j7wAzeMI9pBFtGu3rDvKuMATE3CT3Umh4STTmHceGIxnLdsUD/vglAYjRCe4nNEjElmzLjfAmh+dL8c4iYDTfQ/BvkMN4ADdToBppCvngGrmNO4ByJ41zboD94LgYAGwB0MHHwEWdgtcAy46NpK63mvIRThKXKwBzZe/yXCg6Jj2haNKaqksz9OE70LdMZod5um59IiTRkUmSwnkKPYB6JO2tZqbxA2KsXlgx4UrZMBi6iqXAtxqL5fH5vdz6YkJkYDQRoZ4iNB5McMiRH8vj48ehGrr6xM2+LnCaVe2HL12BKqGbuCAjkbVDjpTXNrEcH9ryQTclcR8yyygdxSyJ2VHQIKYHnRVZl+nBmKfUPuJSMov8iLGkXFJIawwFGeOXJNHSMwE3M8iJDUtd4XsrTOX3qYOkhs8RUd5jB0EiqFeK5lB83doat1mLUGPVQhv2oiKqji9lDPX+VowjVcTPROtZ/iizMCsn4ja3NG4pyj2FlB3mVfkcFJqiXXqZzN0IKNhweQoV7IRMJ0i4qKlElPkGHln163K5FMkn56yU1zBXFRUV4RGOMt2xXfH7onyyNDHxiCcZKR0HohT3ZpJXn6dnh2ckpDAZRUfXfMPThsZqSEuxizNVGZUKwyWJGsc3LarNY7fRpb6NYHVVdY7eYNjAIQzL74EmGtmACCvr1esM+BXnFg2k/Yey+CAErPBibB6taLBbZ3Mqn4lREplYHE0T95n65UiqXytV2o9ShdmWVEtbK+GGvjAjoH6M7wNIoYZ2g3ppjnsplQ5l0wxr4+73ObNoYNivV4snp0WX5kpiFUISuV0EyEjynz9ovvX5r8eyyi59p7EiGXERYeqOBvFWpnp29ciVbumw0reFvfP2t7/zGm1/72jcz+a0fvffzDz/7/OKkvDi3H+wef+3LX0bpdXQc9x9+nFpPpeO4ghyPnzx8/vzpw8PHH3/2cb10pk3r9r388qv3T47q1QF0HfAG3nztLZ8jxsMh3ZEYceMbN7fWDr548quAy02h0/ZpyVVwpHcC3/3eH771e5P/9x//qTVe3L//GLudOzhMe5xdGjX0CMicefwBQqeenlVeufr2l95+pXqR/tWT3ep7J8Qg3Dp46Us3vryW36S20/rONqTR+3hAk2Bie5bLQal8PqBgN21RfY5EGNfVpFLHvDFrtqq+4FOMlV50vZGjV7InnVk2Sf3QBO01w1TBddNq2YP/46x1+vTyKVF5YJisdNgnDDxpT+DoF+OXlC0Rid0ltOYn24WNz1/a/vphXulDvswb7DpxAT7SK7EPY+TkF7cw7+sHh4L3OohbmNcAIduRm6DWEk4fDtILcxykKyQoRlg1FeJx6uoUEFL5/QQOcWF2PVuH+tpK1cEBBQki0SCQMyDtSLEXjYOHYdDiQhowb+l9E8aIiguf4Gg9IgdIVuIMnhGkZnDiGrqQ3tVP/tIFeEcuEGNYwBBKqAh10bwEQGM3oRGScTYI4nWoNqruCLgzBkn2GoxuokvxpYnhgroqNxAD4Bd8SksgFczMlD7XKPUIRogXx+SLMaP0YIaCw/LNFY3Kwg3wY/hh+USCxfx0Eg1TAw4PEv8muMYxlhjLz3huo5sj9QOLBvpVbVNNclwy+xA3ifsNHqA6Z9T0Mfyb0TF07oz/QxWWlv6Ak06LQIDmhAwbzNkAghtTzWjUKHbwYLpC9PXGLETpGSzdQTBo0rGCmOfmS3JItzcSikzoktEFntLIj6ZdPrq9pgpZCjDUe71ZeEYtOPEu1RKjGAhXmlNcOIrdDb1w7kTQBiOR12AQJEoxoRwLu2TaWUii6TTL6vg1GysUhdGNAMQJojGzJUZPYDTZXJ7Rgibu8sfKCYAiOKRPObwNJ7paHYx9jg6lfNoWF8aDAATjoWYJuDgeSuhHfdX5idGJinQe/8HW9lsvXb+6lifVkKL9I1W1whCOlI5FHORHVJhSmpfSXbzgdJhoGAvPRrawtbl2ZSe9tU6tNU+YwDIRA6FvEAmv5tQMEM+mJA5uCfn+lZ0hLQgyokTTkGr3pcvjVvly2Gsh5S/HyB5MBgYV8X9CeFB0kYxG40Vt3GUxh7bGi+meDTVRqxtoiUhPyAx9CJO/ERngXtDUDC8ZTZko08SzQlWhfDpJDBEJgJQro0GZm4bF9PoKkLQUHOLWpXTQZNJoVIvn57VmFTNPo0UWU7XRbaEjsp+p7RnxU5I7GouE6F2FFEdUEi1yq4NZYt33nA4Nl1Tf6xcrNejBmfLQhQA0cFIzHGnxsNrPLeJTV9rxcDDPOgov5Yrt43XPzfAw+dsvX3vrzd+0HLGzWhPjZ27nzvbOy5nk2re/4c2ub9UvB3/xV39F3b/lxAcytuadpj3eiKbeWHvJOXMXrdPz4UN8K3V3N5AnM9xbssZ//MO/qfa61HB9dO/M6wyvB+780ff+GWas8axPkEAukf7H3/5Hr127DUeovnX5y09/fnT+2aMH5ZPLDzJb69uZ3U8+OHLTty3jT+dCEO9pD8/NMJle+hMhIk+fV1vkNb31H73iiyXf+PrtRGr9N776R7/7jd/3DWl17UZfjmbT9WvFT5583KhWZx402lHYP6a/CSoWALmZ8WXiDrtbv2h4nz4/rdZmFF3ZzsQcGL8bs1F7VK4FMwlKWIeDtIT0ystCh7JCeuusWRrYE0QI9jPqM0qZoidwF4FPLL3eZ43Y9ewlgSG0soIhPhJQmRMFQgYVQYRfgxo7Sp8KsaBYaA75XAYbQTDSHVZooI6PhXU6lg0LfBAmwltwAiiZYAlai+CkQ/mHajlW0X/ItoxSGZ5k8pH/C2YRjUE9Wba2drw8GFAGIRyAo0QepE0DVtjxuSj0i1jMLx4HNx3D4fbkuwiKGSugq81L6Kf8qOaxYYocx4UMgLAjzGEwDfO+tiXgjhuZyRgvLEAetASjcV4xmYiiwmeJ5AJ8LAPCft2Hq5np0Y3528yWnp0/YF//8IKnUei2GRgX0jKtJlUjZeoYD1MrAzf+OIw/XFf8gJvpkgAK5jLyk51Y/2U0I2YGcGeo1IgnIsy21bGDcpTG4o92uWIAuHztidOakh5BKx75gRgq9+PijF7qkoYvBQpBM0yNH7+TmvL6CH6EmqZkAlnxyFOyMHbTvgjIIzqO6wTiweRaYv6gOuiPSfokUjk29U6R7Ze+9e0Nu7kIoo0syWIC41hTP9WHneEgxnC81fzUvDDDuJJxAGHBogIgYfgLAsdxWZGgGpo5B9JTsWoyZFgcHNqsP+My8jKcErXZy9VYfaIGqEKLh0mYCm4q04KEKg7xQGQ+ieood/BJmOUMsTviC1EhCPEEUcoL3Cm6gPhTAuynct8qEUwkJTLEBeIleTeeS+W2ctu5ZBqv73hSZxcBtHKxzLCKYxMn6RkBGPRn0zlBzHg0vF5YO7h+kF7bzG0VQnFaYKBkYE7msvCLKSPlTwr1tAbd5rAHs2POR9RzW2AWI/AYoJ9PhtbF5dHzZ49L1dKi31yPh2e44GkPRtwUwhEuEArxsP+WoSH2VAqvyaGCOQszFxGABH1AZPBNdD68LdAsPFXKsLzq0JrTQ/VULGme0WzsHysXzzEJe7HYeqK0QoynUF9gBCJDl5M8NZIzcEs0WiQJV2qNcqPTbPX7lIMlPFhjpnRPIJRJZguZWJwiLR4XwxgunC0sksvJs9OT2cIOepFX7KbVd4ecdCFgkeY9Chkw107P2a+qZ9U/K6QzjixdkB0PHlU83sp0nPqPf++fvXntpd5weFR8enFy/uzRUzqPORY+ik4kMrHNrd39vZdeeu3LP/jbHxUvjkeDIXbameW49+HDQqYTC0eQDAeNPkSeyPki7lh+a/20cfK37/ztrDuPBpKZyFZAtBja3thbz3rK5frcMcwkU35Up+Ws2x4Qq3SwezceT+OveHj42dHZ03Su8NbrX4WvAXHkDU87HX84tZEPzrwToqGiiDFRN7zks6P3rpMlfGcd31cy7YMjQmHUaaC3Y8QZ3t65urGxd3x6v94tExH05bvXsuHoyJ4F6A2WCU06lyfd83qz3a/PLk57znK9RjOgdDYbzcCfrKENgPZbaAWsfzQeXgslMsRPhAMx+jyBvRJ4WXbMJospjaxx/xgyENoAanzphX4AA4IYyVbmWwrCizAGgEX2AeGXdqpOYLNCuJINDVBq+4K4HIAZwIAqBiAYAAxC3kqhrlR89E1kNOpCkEPD3SWGsOAo3GxjRCtB7ZhsUOL3YQALAgu9SDN4wlCeSZgjJpF9rqr30rjFh8BvpDzuAk0KJBkGXxwreiamUEKicW0hZ8kgRPiHCc6A7pVMtnIIm0QBY2MxKoEwkIEzaPjiWIyMOxB9yxSIdyjEWWkNZB3hdyWQFESCuwGmCrrSjHJvLqAZFbxqDnQNPpA4aqaRv3lW3UXTCKwzS5pc/tLTcCOtkYbBtIP+K/uPmUSuiztBXRBCWM3D5G+yt3lWTjOKE4IXtnib8rPTvr3A34vzA/CCB4zGzuHIa5McR80ocq05ntFxcYRqJpIBmGhB1o+ZwZ7tcdKDmdtRwROGx4zjvo+GVDLCHwpkc65kctFU/G6A9oEkeU1nzTYZLHanv3AnIvFsjKIZcMf6ZSWN+OjCSDXHkQlESv/E3oF048MfOcFWksDAYPVwVIciccCQAOAwWfMUjOyPIzElqGKLX1JIRhqTkcqZP00QYgevoFk/USgE5zJuLFBUDlEUERRFEDDPojxZXKTgIqFQ+LK1PCwbwoRPsggsgFZRSw9KkVv1LjL5eJR4NPrOzZbdTr9R71TLbWnRLoSRpU8hRfQgS7hdMW8gTWzGwjOMwpiofjO04WuLPrSnDghDeVwwuLjJmF3bWN9e29rZ2StsbPoInvFD2TMHKWZoldTWnk9RsgxhLLr9Jo7UUrPS64+wklHrk/hA4kuT8g0gz+A9qXN5QJUwqqsIRUMncVaUex50uoje+Ir71OIZjFW4D8paVXPiwaFxZH9mDUMmTivkGqZIBAm1MofSr7VDZ068+kSI9P2+dq8fliOGfrRR5lj7Hm6C9VTe7qllD1V9AhF00G722pVWtUcnsAEFSrHFBajOHQ2lSJBeS6ViIdQzOoQN+lOMviGb1G6SHewOBcpibGUu7CV+P0qvoXarRkXVKHWyMRc7KhDh/4+w/4C29Mry+7Cbc47v3pdzvcoBhULOaKAbQIfpnh7OcIa0Rgyy5CWb1qJsLonWkqXlJdkyTZumKNLmjGaGw+EMJ7B7hh3QDaDRKAAFVK5XVS/n927OOV//9vneA3oo2f6q3r3fPd/J3zn77LPP3v/dfOaVc8/+5n/06Y333r/+EwSZxv6uB0w/uyWby7Yr6XZhdzSIQolv9/AgGhuP+CMzodip4NibX3mtkEu9V9hDORYxmqEmXqw3S0f+iP2J85f+w7/+v7h5/5OvffUbS1NLf/e//rs7a3mE77qyDshsk9/s7Ayuf/wJB2ff+OoLo3FfyI9zF9G9dPu90KeQeRiKjjTapa++/o21jfuHqa1LV65Y9O5/9lv/9OPPfmR11GHpmJ0zpyZHZuLo7YaiMbZ56yu3f/uP/uHVi3NjYnqWuXHzfZM+5A9Om8wesfBtm4Oe4IXTZ3PZ5dzNBDTx4sLTE6EFjytu8IQa/Vxi59PDg0GmmMrnW00DpgCGsmngN+jtHlvEa+9hQw/pZxxwWoUKW77LvgOqylm3rVnqKpafUa7ReuF8hewyUYQoQXOEyDBHhFYJP6v+q8NR+EAhCkrgItSMqBJHJB7ID1HOYUAQJnSKfCQDIXDyWAgf/5X4HZ4X3QFChcigUdQZ1HFbZu3is0mAYVkHRBVJUOHAH5bjs64ZOACx7cIAu4s3WVEwF+gIFiMOrtm5i14oE1i4VOiBsOtwPlJ5VSK/CIXVp1aQCNTXhT/njrciVRMhDTnJAidPxAyCXQdKEdBcMVtjiNEgmQ3ckITlDdIq9J1Q+kI2FTIVKFsx5rIKiv2B6P8oTToazs5CrZykokSpo3QQ36pb6DUVKL0kOcmSKX3ITzn3k8iSnNbRJPVJ3djZyD2FqjSCeuAwuN0mdKCdYOPwiC6Wl4N9gsjQcUUE6j3ukNgBiFNoOQDA+6IRE7lKx1RDSizCAukB0jAKeFeyn5FFRAJlccaXDt7lkMHw3ukl+gQxNoeDnAt0jYOWydEx2av1GqFGIOINPWxcCqWsPShHBqwXCG5RkkXDlMY0HE6/w1KodbKcC/Q7iMzBt3FZrSA1lysNh8ne64KMQjf0XCEbQndYeM4hQaQ2uUystm4gULwOvCEh2FfGqbJxoR+QXynBCIs8PIS8Mug+ki5UlRhznMlLJKFvvEfZxbAASAhkjKfSzWwe5GQHeoLRcSjsmL/yxDDctyKWR1aJbgVDBUvgZOWnP/p0d/sAyYTfD/pKIFtk66aDoLU6TcTbHjbeftSv5cyY/xDgfKFgz+ctaIqB6YB/9lh0enp2NI5P34jN5RMkVDMo3UjM0CfsIsTnMAtPOejUsAXhrN/uBPDe3WNFQxkE97Hwboa+w+v1+VzshkbHJpcWkPLwikS2xTl1q46f+SLyg5XNzcfbW5kqqGroHoEEw1BjgLJlpb+osrxZbXdLKKOK4cb6I4cGMkqFV6R7GRBsDMr1Ck5rBf/OYG6IYyAT3ppwfy7ZYXOHQmS11mih4dvMVvI72aP95AEbLdMQZ87Yt/ndnpDTG0TLy6bvVlqJTD6VrVbwPGfUuXV46gPcDPg+XHQ2mk6wIByYIZsaKDtlCri7Yn3qtWqmyDNOh898mN1Y2x45c+ba6ELoaGsvMPSDQr1lTFgsnLyPdKebqYNDBm+5Unz44PHC5HBsdOG9j5ZXk+uTkclnrz3nd2BvEGRtTBSPkEwmswfrq+usr0eJvReermMxODIW2XmcHz2tmw4tRN2T6NhsboOqsH79o4quX3zzq893hqFCpRQKRq0sDWwsW0PsgPyeGOfsoeDYE5evxmLjj1f3bQ4IshcUPI+TTWh/+0Hq8KAcPzfa6WXKNlPNWK/3u7eWV4rTnVBkumbS3z68Ge5VYu6ZMcMIxzq4gZmKL169+AJ2ND2T8eLi837rxEhkVu/05cpHnr7pYCN/6OgUe3WzuTs5Pz4ZCeILJ+x2B7HSL/WHxV6/pG8au5UBHlaxgCzBJbstnOA489UGg15pwTETlamsSEIgRRymCd1kvsuk4P3L1Bc+W4iPTBvekxA8xg33fDGJ5FPdQ36FjCnqxooFdZL1QEKIwvyUWyGZsmiAeiijj0u4cbwv6VrwEuTISR0qhACWCE9qaOEQAcKGIof8ZwHgk1M9qD/q4TCNEDm0xWGolIRHqJ6QbVFRYFALEZN6CosjVac5EiL1ZSNNdQimofyk4gjelDoLv5kSssRBI0T1iF9cEh9JpCAJiMCHyUPPUS9puTKyIg8KISElqI6TlU+gB0TyzmIKb0+ltP0TnUq55K+6hGoxE2VaqpLkAfHpH9gx8hQ6Jt1Lg5i8qghZhtkZK5VeuZFAWorc2gp3xjaPQ3WjFYoJxDIklKLJqtbF0UazpmvIcYUm9Nc1W8Zq21RpY5iOMFzOK+kuGiaLKe1Wr1MjldQVSbCoY1kGDgyYZN2hvYwV0oAsJGeckEdAFU04UOl3GmJJSzNRI3Gbz1yZ6bSM2BgMKqWdXJZ88Uge9jpDCKGHXkPKYemaAtgSuywDY6Xc69tcnsnJOFa05XoLKjzm1TVrCGN6oA9bmUocTECEoNvICnRgFqGbgyYo45PXwWgVFWG1jAmOENUWS5p+BckGIxUZI+I/mkRP8scYlR2AHGYqsEDsi2Xp5Zxu0LMN2saGb8p14cVx8OncIZwgcKRtE/NWnZkzn/jYVGLrsNozOz0+tILefe9mHhQAiFqtaHBY/aGAowsaGyrcwJ52vZ2eJ1z1FculUgV5pt3pHBsbicZjHq8XBRNUbASEE5FPB1XiUqVaLJaKiPZtArDqxrc5QrHx0QnkASg44y4LgWpnCp2zohPIAfwj0+nswAA+lXw4Z+i3Gk02CeKEOF7zBEb1dl/78XITlDwEaLw3BiNvmBHF0Gcgy6hF/CPaYmpSCGeBCoCoWDCNRT2cfmUQ4dq3lWerrgDcPfVWEECVXgcMGjk/4KC+O6i1OdYp5quVRDG5u7+dLaZQBBjxhQKBqNMfNgfdOHKo9yrZUqJQOUjmYPpbA2vT2K9wkgykih1cFoYYeGlQTKOp1+hynOw3Ovo+f6OMz8i+KRoIIr78/N2Nz3+04T8973b3njh78aVnvqar8mod1Wrn4Wby5sOHd+58busaT88tTY3Ob0WPnn9e9/En19u6wXPPXkua9t94+qvx+Pjtz2+lCzVs7wDq28ulhms5Tob/23/437/yxt3R8dEnvoKdHQtP0WZ2ByPWay8txL8zx+Hrk0svnj17FgyAzz777OigMDs1BwjMo3tre5D+aOjO7c+wM/o7f+t/lRlWf/tP/qjjDv7v//N/dLj3YP3xvRqgbL1+oVX85AfLgIlevBRfOhOfm5ls1vLJfNM6avRO+4u5VLU9HINC45YUgEkjGkazszMo6VqHln7AGXObA06Dha211x2JWy+WFg4ApkuPejgMjUxFI5MRX9Qx7HRK+xkMAnDJ49V52bKjQl+qNDAhxmc8Crwts71tsVVBCmEm8IdyPGdqAuUvxBHWDbrIxS30CXoAXymbAUgh234RnqinimhCAvgJTRRKzmCRqcUYEm5YSJoSYshT2QQgcBDCSr5MUyaeRl4kL2XBP9C78e8nnsNg2IBvRIplREOh1gPMEdLL+TbmiDrYVZjWtrDemP1DXSlP1jFMkTDsxMS8h/qjLApSF8XMyKIjxEFoMuNYKqjIrEYyheNTahxCflXTGOniLopmyEErFYe5Z7IowSgroUosTLnQfa05whBpeaqyILWEs95jFwbsqGI/kUyhd6KtGdKz5EdeCK9VbeQnGTApRYeTiwBVX2oBBBLNk06WdQ7YA9ZpKU3tA1j+hJDRFPWJyizYjWjKWLkhAtsbtH3YfaN6jWyhDKKB8P7NFph6Oqz4sZOoNI0VFgAOmeQsRb0UVTKJpXU0kp7j4hvlHxOkH8N8HZZFuPZAxMQRoyxVMoSAa+f43tB2grHRrYtFNir0xi7Iaw4MBoy6eBR0M4eh3RhrL3TkrLnmMXa9OCfQO0MBd6/eG7GYIWdtQEKb5ZbBH4mHW5X27va+SV/EeQyrD0IoAcaEVYTUM2yRxSCxMOLMF6UG0VqnDqzj1FhGhYj24EsbvER11g0YvTAMHFXQQEDHREOLFycqs7BwssjR/6KuJKs2oh/WKMzxO6fmYxeePQ9jOxhWsKG1m1xWEws6lTF5w5OD54HicaEZ+pO/+AmuC/Cgm6p2OGbDdzWnnOy52rw8DrOJhVKDHUiCUAQDRwPu2Zx+v9eDE1+7DYUfpgYjH9xm9Eur1eJRcg9NHty8OuyWkUiIPc3o+JTTEbZYcZ5lR2EKFSSET6FGHWQLuAUmoVXcMdhw+kYbAZJpmVtdhw8NK5ulhq0VbtPKlQE2RmyDeG1srZCyywmDgP1zFs6Rt3BEDHZWR9lKyyAlmBElnBDyN233zLa4Juim2AazhcRSW1QzZRqKVxgMXgbtZqNeqTdQBa7WWJfxTxAbGYmHJz1ub99mKBiwl6qX6sVWNdOuljCZB88dATS+L8XtAGpi+JVmy4OhHxOnA6MCKF8T7VsmgMfmW5g6YxrWxEmBCdVhs+O5Sy9s7zxymyI49R2dHDs7/9QHN25YDNjN+U7Nn7G0dWiXMhN8bv/U9HShml9eWcMxfaVUA3djYnxib+8wlS30842BqRMKenP98rCk0+V1H3386esvPeu1hgr1bCaZfZjJsv+aGY9fudAJekYMF55LZVL5bH5te4Xz7+mpOZ8/GAnHmWdzizO0/u6920AgnT01fvXy1Z1c8YlrL146ezp5/vLm7uqnn93b2U+a2o7ebiPjKY94fC4jg2AKL9bJUgm4WGBOGEW1sq6kz9rNIKwCterz+yYWlyqucIdzqGZ1iH2Uo91H5TYQcl26cHp0lJc4ge1Xw9mr2OpWwI1qNV233jpg2IOw6gVyRTQioLmII4HUxEbebKuYHIizkKEI1WY68eaZQFAuVnph/mU3INwBdIU/oe9yDMewEM5JWH451pVdHzReUX8mJGRCuGT5EqIOyVDZkkTGlZBE4WG1GIwu4oi+gWQvlJcxzJkcdA4v3gPefFVfa2CRZKiwnUWZCPLISEVC3UPvA506GahitAj5EcQeeHwGMGIeZhGsKfsYreI8pCRpIX9MMyHVEgQRFSqquBoaLuyiVJmRKPWEOMjqxHGYkFSh1bREyAmRaAXCXHJnZjMziMlglQDpQSHTQodELAIJ1IuaDQ6qkD8IIAFNV0shPUQquC8RXrO0SdfJjkLehvohhavup9kc4vFURYfBZ0PBcsPWQPRjZUUjRymRG5ZUsZngXNRitAMzAFNIft0ugIK43u1gLF8F60z8p/MflKR6hx42lpvmUsdU7bGaysmNeneSs6L7Qv2ll1QPcMwK0WdxRUWS4zUOCwHBYJfA+5fzI84VWM+MnYap3QWDqIY4QO2SUGGEJ03uHZXtTTzEAkjEOSwKhS5ykCPZOpqHHBYM7IZqK6+zD7wBB683W+4fHWxOeEZGhu2g0xS26AucQnZqQCE43RY8bKH/DsQBnDVqPjh8h/xTU5H2K4GbMLCySLBsiOyuMUSxtUVF6SMOimimjGM4I3WyBSsh3S6jQILR2rHhBoyhBVfdM9jdgBT4hgNbvYrDM7ueZcE9tDm9VpMLnZZeu1IfDJPp3Or6Ou7q2UiA23OYTsN/o0SE8gyqM3LiZJM3LksWxBvhJRso9F9QgYTrZSMlbxCALOoAanS7VCpmM/iR2a41Kw6rCUQf9jR4PRqZcptdAazRcagCynKTQz6E7viTZ71sNlwWm8/h17sDassIw4NaE6owvApnZ2hZEG0ufTqfAFh92EfWjif6MitNsZRH9iocl6L7cIdYtkACWE+FGpvwyiO7C8Y6OYk6Fur9dApcCFq3DDAj9pOMduYGDAfC2Q4SJkD9+1Z9uZ6dHI34IY7hUZfL3+s3Mo1Eup7LcEQMgIVY68NXirdHVi1mAYMXhhf4H9zf4q8Gp7m9TtOuc6IjXsh3g5HRd77xrUsXL5gCDk9h2JkNe0+def7v/Ud/fyoe/+yT61h3NAfmel139fSTwaD/W6+/DSQ7pmTVZo3J6fWEsNJDlL+58vjB8se4ddSX0RvQn7t88aXDl27e/WzrwQNryPSf/sd/D6byn/3W/9MVNFy//jGrDmvzdPi011UvNtOFUuPPf/ZTdOwS+eq1J59H4J4oJC4sXNDZWIpanqDV3TIHw5Yrl88NbK298v4l3cxbL33lP/sv/tt/svqPn356aXE2fv7cNy6cPvUHf9T72U9LVUs7PBjppi0r+ZRnxBkaDdJ/AKAzSX1Ox7ZxJ2zznpspX56PWGyxUhsYlVSrnB16EIn6S/VurVNHlQqkxLwu17I1LHH8K1uyrYNEc7edTbeqzWYRvWqPV5ypowCMURU+PQCB6KFOjylh325v9NmSDiti7SEkB+oI7YMLggjxW4gZxAqqIhRb+Gi1F1RkjmWezYjATSCYhPgwGogjdIKEpGMwaGSdG2EchfFnCkiOjDHFiAsBljhQb6HaDB4z+AJ8o7JcZwTiEdBYruqKLUMRIiXIZVRKzpCpIqeOHDe2ZNQhJkHAIKsXStyYMVAJhLQ4O0dQQ9nCz0lx8se8hhAg5GU4cKRHK2m2sCxKji+6Dhr7L+w17aY8YuoAm0K2Du2GORPKy/JCI6SDpKNIIScOqvWUCQ+seCX8RCFwELd+XbQq+2iio7IhCxX4E7SCVYvZru2Z1PopAjAJIR/pQimabtMIL0GyTkg4j0nMgkWBzE85pRSDNbWR4pnYJYDJwH+UttGL51QEdReyAaYGpbw6jBkO0Thm09VaeuSpDWQabZ0IfzqGOuIgKYFiKJo7qYX8YpGjI6Uv6Q4oKnZCgsQj/acWf3mlPKPvIMRI3RD1Oq2gNnGOY0HaGw7G2AN0y80JYIFbpmy6fO8gXQPudmCI+FEi1NlgzwA76Q05k4OuoRTSzYr8H4cY6QxVrp7yj4xZDOemxkDIgTLCZlrswKnTTBY5OeTAVLHXbQ1tHRmkx0MEQY8ofcrqRz/xAAUdeAhGi9GMORjbBYHHl85j0RBVHDa4JGbHxuvhPMmGH1c5hG4VygOwht0Bv75viYT9unCEUx2WFI4cWBmFSTU6UUdO7u588v5Hy/ceI8LhFBcVuz20RCqlWTgrMCVcLOW8NPkBH8OayJhD94Y3BAmFrYJ9ph9JW68j+6kBf394eLh7sJfikKFW5mg6z2EqFv6tYbFrHOkacPnuMNoRKwJWWiildrdWDnc2Ws2ay2jDG0k0NAI/JGDpVjPQlC6vh4P5gNHP2a/H62w0F4jZaeCZmHWqmismNrbWD5IHMMWcDfCSRWOYw2ecw6Gkb0am7Y2GwgGUCV34zrEC2UY9QE1mvXBjs4xdssfn9ATgAxA+Ca1AxsZ+gA2USefxxavNqsU/YQiNlJutRHY3Udus9hpom2FqMGgZcXaLegdbbHZwnEy70ILHiAAPWFjJAdzOnglnhlWd3xt5/bUXnnrulSeuPe31I2HUu6dHsbKYi4VPxx2xqM48HRw/zBwBbscywhoyGRshfwiM3epE9aoEhg+7W1SXPeaDw/W9/c2Rd746vzBvsVqnJnyvtF4em5isf+UrQZ/30crDWjPbqbUPDgbWqFCLanFgb2eMYLrqbWOj05h6bm+vfv+Hf7ybTEyNz3CCvpfcyv9FlmXPZQ+wscCZyfz00jNPPH2wn/jnv/vDfL6cT5WQT4C77bP6mmVM7o3PX37l9OT5RO4oU8jmKumevnF/a73WLy1dAD7awVl9Jpdy++wVv9dQjEYKO/5AY69w58HmD1udzUAgZgydddqWgiY7dn0NPV7c7ndau/oyHvSchXY6VzlqlWST7+zjOyZY5oivUrYjEVS+eTgAkhMxJp7R5ONg2oRSmjgJhGIJzZFjIEiLCAJgSRQFYpIQDJGDU4UPhQdD7MoYZswyFxjOYHkLh8MWUdElSK7QDqYeHIIY/gjhJwHnb3yq3TV0TKiZxrdSEAlF70ziwSHp2vV+qdqrVoflpq7cHdZQiUDWD60eIKQVNhkmXogp2SBJ4k/2BrD8kqOsDX0wuKQtZAnSEdsEYQz5h32wSFeol3CMxBAaJtJ1jIQZK0SBCkNh5Y6mQP3BVoKXoo1qjYLrFs/jcpQPQca6RpSxVUmQP2k/P2i4UBWKFPZfrMOQVoEQzD19JbsfMUiWgpkpqmIUR6NouPSPovz8JB9ChHzJ3ptUEl11KjRMuEc5o6TDpTYCTSFyNugz/2gAuAv6ihkMGwuebwgw5MAzaVQqugoedeq6ksA8GCqgorb1KAnUu+LoEZV/UotgWF6OUEOqImEyBmTlkY0OzVdbLnlHTT32vSyhHCdSGT3mtPUuLuew/0E+4zSaHAZgfeq9sMk5F5/gOLNUb4YXRuqjgPs38ctNlRDzlRsYhuLYxdziFLUpzv5YGpq4oK+jTmIEJd7t9jA0AmNBdzyOjsNeutru9rw+O6ho8MSMY5g+kTLhWEyP0bJsqNDfkf7lpaHWJpZx7NUE+gCHo8guRBcIhR3BTgO+RjhWhrwIrnUtXhmEh7WTEcbLRbEMaSQUCBtKXCwaHW5M7jjJFVM6tqm4YzGK8x9Oe/G5dPfzBz/96ccHR2mBUQC3bTAE/2Vrd+/85cuYYbBiiXSFhRKNEWXtJn0sXU0HCtInQ7jdrLfaKMuUUsnM3uH+1t7OHvgMR6l2C11O6fptAO7Tpfly+VQtNzk6Ew6E4Xc44F3b3nq0fHvtwT1oOnayIW8YJyho9zd7/ZGpiaf9z9pMXhuLJholVpvL60IBFa/tHNgwd1h0CsW0zeYFjG53fydfLqN7wbsWBa9+z2NzRv3RybFpsJMjI6MuD3ClNt4YmkVg83GZjXYbGTtcdg4wAHRDwcdoxGeLDgUTS39nv1Jl1ETCpompdKeSyq0WCtvNXhUXAsBPickIW0dYNQzjeih0+YPxAIbQuKFkylHHRhncpu5kZOzai889e/GFJ69cc4cilXKnNuyaoqGpkcXT+E9xmyOFRGncFxkBfA7hod/jEIRCndvg4hQEfSGGLxaCI+Ewe6FKo5zc300ntgf9SuJw77HL3dU3x3uxpUsLsdjkwpmJVPHo//7WP6gmig43cpdBO4NOF+NFJ2AblRzLm8+e/dY3vjnov/iv/uRP1rdvP1i+0S7UMdL2ur3x0ORIfB7ruAoEwxIKcHSrD1QadSywfun1bwUDrleePT+0tv70B3+ysrkyEh6dXTz3xLMvrK0++skHP97d2oNdqWR0N5L7l5+NTUxMg4dodXRiE4GI15Qs3NtIdQ8qe+n2/n56q324ZY0lxuKpiHmwf7BVaqWs9noPUf4+7slGUKTLw9IDkG7TeU3ddrHST1Wt+Y65bcBjgOzioCk4+ZHzfOBWdS6LqcIhmpB/4Uw4GlIzn0/IkSI7zH9hotCvZ2jzPhV5FEmfiC3MmCViVjnAJRMcusiOkIzKJIRucqyGHSMGKhBbYchBFBBqKRkL588FRWMakA/bA0nIxpxMBsZapVMRx3y6Ks45sNeUw17opixN1BNKLby7Iqai3yJkUTJlMrEqQI/EVBiazvxS577wy7L/JprwscK2S3ShZULYhFLLqsORBJRb5qXkpXh/1gAh6fjSgITQXeA6CEGE08EGD2GTrEPsfclHpD8UIwbTMl7IlmqJ1QILB2cVHAgpQ1mNyrOG0cfwpGRGQXyRTOsSeQtaHSQOOwRpG3/0pjRb6y61CLEOcTon9qMUSGReDUy/aG/AUYG90EcywByvsSfBKxc4m1Udkp9qS19pmcA5LnZNsHCYadXbOPkwcuYpLZXaCLlXzVAvS1WRTEVKJTsNHgsplTNImbXGOjAzHAhzKioNtPZBNvT7R50ujwhZC5lCLnv75t0Qfl2CHisQcS5P1OfRTwh9r6OaaULSghECXunQYYeDxzjd0MI8AEiydtBld/lcdg4ynYZhLBbEAn7tsLKzl8SuwWXXtUDbq5naQwMLC+qGyG/FOJe3L69KCKu8AcYIAkZEPKJQwBCSVRz+x6rJ04TuMx1oOANLDn4YgyDsyCEHU50hj4EwS9KwOho1h4Jo4ch7Qmd1gHqPiOvZh4pFVqHZL+4nP7/FAeARwnj6gpfCgACdZ3vvAI14kwvTMLaPMvWoGWptvFg5Qh2A5o8/8A5cHCozQHY2u8VkMonSzP4eHsdBuy+CsiAsAFsE3aBYbdbXt0vgDJZStfFN/FbZjQjvag+2dm7fXd7d3afbQLDT72zbHG6AwG1u/zMjnnNgAuDFpY23K0zbLCxaLM3gbXKHoJ3jBl8garR4LTZ8iExkObitVrFPsoO4MdCDUjwxNj0+NjM6Pu0Lx2CvQZflOLtbxz9jE1aSrmUNsDpJ7oDlZ2NQqmfK6epWcn3/aAsuCwV4s9WRSiyXmiXcD7PCQagATTG7XOzNwTqDirBP9Ti8gSD4N66uztJt9JpNNiatuHPsyeeeee3l1y+fvQqmh8drx6OkDWNkWFeLy/30q2+PjUy10nVfIJwpt1Exthg5+TSCjo0yGSOJdyAmQGKRVmePj47UwdFhsZD2Y5fOcrezurr5WP9jqzfijIaj8fDCd779bW/U/s633inuZT//5LaLZXHGs1166LY7z89dS6ez9z5YXj84/OPGv37y8jVA/zM7K+1iTwe1tTc4u8aSDuxPo75id6G36tGHw6It7LCeCs+A8OT1oyLd4KhkdmJ+bWPzYDeJpvbCwjn3E352IY4PHQ8e3zQGDA2gVRM12/g4yCihcbvdA0OUy+fqBcDkYPHw6DA6UkinaoVtUJ5aps5Gah+bKAwGOcLpNky6Hfg4c7MfHOoBE+3YQ45mfZjJNgZpvDMZnRZggGXPiW645secn3Y3OQEaDjsAiYTIcCmiKtt6fsLaKjrEroBdNwQGDkmUHTmQQTAim3tEMT2cI6PAAx4Pp1jUE4YeuTDYyFAwFPb0sPDsvmUHzOsQSiKF8K2d4DFf2IHwifsOcoWRLFa79YqokdcF9VnRet4g00emHWsGZEmc5UAVIY4i9xAyiaRCeG+02lgAWjyAPEtbKExIMlNP9u3UkBklCYVKy/qjkTvIqWq7VI4niPgh63DZapPAAkbu7AZkAaAUwcdExIBnZeXBXEyxKEXWAHJTDZP2sWQIdWenwhkd+UPF4c5FSqGIuRRONKqp6iA1kc2HbHGgS6qX5HRE+oq85Yua8VPIMTSB3Hnn6NYJ9L3UGH0NgXkjJutNHfjkfq3QZG+ENgD6tZxFI/GvNc3Vuj7fMuBvrtbRNZDWo2UrNeLtw/PRwVIMyxn/ZCGnE1QVqLWIS6TLVKexJMO+sdDiUQHYwa4R+QsInQ64Nk+jOyL+t71Ls7G95D6uAX/v9w+YtG54GbMtHLB6nIivcQRl8TgtGIJiI4MM2e5jIYE4ooFZw6AoinIPr37YsIM+o9c93FouDyybR6wpm8/MjJt9tkyl0er6UK5BuR2VSTh3eA9hskWnXZkcqsHMYsmLYO9Foxgb8q5pJbMFZkHelLwvgZRW709eGe+MJmprg8mC0pze0nCGTeBs0XjEasRBZM8A4i2xxcAIHIZ68+Hy2uNVNgfwVxxdsphBXru97t5ROlMoeyIR2Ce6kcqRB0XDpqDiCcdfq9bq7MxwHpLPJwGbSx0US9zmChhNoKnLFhNPHYK9CTVmzA/r3Vb6KGkASCeXCQY8aKhWO61VoHzy2JoJxC/CMEhqvV5iVx7zOQBAAwYDJLEOIHTNvsfudtpciNc1PB9848Bw40tqyshZRGBqbAHrLST81VIZp1LIWTBnYzfhD4U9SMBMNiSLiAaw0+HwHIa1AWwTQ2VoxTCLfVaynLy9eef+o89SiY1ms8zcQYGz3ms1MkDngeAAhpERzS7kS3g3A3aCjUS/iWh64LY58V9ss7vBQT5IFrCURV/orRe+/tKzz58+teTxBYWwI2NHoGczY79XLZZNOw8e1dPJtRSenZgHfbeLpQ/+1gwsdQsNYaEaIqUEYQoPw2zaUgjZbZ6V9fX7y8vZQgbexW/zjI6FMUlcebie2EgtW/YBQ7329Jkxl//8tVPPXX3pZx+8X64XZ20L8BVoYU2M+OZ+4/T1zz7aup/Y2vo+uzrkZcBXO8OWbrMM4kfA7z0qFzDKtZp002MRU9jXN9YwqctWDxB37VeGsXp4Mj62NHm2dKnKGv/WG18vVWsPHz7mfOa7b//6xXPnH9z/9DC9bbC0QZfVGfy37myVezlvwD4xmIkFZm1Gby213cFE2V5uFlr5fDZnbCYaeHCWMQsV7NaMDWSmYv6NoVfHbtbhCKmatRZLnPd0zXjERhTBoqjBz8rhjcUpsPsiOrGCUoKMhW2BkBDIHJNOozgy5YXkiqYljDRrAN4/rCIF5tyDTTJzFhhyfatvbAywKhCmC01dM5JzyZgTuyGyZiBFYYbh34WwqeWFWaZosggYZNZBvwA1AV6YU/TmoFjpFFk2wOtnrgrNUZeiftwz5qBQcuQrVI/WC9WDOpGVsG1MalFPUNqcwt9TecW7kYeYCclKwCVknkeKCvPF5OKhyG40qqe8imlLARWWEw71KUVDrhC8QrWQvkAfER6xNyJfMqX5ijKoVsoyQ1UoB9IvWxyRS7AvorlUQgiuLK7EkV9C+onLVh+Jlix1/JQdgNRUVin1QSnInHgAMeItcwJgxywOxQsBAYf2EJutDCI54AlEV6rGUojFHC9NbKdhhAycqFc6Rv6jR9tk/RAkJVmH5A3zJQSfH0IZ6QjpOmoMTZOWSbisFHLWyykLTIDICeUEmxJRyYPAGAaVoXVQaxxlj7ZnZm3nRyOh11+BxOHmCONVHMLkc7nN3TyWsIja+7qGLOiC3sCBMhSEU2XBrRapDNbE5MnhBZ2r6wE+hu1CaGzK0rDPuVwvnj/PK09Va4fbCWPflisnZZ/Jas+H9Co9BD8hvUufk5XocQnetQwSGH3aKysZb0F2cGxipVWyGtB22UDZRAAKe84Dkc7jWbzlCAb1AJ6ysrKfokKC2iMnoBytcZybTRzc/ezO/uEh7JAeiPsWCyHAq5xsGhN440vmJmfngIuFdxHq1+7ifRfr4HKlksuVsmlMunLVcj6L0P9oP53H6yGHo01KZ4lgLZFNOi9ddop0u6jGYUlw1Gw0yzXMSLEBhg/ncACbXsgfeHDwWDSCNokGHeZ+rdJhYhe6zWJjG1rjkVF8LVgBGbXZ7KgyidAULgbi7AwGgkjFqJlg//TkXMuG2Ao4POBI5bSaqnDYKwOToSpvH4pgtVZAtqlXUH1c2Vp5uHVnP7tRQ+IvIJQo8pjLjQKGvyyJTqcJIREnyIV8uQU1GPYaIGaJIAhjRfd4dCoanMBI7Wg9gX7B20997e2vvfHkk1eAyGaFonR5U0xLHICLP8qBgMENG9WbP/zB+k5tceFcuVpwOjrxWDwetXFUT/XN+D5CRsdaIxRKj594POD6QtHTZ8+fP3clW8h2u9WlpVNvfeuti1eesltC//l/9vfv3r3/s5+/v7FyF8vmqYWlb3/rV89Xs7fv3LANPDdv3X38wfo3fv3XlpYuOeyh7YO7qcz+C8+/Do4H8Bbb+yuI70DtQBrix0uvqV/MHd6+8VHE55icn2Tp7pZxFBNwOG3dRh2Xvvihnp+eQ7l/bibS7kR+9P6Pm81m4MLZb779a2Fv9J/+83+wvbNt3zVdfPWCJxwuZso3r6dbo9b5mTOjUU+621vd5+gGTwqmdpVDdLb3OqcNuQl+aNE1BicV5RjIvJAv5lE510rsZHtNp9VgY0RjMivsJiIZOGEBqgdURAwv0X6TjTIq9XIcqgiuEEc6XMihEAXZhIpeNbRAwXDhoE5QwDgBhkiAZDoAcXNg76kNHbiP6OIofoX4Ah0OpLMJKS+5QQSxsdV4ZMmZScGsF95VtAnZPABOAo5mH7lwZQAQHNJ79eJltskEYGQzYmVKsB2RWkEtNPaXR4x6IVFKiM8gEyeCTOnjULUBlz0D819RV5om9ZHZTxzaK/fHRwVSCiEURZlkKN2GrIfm0CWEUGc4OsgDRBeeSOYcmVCSIu6SDvIiefJBdOH7hHJqy5+qqURWhJ4q00iaKSSIEN6GttchM1UnlS91IS/Sa0sYJJenoIKgyqtvsikXjUgxPRMFLfq0KfbSja6xxjIw5NWwKvQa+LHF1ldwflCiRcCth/pL90o9pbVCNeSOeqkvKZAbdbAgTZbaU3fEgGj+gDeFJIbTYEaCuBjDuJi9EJQduWupUPnz97M7udmwFUTbaMjvv7Y4gXdX/BNRSVQS8b1bRN4hGMBdEKPbVeTRUq1htwYYJyd1yK8dAyqMaifnuAPsG13egM0SBJp6dm5qwhVbf/xwM1+4v7LmsfrBFMYJnnMQQJQOF0K/yWrN0kEDqDxydyiIhPGLBQJdSdVkeWXaaOBNiP4nTIC6Y/VEmdGE9RWm5vhBz/WzRjzHQ1EQFMk+UbEU8jLIET3Wytbj5Vv37mcLBRxXkTVSZ05Q4bRQ9EkeJQ4Odpqd88DmCVRPA6iVPiaxxVL58DCxurlzlNgv5JN9+FaU/ipYO9AdmCswS6kQzIIBsGtWHaVBJ3MXdB1ofc9o4rvWQIzUFi1OJpmJ4mS8qlcGiwf0R7dWyK3ev82q60Jdye0dC0+iWgKijt/ng1uGO5ORCzeBXNjCq2E6MkgVhyIyNHDnIaHinUMesRoyf9V2SVg4hlm/W0OhZmN9dRu8zfvrO2ubR5sobXtwT+VCgccwbMOWIKtxw5P3iyXQEJATwsKbOTPvCcBGKICdkhHX7YauY3+rwLbg2rlnXnrxK6+88aJsZtGhVGaGtJ4VkL4HeINNFbwCHW9CgejUU9PX3p4xDtyg+WVKhV4u5fCNrOxuFHNFtwMpjx2JI1y5u9OrVFqFQjUS6c3OnvoP/4O/99qrv3SQ2OFYe+nUIjuT0bGR3/pn/+L3fu8P/+DP/l+37/4sFgnd+eO1VCoZHvf5Ip4L557ZTmwfHhQwS8sWS1evXX7zzed+8t5P/tav/108G/zkwx/6R+KJo+2KOIspupFaOjFu7pfLe3/8b/6l0RgYDcZfe/6V0ehYu1qtFHN0TaNnzpaz61tbO3tPjI46Z+Knb968+d4Pb3js0dOLz166ttxBPX9Q2dlKjQ7c52MXDJXlm9f3vdbP3vzaE05P18iuMVNjoDFd2NbGPVaf3oYJWhMEFcYxdhhsyF1Wh6uJWlW70gcXWvSwNdLB8BTaJsJ+iJJgVzK+IHrSpzA7UD3IEMMMoiXHuULH5VKUW84YSawmlPB+aBIJISChTc6PEQShmNxB8C3I5kJNGK+CT8VUtBs84oyQsSXUHG1OJHSciKLHKcJxwaLH5EYsTmCTUO7BTKjOt9BLqK3akbBaKZMUEalIfVjBpAe4gTsgHrUS5lsOhqWJrAEI5GUlEBIsLVZUnPYxsWQJEPorOwmGkhA8mf58SgcQLCT/+B5Czy8KFK6Htkuj1EZBJDnUgV6ja3kslSKtovSSl9Rath0k1LqeTwiPKks4fVUnqaswpKrPKYH5R09CjCSm2hhJ/VW5MiGlUcINya24Qxw0EYdC9EWR0YzWHlsC4dBYj1E8RQgGqk+LzRlev+BcjS2Eo6j+opAqSz1NkR4kT+kDdUmncCudJe9JC5a+ptJCHBEJyl7HYuyjeAbyNYZgwDXg6kWoHsIa3mZ3gHJ7t9mtZjaQtt4lGhAxTheejWwenx+UYy8eyeGhomGj1W3D2azTGfWwV4bdtIpWEHYD4ASzs4S3HFTFt5Ye/UkOTQdoWFTzxrapqtPV3//8vbXt+4e5o1T+wNpzWAt2r8XnNkxam6aSLgWWjFjyigCPGotWGZRUjRAhImgtoMpI/8m2mdYo2w4llpR3LjsBJWbEQ4xAQ4svCmOxm/OELyJAFhV1uoZRycxAKoDoGp2cdPbO7Ts7yTQdg4RE5EkqDn0Gl1WtlDc319Ai7/V9nWajWCxAJ3KZHF5zN7e3H61spDKZJnatolQk84+1CsLMbpEm84Oxw24DNk8NehR/eTd99OOdbjtuAC0WNOFxtAZZtDQFjoPJJ/85sCIvBwxVp5nZ2tIVi6PhmG9ixh83hj3OsA8YN5s24mWiq1EgbWJOsalmOMqmvodBFpwEpl0yyaRY4RbEla9Oj5Ev2PiHie2N5ZXVjUdHlcN0GX+eVQsqXbjgHBpKqBQwU2CLQaF3Otmp5kXvP+exe1wilbLQb16vIyJHypZStoiY0Df0v/XVt7/zrW97ImFQnDGCZhWkt7F+hgNgKeVUvcVpOE6QQVHFKpBN442Pbzz9ggvXCJxK0wzsZbF+2OXsZP/I6w5w3BGOhlzO8wDcA2maPQJJ4vM3X/+KyxGYnz7tBFjb7+9Ue5ur6/s72bGJ+YuXLhmdf+3tX3r9d//H341PuG7f/jSc9Z1ZOhceGXvna9/5V6Xv23FS6XHAV1errX7HPBaf9/sqIf8dLyhFJsunn32YPkxyLj/91IvPPnlN1yvdf/Bwd6eIr9OfX//kwcYqhycXl2Zz7VTpMF+tAQLevP7Jp88+/eLczCKYVJ989NFPf/TBN779zX//N//Oa6+/89Pr37u/+WF6K2XqG88tnhs2Vz/4ZHkvt8ymYcwZBFswV2wPArr5i+NBh624n01XRDNBWGureLbzBE04ARFPmbi6FjVI5rMihbxs3riMUeGGmNaMHfqXDRMjAe6etw/zxO6TccASwYsXqsCI4Bu5qii6MCblseyHGTTQbNhATswYLLxxUdTBGETsZkkAhALCZxR9fYaI1+K0m72AVGMXxZRmG9gy1Jt60UXBwzsrB2VwpNnQlYFtYVVgNKqZwISA9Ku2qI07L5pCpRlyqXZA85T8RNUTOk39ZelR1J/YaoBLXSHXtEkqrarOjRr8KiPJUJYFyVYmsDRcfcEp80yRQ2F8mAtSFjc8Z7GUooUTlJ4gKclYighlLktfShDLnlB5KI4UR3WE+EqHykUKVVFIv1oGqCFdKRsIRfqJLyWod0cSyZEyJTUR2BTD3pMRAuWuocoWCv5aXh6+4IArYzcmdl6AcIqcB+qMby/Bd0M2QPbq/UojVR9IxSRf9SGNpTqEURlppyxravGDj5YFANckiLjhAADsQ0ccPCbWfHb8PXvf5OqCzqRrA5gmmpb9QbHTyhaG25wW8yItDrwA4p0CxEg9B1IYfBHAKSGWYwgZAHXTI2qjNEGu1PXwHsOg7lOEDcXNTs9q8iI5x2az3CoAplaqsB/GyMho74URa3h10+g0tMFvG2QZTtJTMphpEt0GN8C5FCcBAtlkMtlYw2Ap0PZkVPNY0VuB0aC5WEJAuTkoptnADrLgoALkDrhQ1hfxDcoSCKzsuEm3cnCO3GvlwaNb95arrTp4Rhzn0kwED6z+9BhHbWzA9vd2V1fuBaNBrKJy+Ww2k82ncplk5jCRQDqEsZQMIdGJMVo536TWvF6Od6TjAYoWq0FqKPik6G2jJidm33oEDTFO1Z2wGOL+o1TRH2XBKm2TiF0y6x27EAcda+z5HNYpn3PUZYuajC66gJOArggIhRsTlkm9ccWoy7GSUHpZ6wGdhi4wykSfBoMrpiyTH4ai1kNy9WBt5dbmnbXtxzXc+daKbVODI+eg2943OpqNXipXQkBFp+JrzO1yoAoshgblKgdGlqjF7kVCAzQhsh08HQ6xBbh3Z3vEO/I3//bf+sabbzE2sOQUP2/o2NLd8C9inSeMT7naoGgEZNg94JHGFB0dW3uwv7Xx+wtLZ+bmz9YbwLXa9dP6+cU5auz3+LtgdYopXYKdC4YYDgTn1Vq51PB7HWzQ4qFRQNww7OobzYm97GppFdSm737jG3ab6c1X3virv/FthymAxvHayqO+A126QbGZ+uzxz5Y3PhuNxKdjc1inHR3t4Ldrc/W+M+hF1XlsMo5xXK/d/vz2TfjpixcXnnn92W/GRvLp9oPPUut7ewd7W7ce/twRMD51+cnpqYV6r5wo7dxfdfKqzpxfiE/47q/ca+hqflNoYXTm476lftTOihV43eUcPnnxrNtvWMbhjKmADYF1PvDeZ7fwM18cbcwsumsDjFJcOn2lCQWwMphBgmfEMOLNXdwby2tmPtMrDHAZWzLTebcqRBuoqN8gNEcEC9XVCJwcmwmxgXWC2YF0wk6zY+Q8DT4NQg//LpsIOYhEr00phpIvVEnRH3gvxj/UvtsygcGrd1vicceEpee2Y8opSFjsAroNfaWmy1cHuWq/UtfX6oM6HvcY37IQsfmjNGRJcqgn7Juwn4oREeIL6ZOWaBfkUjVOyLVMWuawEHihuYrzO2m8onRCpukF7b8i1bIwQmS1IKaDTDcVgZ5RBTANueGBRKRslSltZ4ckKQmRukmfkpBEUk9yIVSjP0JDyZ+g4+y0aksx6q3wkwVaNFlFzqTqIW2UO40ck7eWXH5SrkovZIKiebfomLaHmBsJEym7L94fXCDcK7qwLBACt0PO8JD8l7pIDtJMlbmqA3eqhVoj1A+pBhfBEpc/+Sf8J+sfMnvWAA5smKoiGBRSB7crGHw4UEQk5eDcBwAaabcBfRsu3OEISj/iPfTHscWqluTcXlZMKsJRipTBnOaQEbYXlVuB/0aZiYWtL4agyJusDEgYC8g2uuRsIvHVIi5LUekx9mqGarFfdA7mRmzzAvPTW6sOkk0s2tj5irhfXGeJDjE6wOw1ocuUBdicCPoJV/wtDYPVQvDCgkMKEQnRw120Y9umps05zCRT9249Yl4bBuKx3IjNjd3mswx2N9d++pOfb23v8sIYEzJGSMzEUKIUeZ1D/d72PuydL+bDorVULhXy+VqxjK4Uz2Ij/ugwgOCK2YZXmHYHHhdbFmwXcAcsRyL8A/RaPDibLEB1N9jkQ1g5XLVavGZjnPlksOHjJtnvFTOY1TIfUXqGcTKRCKw9p22Is5Nzo1EvbnWYT+xH0skcrjcNMTMO2TEJZUskQlqUWRFlKkIh9UepgMnByRHus5tdHOsZjfg9K6ZLG+uby6uPPn94a6e4C0adi+4DFVaO9JEk4LipkymWWSlQ5++2Wk6zPeLziASrXeVtjsSCU5MTucJBptiL+Ub7DVs238plaufnnvmN3/j1F599CQ1lUPTQTqo3OMCDUbBWOOdvY2LXAEQDh2Lkj/tgPDl3KlXTo+V1xg3oPY9XHz/9dO6pp18Ih3zlQt7vdV04d9ZstvvcnscPH+J+rBsLhsL+QOCJXCFntSJVBMrWBlfs9ep+/ukjZsPM3OTO1g5rMPYSdEdsbPLalau3Prs5MjKGRhYOgcuJKnSODWqn036wipLW/tT01I9//sd7B5s3bn+KsrLDFwBfl8OViiiwNT/6+MNby58HQfnzeKamzr7ywncuPHVte+PhRx/+OdtjjDvu3H146/59jyP8/NMvB0KBsdBWs1+fGp2em5je2Njderw6ET917nTpk89L+9vJXmd59lQ3HIlfMRo4kj996iz8U2ja+N6tW61KK7OH7MyIiSciL/GeyKEap/IIaHGY1zS3ygoDGEIuzr8gSvK+FRcrZIoZqugXwUIuWfOZVnAJwjwJx8dwhjOlq4SBQgID80j2Yhh17HIL08EutAALGqF8IkSicLNGx+S00oLn5ya2/hFLzKMLWLoeG/ZZJkD88dGC0WaHw2QU2GH2BSSdHd6w2da3RBTE4ZeMQeYI41FEOUr+dLyUQa6kFdqH0CiJJG2QCqsmSgxICXGksUKZhSzyjJhCsAjgkmyZoDw/prVCtBXNkxVBEstT2UqQXH7yp0pVD47JKD0lJxlCA8lZyK+sYEJFJT3JuaRUipJPjX/XHpI7WcuBmpAdWahk9SIW9RD5BR9ywyehxJI8lJyJUGkVdJKEsNsGseeS1mr0WNoLm8/Egx6gmCvRhTpJ2/iUJZBs4exOWqPVUKqnSpSIqrXyxb8TQs09xao+JgZ7QUaErDFqIWUoERUhAkcC7A/YBILYwbkShpjsSBA6MS7lTYA+jLhaXi3UCsaO/Y5sURnC0K4GrIWciFAVVi0W+i5CQayoQA+WXkGPSVgbmBUhrbCrovYqkoJGq1cBQifqGHcNfeaOLTGw5waHzWEeos/GWFQyEUYiI4efgLFB9E3rGbzUgE5S0kWherLBkdfNBgoHBnDBeisKdqKBmStm3/+ogH2ucxhwItVgRUKp3lT++M7N9z/5lLNWHELTbbSMaqu3IIOFJkHFoLprDx7E8kHUbQQus91wGvUuQHGC0VBo1OH0wta3G61sPneI7OLoCJfg6MsEfD6v0+1125HXiyoFEvd+PwGgfrbE3PFD4jHtxOAM/HJ2TCzubUAm6BExhOSs1orvdYvJbRrEnfZJq90Fzh1Ou/DHq1tH/wXLMrszYLRzUAsMKu/aFAqG8LItVhiy6hDCl/DgIDIAOJ3PZe7dvnf3wf21rfWt/b0GGy+XyYAWIn6D9DqvK8yiRBPK5abD7UX5FJeEvEYU8VKVIoS706vjnv706bOT8ZGjo15zyKlkvaF3xUJjL185/423von259rqTsAfKrcttf2CSw4qQAI14SFd/J+n8k7cnuAfhLqa+5V8DqwizjxRXtf7Q3Z0UFAvArGP/RLY5xORUUYSykwgujF0nR5LLpdB5hUNRaFftWYeEUW+UCakd9jOFxLrGzsT49O4zOkVrO2+Lt0s3Fv+5O/87f/kdzx/8Cd//vsvvfBcfHr64da9yqA6PTvpsbg3NzcONzKH2dX7K3akq9nCQaVaBYCDsc2BFadckdGYwWY6QqVra79e7YeiB1ub6ejYNCvwE1cuv/DMU9hYr63seNwjxWL78cp2oXjribOnn3r+yUKptLK2Eg1Ey56go2//2qvv5Cr799YLiMl3t7Mj3WHQFQQVMJXNs+l1+52vXr14eFDFjMPh0VW6tnyxbRy4kPpZzEM7Olac/ZXR+8FMn/GjZB9CSYSsM8LpSZni7IHRJgRCRAgW3cthYR96jFyIQQw1YMYwPCDGsgMQIThUlEfCSXH4hWaPkB3CyVj27RyTsQKIIh4rByS7a2mVBvD4xUYD/zdl09AGBlHT2GwM660uygHFij5f1WXQ96+BjcSWnxM8TG9E3iiFQwuE9kEUCGLOS12oO9VQdRdqIiRFfkijFG0lnfAxXFSJRhCBPAhi1lN7oV7MTKF0KqFkIM/VlzyQx9A5dasVJDsBia2eSexjckxe1AtuUUgkpWtZQLjJ/bgAOlsyEjJPt6uyjwvgS+RR8lwL5vP4RrWKCrKyqKaQVK0Kqlh+qKpLbAmHSBILcigU8XipkQqp3FiWkG/IT7WwEKiiyLc0WUpX9eOnuiQq9aRc1Vz1XImrJKqcD1I2cmFxwIAZLQe0MkCku0ggWdO9nEyi1Y9kBb9gKL6j08mmXsgsrYIkYKoNv49QjWVDLtlFyXtD0i0q9dIbqlThyrlBYVl5OYT6oziJaNvcQJwFQJvF1erUwUCmHBYA5OXoO7WH8IndiDnocJ91tBz4Qy0Mjrr9qhiVs5qIRTS9IodTkGm8HmFDCDeEpr84f+EglGMBDL+g2ijAoL1ttmKKbrZ1dK5hsZ1/tP24iiwNcMqGH//A4GBgNV3vZ+/vP06XioKOIi5i0BUWzkmGD+1VF0smc8UxNE36o66Ii8e9BhF7HocnHp+O4Kkb8Hczp+e1XCK5uRncDQQ5WbTaHaFYzBcI4cvJDugcrFmtUSuXRwOV9ni9WS1zmmDsdOr5RtPCqqgHS5KDhCa6VcxeUVil94GBor195LaWjtGP+xynv2kyFirlnc9v1yxrrviYLRBm98A2zu8JRSLVyAjuUdwI5ekKeplzZowT0umjzXUE2Ov3H947KB6BtMARSyQSmDu7aHIMHz+8i8+2Vgc9RM5Z86B94HwQB3n9XhOFTFAu0A8ESc+N1xhQzQaDYqmOc892qR8w21976uU3X35rcmKWI46N1V1cElsvuLKpMvsFR9iP+UC5Vk1mcriJg+XHXa7X4T1MJjYfb1TKRcGLC49E0SO2A6AzOrW0eGFqYhSDwFalZp00Bv3uta3a9tZ2Npd2uK1TUzO7uzuJo0O8LqBxz94IWVIiczQ/PTM/t9Tq6IrZklDv4fCP/uDP7RE2X6aGWX/u7FOtWuvzu59e/+zeUW67m9Zdn/z87NlpX9DbN1eS+eT3v58IRlEy9Tl9uCcy4iyo28sxwts4u0Em4zU3jcbx+CQYV3dvvlv9qI1jxtGRkUx6/4nLT7/26qsvv/KWxeK5fe9+vdEAUmtvd2tzb2N2eup/97/5Ty0DcyaftfqMTz31sjtgrzaz7WZrcXLW5tSVasUP3v34zvYhqOMjPl0AX4/uds0EArYdSCXOEoRmi6gQV2u6aq7fqjCDkaiq/SlTSmaykHNhu9SEVrRBTg55DUIvRNomh1fMWdnuqwSI7BFNKlJF7kh9Ouz+OXLkyEGb/0Ix5fCpjziYDaXwajj1MHXKumLJkG1bSg19Id9LoAMHr1E1NqoGdqsV7FFrulJVl6vpCj1DTUAoGa2qRJlBsGRCVxQrrFFJVWEaoAiWqptQMU0Er9Y04mtVFoom2hoaSTumUKQUxk/orFB8RXqEunNJfCgYM0ZdTN3jO6GF3BKLMClY5rU844EQEKrLDXRD1UTyFhImPaxqgmwXflsKE5EC99LpkpXKgIiQIJWdtJNgyV8iSAlcEk9KkluyOQlWv7RwqZc0k6fEFN6e9yDvVP4Rnyz54re0gGykgqodJ00lTAqQ+FyULxElL5IKFZNkhFJPkdPwMuDlsSeAaeCls+OTkolOvrJKY/nLYQMSAwEqgirLwGAyaCo2sPmIhGSYsS6fdIUqm6SyB2X3qGpCfqpQwug18eZCrUQiqB+iHgafzf4WpqbLGEPBCX1XrIkM9VK/VG7l4iZXxBoL6O2htivZimZ6iYp5H6MH1HApG+ASxjZlwnOjCsWrMuNrDCEs+rSi4cbhCW4CpASYG6fFPrM0cdTfZ5nB2cbuXtnRN8Q4rDV5sETN1gt7zZ3CEOcGAoot7aLWqiNZCOlPXjfLm+pXwxhOQc5c8kWDrJnYr6Gm7sAVSGDE7vO73C7h4tsOD0YwnUHM5S1j2m93OCJRh89vcbpYmESZhpOxWh2hdg/1zxIWA3vJ3FG5327hQdmsK8KTY2fjkF0RUxvyaMPumHnKQQzDwegMx+f8gRFAtJFT6xLJjx8/Wk/s5iuInQx4i52amAGl2R8Mjc3NTs/PodeRyRUyjeJ2YgswzfW1h6VcgfMZk1NANBA1Wlx4bzDjfzCbTzcAlsQ/MAdCBofL7YM0ZxKpYj4L/bdYUcMTpSun28lxwH4iOeQ43eB49szrb7z46tXL13CX1ezWspma2+uwF8x3bt6KT4+NTdEH4uykgu+adh//RdMhL26B8R3JOE4ncnCILuhIpyE7R8Elw/Frt7u/swMsWnL/ENVMTgUqjWoo4s9mUrdvPkCadO3ak4WceCUGVDMe8wZC7vpRGXmc3wcIqx247EQihQJs0GlzNn1vfu2V3f39y5dcv/TmW//4t/+Hf/CP/xs2tvGLYVcAg5UBh7fhyVB01F9J5O/+LI1HWFeU02SMrM35kmhde6OOU3PzxexmLntwkCqPjYRfefWy3jbAaHh95/b2+u3tg537jx7EI3O9gXlhdiEQj1uxorcMMfqlRz79/G45X0VrNTB0XT371Pn5xZ/feP/zex8d7idxjoqThHNnpnZ3DvMPdbsu3a6l7J3CDRs+4vGzHUEDFs0Q/FgjoMUgro04CvRsQUnQaIvMR8iBMD7C/fBL6AAa2cxJOdYVUiFMJcNWo1YYD8HSy8yTk0nU9ERmJGIeODhMP2SMA9kmNI5ALMDYH7C15q0D398Y1AqdRN2K+XSn1MkA9CMqidinmSH9xfaw0hiUMeKo67nH/UiT2cfFK4U6COWD+kAlhABxGEVFNbKgaISQHPVb0TPqrAiVUE/SEVkyUtFpuZZQncryjFTyT8Vjqy65HV+qUJWxikQOqojjp9JjWgXkS4qnHLqKYuSHEH3JVBYquo5sCSdIBC9adBE+qLXn5LekV9VQ1T6OdvwlWUrDJW8+5ZcKErKowqRb1K16qoi5/OY5TTre9ch6QP2kTyQbldVx+6gbVVeFqP5UKSWu5PtF0dIALlWotINeRv+CKQCOYB9kZbXukJVqPmVAexD5iFk/xJ+uIDMCKQmptPQPWwStHqpfpCyeawNRHqiqSqUIU/2nCmfXx6ZBBq56AkoYJ3pwEuo4VHpbFL4R8nOcaMqUB0eVjsNvmojpg36TLW4Z2TaFt8369HBHBxZTt2cFCkZGBMj0EOGaDDdMGMgb21KmKGeT4vTF2uqA86n3RzyTp0YTq9sW5NzILHH5qcP7DOadI11jswCoLpsF/IWpTu1xRMEKJiOKlsmOUMagah3losw+GohFw+O8oIa9jJ42dg46m5jF0SwRug5wSWMMA36v17V9fdy26XwB0NTQwYT4YE8qR3Bezryxr8pxJlkolFv9VKE9BNmuzFaAozk3NqecuVEFlIhQCOPAHUEc2NuOti3cc491w9N4Gw5aDDPhw5XMwcN7Nx+ubiBiQw1/ffexz+ebnpxJ1jP7qR208HYTByt7jzOlRB/fcLij8bCtQIsPN+psDET3PJc6Osoe4sS5wbm30TjiGB8di+PjbDexjZUVpxbBcAC1M12777V56I48OPat7uWFU999+1fjk/MIHjh4SGWSh8mtBjLiciuRSETjY6fPTIFvh6FECzPxTgeDYbfT7nXhztBRbtaN7L1eeiGTy3GaYnrnl76x+MTZw4PU9/7oLx482Hjmiaujo/FgIAyu3UfXP8bQAcHn9NyszYP7kya4enYnupI9vFBsbW2jjQYK+cHhYbsbQq/2MHmQzuSwRf7RD3964dLZs4vnqrWmhfXE6fzbf/N/6wl7//Wf/0ssLrxhu2PEtL63ivXUt97+RjaRic7cthvHf/zT94vtzNn5s9H56MFRwRUYmTx76utnrl1eXrp19xGLU8dZvfP53cNN4YhOn53DFfLH1z+sNd/DdQY+ap566qW33/jq+Zkz1XLRaXFubSZ+/O6H7OZGxyOXn7k4NwVQdJqTho8/uuXxW/Sm8ltffenXv/3Kg5ub3aELn34VY9viArcJ3UpLPCx27JHYmNPrqyY66QcpgMhQLxDVexmMzDKZatpcYtTLPJNhKsdz/IOLgX/jGJ43yhxjdsiYVjsDRT5QyZDkIvtgLAhNgKdSywmzlMVD5j4CJw7wEaK2qvpKdYiPtBJxwc7j6BHwOsrGYki5HFEgBLqGeKRhuMoskPksRJk8uWWiakQNmR2Mpzr8VMuSrFEn9ExmGIRJZp00iw/F9Usbhb5SbeF+aabKS7WCW5myqhfkmz+JIhRKdQy/tBDVJxJ6HC5dxK18UZDcC4cndZSL3xRIafQEBWhPuJFf6k/qKEmPizwuRtZcLimCtPLw+E8L0xIQJJeq93FFj+mnhKpKSZ3kDcuWQgi/iq++JVMuiaDdqRv1k4DjqgqxV6WrfLX0qtpfdKP0v/Q7e0QlTkPaRxIqr4YD2ZGTMOkqF3krbOaojLZKUDeJKl9aTRQ9l7dJbSEPLPCqp1SPqlCJzIsWlpbH0GyaKZyBqiXjE20RRPhqg4V+vcTpWcosAHti9FPxgIFCdIfZpQNKwuvuhdrdoglqxAsygykozs7EPyPNQRe6h5yKn7AebAUgubZGQwBpfDNj1qBDQTUguDSMO8ejxrE5x3zUF8y2EyvpFXy8oHeCAjRbBvHQCy8lJwpaJaWptIvpATRVuggKey3WBu/eYOSoS9CqkAPJlr1t1oM2PwAIqdptV5VtFMy0GfhwnCa3xKsD0A10DgcRbIXocxwhu6wGtxXvB9hsIU/CthNNarqEHQxrRRcgafyEDXVY4XLmVrLqUv1OXt8yWJooqVuwchq467pBrdm3Ipnx4JLQAVSn2+e1B0CGz6x9dmdr66CFMb6hbrHj92Zgc4GTDVqnGE/jRBwdWjR1d5P7xVZNh9tptlUo/yFTM/aT+YPDRNrlMMxOzlqt+kSuarNZnRYHFn1jkdEnzj311hvvzEzPbezu7WxuHRhEW/3x4wcjsRFcu4xPxRYXFgdsj7pgxMHBIoXDPMHFi+82hmBNYH0ILuC5hYWEy5Uv5EyL584CU6q32l594yts1kqF4u4RVhf5pTPnfe7wxvo65H7h1EIw4AexCPYc50Qy6I2GYr6IOwenw9VzdRiOU5OzsdjYwcHRg7vLxQraSlUQQBl+MzPzxXCvqWs+9/Srt24/+L1/+Y+sXivedrZ31xH87q2mlubmZxZmrPbAG75XH9255R31e3wjpfqjOz97986NH7/6zqVnn372iUsv0dhQyPH1b5ze3U3f/fizWrPMAlhp7WZxeZxtlBpj/Xs4/jLEp8JWndltco/4R7/y+submzteXKWV+m5r8Omnnt872sqkc3uPd+ML9oB7Xj+oX7riqdYs6YOjQSUJ/AlQAxyS5/GXFrJ4wj47CtGJWj3HuZFIwtlFIp+RsylFLIVCaNRGJipTFMEIk1kmLBQEJR/eNgdJQumx/ZLjRDpOCKti6jhVQ0+DxUxmt0j8xX8GJgI8lWGIgJhZ3dLVkP6XuwXseziQrOsKHBs08QBBgeBz9cXjIG4dO8xJEV/LgaQipYpxgnALgRCKoYgpM0q7hLholEzCtadCJ6iaohfyWOivkIljuigkWAgIa5VQaCiM2l5I7bkkoTROspLM5e/4Yv5CHbR+URGkhselCq2VdFIxiSZJ1HTnW4IIUbXgU1VNZU/hKrqq3ZcFEUX9kEy0Skg0rpNsj39qIVpT1XM+tD5QHUc5WgLtmcpSAlRFVYZfFqnlSD3kOo4kYccx5IEkQ36gHkoHSiW1JsGsIgWCdquGi/6iWnWkr8hNVgCp1XFkNozyFhlUiv6Ti8bLC+GXniFjabPaX/IFQdeqw730iqSC9Ek9pDjSIsBR75BoCO5FLY1HnECy9cCFbMawVzZnjDgW1tlF27Nt6eKCq1NjBNodkBIwBSvUBvASRqBgMSCRQSVUVBu4o3yUb0A9dmC5jvvYqQvzuNfr1Q3eQdDagzmPT/kXJwNTGDxvr21kipkuyqJKYVpWOxFTyegif41zYfxSaaYNExA0CKx8R1Dh7+LTEV1SwYvD0RNWO40BMEg4vKk2y5wlo6qkF8gEp9NarSFb9nrC+i64p+DrGRvNRgkDslK+hW6f1QhELTqvosUz6DlYFzC3pGm8NdTsup1Gr54v9+16Y9fT8BiNQZ9O76/jytZiO12s4GEJC6mp0/GZSDgSjUYwGipUqo1+uVA92jlcPSom/WH35GQECozzknq7kSsUwZhj72VCu0b8PHTw05sGgYPjQF5uv52vpQvNVKtSQCEEMNeF+WnY2a3DPIhBI1Oh11587cnLTwX8oxwIVarlUi77ox/8xeUnrkAT9vcT4XC0WCwfHiSPttOj8fjEZNyDe2E9VsocPqKhjr6t6JE5TJaA3durNgNOv4A1/evf+eNqtxWI4lI43LA10JTyBqN0I9I6u8XrD/gfrawk02mcLdg9TjYwHper1qxHQpH4WKzVajgcqB0bG406rywcipRKZZZjDJAvXrxoM1vTBylYWSRc4Hz3jI5f/u7faPUrq9sPn7zyVKmULpTLm/fS+f30L4W/4/LZcOVcGp/EU5gdyUatYfUz+Pq1ZDO9m370eG91bbderjzz4iunzyziLyKVXjHZuq+/+dLy48f3llfPn70AMPY//+1/OhILv/b8S7hM8PuDk7MgwAWW5mY9Tjde3Mqt+qnZCy8/1/xR49+w1CbTSHjgVswTM1P6dukgV7BY2N100SErV/sF3ELXD0OGfGmn26+xr3TA1jPDhIdSU17GKZeavmpiM/KPeU9mNVviLj4kOEImBkfHSobCNCY6gn04cZIDLSMrgYx0I+dZassJKA1BzEptjZFTKwDgGN+EQuI7wDQiF8JRILYr7CnwY4GPDO3IgkXZiPEIfKWsRgwnoR4n/6UcAlRpFKgeKLKnVV1IO88oV2IINZG4irZoyVQ9FUHWlgFZ4ySS1FaICJ8qV1kbmL+Sg+SkBfKlqJqKISkkmUpxnIN8kZsESQVkPVCZnySTfNRDVb2TZ5KNBBzXgxKldH6TuaK1QkS4oSgJl9DjpJJS0kqoVF5le5xahRBBxVENkVvJVxXFx797yfvSHvIpJFkiqB6QFMwLqYNkS49JcglVTWTFln6QECop20fVHEnPuwIxSRYCeTPyROVJHaUIUqExAFlUBcsjaRuMPhs/yUTyVI9kmElpKoAoMhZFuYZw/oukReok/STdS8YiJRr2mvoCaFiyd4UuwpFjooyaYtsatPmMaMegJzSo4xiHzIGzt/G+GOGiOYtKM3JLdB8BxbECf+Bo9kIBa8TtadeKo4E5d9M9YhmJOqZGgnHUeDb3d1dTm/lepWdDHsLyJNo+VEM1Vmqs7mmahLMkmLEcardwMzjWaYBYWm5IlQEvYjoB097Q96qtRq7RKDbRgZMxIBBkQq3KkXZs2O53HR4MqVAVrTZqpSpG1uUGYPGtYoN9vfQnHnLRPjKg9VPtscluc2RgG7qtaCwBo1XHJW/3cWLfZNfXrN0pvb7eCSdyTaN17MKTMx6nNRTwZQqJ7SOQyRLJ4rbOWI9GXbORcbrL5jIKRF2/Xcxjo9w0u0CLcDSoLPQI1/J4hxclUU7Gh227Hhw21EA9dtuQ3UcXSJ0y61TAGl1cOP/6C6+8+sJLjWrp3u1lNPunp8cxHi6Vqw74f06/x9uHB4ebm7scPl66/EQoFIHaHyUOy9Uu6DRxPDKGsXSyAD0EZbBb8W2HtEOPJoxp/cFDoD4P9jO1chtci9/8m//xwtw5hEdFEfWneBuXzl1ptCvJ1NHH733M+Hrr7Xc2NzYvXjo/OTGWTqY5D6fvALdIpRM2mzM+Fn/1jZdkM4M2KzQfsZ8DDbt21B/cTWe8Lsv/4e/+l7/7+791/ec/CIi/MiOGrO26bn8rs5fOt7uddPIgm05UsnuIGD16/8TUVCwYXN9aT5WylUqmU9S992c/uH/3ZigWKRerly5Gnr/yylhoqdf8t1gBRGYmHj28sd8uP3D6EqHDTqUdcEaaYK02SwsLp5ZX7uMGcnxx8rt/5fQLL77+z37rn/3w3Y/n5yIT4YBntn9mybuyVgc5E7xZALTtQmVNg9KgUG00MjDq2FpaQDSnpUIomVsypWTKyQd/injIhxrBMplF1YfpwARClQx1AJSvGdxI4cVskjuyEpIgIUxy2GoU0Ng+Y2pkaMMNEYa6KLDeA4tPF8Y/LM4ni71UG2sAXQu0PItoLiIuRcuARYlpK9Jh1hV4OYQ8ZM6n5CkHCcSE1FAfppgsApAUqbKa9MwTaY384rf6lBbJpUUhlZqIPNPIEMEsMCpMyBX1lFTSBSoRYdIpivDwLY+EtggRkzTq3/FDlYasJBu1OBEgkaR63MgclgC5lxzlkRRyfCuB3J5kK6FSlS/C5IiS2OrNqCy02kigZCUfBJOj1hYJ4pJHhGqVUiESQJepfOSRKkESS35a9ON48kOKl4cnz6Q3JEStAaqO2mogYVrPSlQKlOyEJ1ex4XlRWISsyuZB8uMVS57CHtM7omugbDUYUqRWy4bKQVVOK1vaprKkPKLIEQDfYqLIh1SSZU9QS6RO8l8rX7YDDFtoEe4PGS0UC8Niwu5k4PY64aP9lUGmBVR1vwzyHTCCuG7H5kw2o2wN+8BNcKIIcDZGtGYsaaweg9tnRd20le+cip2N66Zcbadt4APQD9ude3v3d8q7IGmjCCR8i3QEHSD1kSrzQxuvjHD+yVKl47R1P5eJdZr6BnBnegdWmsMB/CtaslgEsDzkur28AGMOUVPBYxaACkO73omvZFyngbAxFPfC1WqdNYAFLJVNJgvJQj2Pfwdywt+fC8gzh7vS7ZSRLw3sQ6MddZgeSF8hJ2uM3tzONCwBfES1HW6D3Rn1LXnHwWhzWwwPHl6/de/65u4GdrWesNPtcYwEHWwjkrn84V4jVyxyRgJAKuY7DHVsAuqdWqtd6sEdo1rqtMOwB6KhVP6oWWlNjk6wFC031guFUvGocm7q8tLrV6MjCz5fYC+du/nR+/du3r188crkOG5hHM++cG10FC9h7lqneLRyFB+NnD9zeWp8cmxiwuGz4UinuLLH4Kl3sQEAhA8vBkJv6tBn0DlQT7G6TO/82jvRkbF33/3k+s9uTV84Mxqf87qdmC70xMVBi/7w+f1L8VNHR4csGZDs27c/a7V6GA3IfqLXZzFBUakmqNYtET+DY2C1YvBlAiYU9CPOhIb9oCeEOXHMH232mn63OxSIAIPVLvcdxoDVOHRYO3c+/NgV8ha6VXz+IVWKTXnYzrWKg0dHa4939MBW4Nxw7uw5xH7lWv25a6+ydcsnA80q2vMGsJlu/OxGfCLyf/uH//0v/8p3f/7JdeR56Uz68OhwGGF72t1a2Rg0ehFfwIKBWb7ldgW++vrX333v/f3EfmKnbKsYj7wHZy+4Y/HoxkalgS6swxLi3MLtYv9bLOH1u64mC0rG7BhwBiNMiiKBauLyPmV0MgmZOZB99MdMSDBRHQDzyWV2tCDSYgzJPJTFA9EZnYSyi4iM1ErAcFeCG078MM5G/UPioHXIrAK30IqT6mGwrxtzdNFMHZQsac7YKEVyFQQoeBbmlyDJkDcpYb+ErcOWGPmQuFBnLoiljEwoSIf6k6IVWZC5djz71S2x5FK0Q7tTbeOZ0BL1SH1o91AGdSP0R1EQadRxFtJjQo1UAepebXqkF6B78iGXiqy+NBKpilBFaunkVhFAKUEVISmOuVrJSJEJgqQCKorkrP3U2nxcN9VIIbnyVMWRAr6sgFZrVSP1wW+t9qoEaTx/Ukf55hnNkPrIdRwoLZV2qmpyr8WT6p9Ek7iK3JKaqCItJBJBWgcwL79ojQwM9ooQemkjOwMGFu/1eAdHan4ryswQ4iHhX3Y8P8mXYPmncqQUofMqDCZDCIBUVYXAGkgFsM2R+iuhB6IIwb1GN5QRbwKbtOcODWciptFYcKZuBWcsDQYGwwvLWpGe4BCAgyWIs3AZYGQ1KX0wcJAWTEo2tQYnkuNK8agc0HuBtgJwp9kr5dqFR+k7O5XH6C4PzE0D5lNSuOQjxyOqy9S7oh+lL+WlcIxhktonC+WNFlYuLTC4PWDioDeIb8lGsToAsLsNNlkBJspodg5dBitrUc/ThZ3D1HiA1icoC7lKEdeNHKfXsayGyc1hQlxAIdugtxkdDjweBnxhr74/ojM5AtHV9c299SOPd3Rq9nQ8OgKbFRuZGh+bCI3HcFFe7XZuf/zz3cMNt6W1mbpz1Nz0xCyTU3MYvpnM+UrpMFtrpVLNcrptArzJ5mOT08ZUs1+FoqIM7EGm4nZATlp4C/CxChiHrbrb4p4ZOZXY2/Poo1Pjp3/tO3/jm6+8s3Owe/vBSraQw5Ijmy2FQ6Erly+B/To5Pn758iUcCKOk43O7X3juWRC2gahOpPbvP77X7OAc3nPtqRfik2OVXLZVbuSbRYgYew78S3IqgQu4fCljavStl599qdl0O3TeaHz8T//wd04tLGYP096wa3pqutNs3r13595yPxIJL56eQRFobHQUs4pGrQEiORZbXgB7bK5yvuzz+XPZFNhMQKdbrQJe5bSZHQ6sXVuwHwCiCtqNIOn2Lp86jyjnttmNn7JkMZtKZJgPNV3FE8Zw1TIyPhYIeJutXnK/tpXc7qd7FuxYm/rV28uhMUMgGMgld0a88ValutOs/96f/HMWlFPzp0KRMfswyAnHfGx6+e6jndWjw71b8N9ffecrzz/7Arho9UYNL5VgxabW1lI+57e+/hUq8+DW7XKldnSAIULbG56dGDYBZEIt02k0RvGn44roS52KtVCr141W4AlpB9SasajoqJpgshrIpOeHzAL0+UR3DZNeXFn0h7HwGN7tjwpJtIih2sxBdl4YTwp5EFpBXpr+u0w/JrnaB4gqpGyj0d7us1XzOPUhXM6gVpdtZc3GKn6kyQbxIQfCKHcD+8gkZK1iPspRM/SC1QmZEz6Rhk1VhFBMZr4gO1ID2TbzTZXVpFc0QtWfjy8uoR0nl6IjQi4UFVEphZpAN6TWEksykz+hjzRNUXn5LT0jCdUjUU7iFuovGHlCGbWoQsaJpTKSuFJD+VYUijKOM9CKOiFsWu4qjXyoJHyTTstN7vgvuUgGv1CAVFKlltDji1JURaVInpKCGCrhcbhUS4VJAkktBUo2qgnqW0JZm8hBxZRfKubxl5QKiZfa0UL+tA2KqoribSUVuaoaaDw+r4lUiiJCsxVMtTRHrEWkghKTD1nX+VQdKKoEKkeeyf8velViiCEb75zBIHyKNFP4D0W41YhBAAOuAYqYRBCLkZ7DZQj4DWPj7tMR42LMOgFK+aOj62xUzZhv6fA1YvQYQ9aeFygIFDTg0mA1WDQwS6zrUWms2QYuC9iVbrj7Wj6BZ/dDw6gejXD4oWwvt1N7nGmtt/VZnQkoU0yRMVGmZfz7otbyOvgvPSu15cL5cidRqttRghO/8H1Ht+lqm7FvBt2i1moUu2jGc1IxxPw94HLZfQ6fBzYUcVE3W8afyCBbKiAy9QBfw+y2WWNjY5DqfsJaKmeqetzHAoNvNonZqTfmjU1Mnh4UzUVHLegbe2Lx6tLCmWhs2hsYLda7j5Mb64nP1/bufHTrw26nNDfl7/dSI2Fd1B8BhgVykQB4PruPG05jD8O2gVV0k9iPU+l6H3cLLeP0dBxFdxBjAK6DXWvWiunUTiZXtBsb+2srC5HZqy9de+L8s7GpMdzBFYtH+5t3n3jymXMXLgVN+vTh/lgsBl1lu486VqfRZiuwtDDXabV2N3c/X1nBMhAD5+ReqWtkl7LosgQBcBNnOF0IHWfkuJE3Jfa3Dg92dpM7JvYqI0uzFyrtyZD/559+kslsvP3maw6jpa2vRUZ8QV+o2W7j4CaZSlQq1XA4NDU7jS4QftFGbfFSto73hcXFxfjoKO7t8YwcCvmQQYgnhFoNyCfE3cp9lSEY7GLLB9B9vlQMe0dnTz1h9Y7Zraa2rvezDz7/6Qfv4RZJl6pbLMb9w7XQFAqv+gsXz115fuZgp1zebxQTANjVshuHKIWuma5DYPF1j1uWVCof9sefvPpMbGT84+s/qzRybpdrcnqGMWA1P2a7azMb9va2giFM4wChK3NIzxbk/u07Xavh+Wdf5WD9YPu+0+XfWklkKmlfNAA9bVcGuEkA5kOOalhzreBjM+JkdyqGOFB50USUwap2qAxPtVVFNRtFYUSh6PAw3VAGNVjDwZGAyYsHuoYsFCj8QaSZ+awErAcoLQvTxxBnXjJ1mZQ4vRLtCh12j2JOT2GYsZuddovNpm8B7QFyJjJJ+BeF8SLGYmi/8Z+s8MxBtRClkhyiQf6wZ+gYcs7IxCJ/VpeT4oR+MJ0UNZIp9v/r+mIGElGIi7RcvrVbbXoeT1m6RC5SSICazfJDiwkLJqXSXAiQlCkkTL7lQ+7IVetVHqlYkk7u1eyXiHJJEarntW8JkrQqXGKrm+Mox0sU5aqKqY/jBKpgFVcLpWRVe+2X0CAtjWRNblKzLzNXpRCuwpTQRuV6/KEllESS9DhXWdUkgFyk/5Q1iGqaypYhARcvIhrJk2jSAYpt54tg2XGSlOeylRT5nize3BPMkJSOlZTCYQhJlxVMVU5aJTXgJyqlxKdgeSZNkS8ec86AxQm5oX0gPiqlJgIcYsbxzJht6ZT/qUnnOY95wi6acoVyu1iAoa33/TbsRR2jhqWZ4DmXPsCGBKhqTi+zlaN8d7fVy6FWkykUozEXe1irD2St3mF9v7lbZh1Dv6ekKx+1tuqmYteAxSJNBGIbZRyg66iY9Kz850PEVYxdqqd+CI80KDX7GKaShBOxBmwWe2VUTXGJiIKpkRxEWMYp5sjo7ETUG0KE2hMMYyx/k9lqqzf0BWxxty8aG/VGwtP94UyptL6+CV5ZIvW41ytwulns9P0+FKN8Zzyh7/zyXz97/nlg/y6cvoRcBZP69cTau/du3li/VS/td3vFdq8Yi6L6jzKmw1jqJVO7uepmDa1s6tt2BaxBFzAJHmhXE348Vy30W1U62B0CfVgPxgYH0Tjy8rlRm/cAp4YzEaPVOjs2/7/8q//B6MyZ/+Pf/z8BDb10dmEk6L588eK5U2fxdo/cxR/0AQcKahWmfFjy1ur5W7c/r+QzXr8fr324kMPtQDw8cXnas51M1xKV2+VbhcKBy+u8euUZtIzYBIH7cO/WB6vYJTSrpoODRDGfHxobN+6+j+/rN7756pXnz4xMho72MVdrgdTx7LMvtAZ1iObEzLTD4vC4XYgdDveOHi4/Cvh9qNVX8vVzF8/SSoys4f1BrWOHBUwQ7wv79UqZc4xKvd4I+oNAZ0MNsWkGSG500nZ6ciEWjPzqa7/6e3/0+6tb68v793AyY/QwGhDn1TaPNp68dvbytdiabg8rwNX1fGwqbnUZ240etBa4XEgtvDAHxWtbj/aTG7GJEWyAM7vlq5ef/uYvv/Va/akHN+/s7+/d/PxjfMyPjsdx2Mh8ufrM4up7a7fvrjz/ylMvv/LiTti7Rsm7RarfLGWBN8EI04kJnMM9GV9ot2qba3lO7DkTgEWSuSmHdYxRma7CqAuxkE01k49RwGoP2AibALrCbjL7Xf4LsaXtrcRmaXeI+hlCHFk/ZD9LJnDC8GPCCnIRxvIgOOzQdYGuRf7DIo8tdndYhNEv9w56ppZob2BJIgIipJ/gs2PaAvQ/1jfI/tUBH3tZMTGjHKRQ1BGKIBpMYngsxVImlxAJqb72p00uuedO/Ukc7SKOUBGVihAtiXxKVJmuKjG38lu7fiETtWpKDBVTJZai1TZfy0qSyFyXfpQQMpIfWsbqt4qgHvGQyFJz7U6+ub6krVpBEiZrm6L/ipyQRFISpm7Ut/xUgRSmNUIYblUJiSjPtBQ81lJJE6Vuqs3SYFUTlUK7/SKVFoccvihXKsMrkTcif1K25CNtZSBRgNAz4QekVJZqypQKwCiodLKnk+HHa5VsEClKEmij2lZKhSQTtWwQTwaXFCExTqrALY81KRLbweNGEAWOBdR3KUsoJ3JLtNYIQgWeqe8Rb+09A4jJbrch7Iv63M86k4ZH2ZFqo+A1BC7HX4wbp+PecRzY9L2Gar9c6hV26w92WvcOm4/z1UbF0K2O4ny32bG10jo8Geyocy5d3VCvQbj6VfGHIsshx2QgxAmPxUWlpQGq36Xl1Fb+pL/krAvVTrtf10NVp0D/oILCYS9GVR5AO3tAXXS9Ds/s/Nkzp67Axbox4c9n0OY4yu2lEvgXsUZ9Ez6PMzo1Ozo1Z3X52RzYXJ8+WtnWNXcdfg9OEz3BqNnudTjHjP7puSeeDJ+69vmDW/cKiTu5h73m3sbeo+Xd9VQ+zYYFVVDwQN1GayGNMp6h0bKnq5W9/axN10WR0QMABisGsoV+n52Q0WfG3UQhVfUELa++/ErIH/zBJx9yQBl0+224OW4PJgITY8HJqZGpN196zWgz/3f/6P/8L/7sdxZPTbudi4szs+fOXIQVzKcT4YDXEYv0sLAwIt9qbu6t5vMFIRo2Gych6HcacUjgH+EwA6+WPX0mEoy4wt7OIN03gASUQWfr7qNHj5c/yaTu76YPvL6gKXe4/pPv/etA1N53tVlDJ2an/+j7fzoWicFBFo4yjXbvyvkrpxeXOo0WPjCvXLwCyjaQS+VCuVqpcaQPZhw+JzPpLK4s8Y4jIEwdPBrq0BpiJMKnd7utbLrY2utw+I1jBIRItXItX057EIS1zR4Tvh7zT5y/+tUXvn5z7fPv/9vff7z7YHx6pKFrPLy98vDjn118duyrr7x+MJp55e1nfv+3/yi5V1kcX0DvlqUwkz2q1CpogPb6ptHJsa3DNXRjY+Phrd3Nzz9zPffc1f2DA3Yq4WBkbWUdb0rTk5O4ztne2Tx//uLeTurxvcdPPHn+a299vVgs7u+WvU5GWCWVP6zVWtBJexixnefi5anHy1vpSs1uFwc6wkLLQGQGMYXUwGTiKAYNlh8pJdjCkHQmrYh5IPGdXjwUX5pZ2r+XEUMPM7w5NFlmI18I8CWSZAlJRD4A3WZGMPIxt5QpCghMU1cCobrV72Z0WAKjVGqlDnBtHANjzSEW+eJgEtYNsZMQB8pmnpAXYwJZE3QfHV/03Kia0rBjbnHcJkIg8hfaJzNOm3OqVkIzpELHn/KlqJgWTcUmf20+yiOJKJeWj5aKn9IoRVCFFvFT/VZ5S7kE0IeKJKk6aATrOCctqeQk8VT+X2QreUmIELwvL8n3uCFCNFSq47JkKRDC94uRVQ4SQAHyQF6JkBiWR/VaCIUUagVIuESViMeZyAOh3PxWcRTpVfdfxNTCv6iU5C6ETOPP5TxWdZzEUo1Vz9XdcY3IiDvVSCpHYSwJXAwS9ZOlQiqL3Fwiqv80XzEVWk9LkPaO5EbaxyXCRvVAZSwNU91CPsgtha1hWBAoIk6DoHw2a7nK7kqnU7SnRlwz9sjpSDA+Yo2abVccA89h6gjouPjobNAQBtIHnUXq4bMGRs2BKUP0XOvUYeXx3YPN3WKmktW1FzlPNbTxVTwscB6M2JN9fwWQOzy0MNIFl02EUUq7mr5QfU/91C3dL92q2i9Qa0ADOL3OyBT6nroaK0cZ0zN26SgIobrJiSNuvPyRiYXZsxOjcyhcWgdtkBxx/1rFcKnT8vlC8YmJicW58YWZSDxmtbpK1UY0Fr909fLsaOD03PTFs5fsfj+qH5lSxe4JpvP1ZGb1/va7D3bXm63CsJVB2uQIG0c9Lqyx0DxNF9IPHufoPofTwwm51xuYm3blcwf4F7Cj2q8H+a3HyTK2a2PjY4VC4uFGf3F63B3yo5Q0OjZtN5hAISt361Nj47/y9d8YiY3evP7R559/fuPG3es3PnvrKy//6l/79vT4LDO7mOXsHSzRntuKN3mmPPga9d2djU9ufzI1OfPkMxfDIT+I4hubKzfvPCi3ywFHeDeV3EhssXKMT0erw+pudusnn72H3OfxVqLTzqar+1PPx0PWoCkUq+7s/+DHP9lK7pfPn3/Bn/Q92lp5/ODOO1/5Luf/u5tHZ+bPxuNxZOqwnwBp4ITn6ODQZrfGYlHM3qLRGGD4nKswTJH2MFRr5YYVmFGDHjgL/OXg6B6hCEbOsbE43tQwBKOurWZVfM1i9WHX1WsDs89jsFuffeYFvaFq+GEnU9l5/ZWX3njljfduv3tv7fGjg99+44XnSuV87LQze1jBYwywFpzy+n3giwJ9govMZvF+BgalXeuGfJFAOLK7t1ZuZFyBQC6TN1nqM6dmdrfBhzqEq1nZ2vnWL/2VX/6NX/7eH/3hh+9fPzU+99wzX3EYYrt7uwfZNSyt9Y1qMV/y2rzpdP785fGRsCuxuw+bITrYbLdlQsqWWSi4zGCZe3Axirwy2YgkE43jXAxPOu22eWhZnFy8v7e2lS6CnChiHRnPCudWTMPYx8lSgIxezsGEP0RmI4Ec3Xatgy5Wd7pcuQtqX43FwTZwWnSatAfRP3abwu8zbaH7bD7IWGaLCJg4oqMouH7seOBDOBtgseEphSv+W5tSal5JCqmUVEv7UJmoiad9SLC65IH28BdvJIikKnPtsTZ5tTTyRGV/PJePQzXCKiuQot8qnVY/9UQLlIqRXlqlClBxtcxUiORFTDLhXfApsdSlVVJlrsKPg+VLsleZyTeJNVqpJVSf8j61nNQyz+xW8Y6rpWok2UsNpXaqqJNyJX+eyD+toC8fyB3x5UWpFqgiJDE1hwoL+y01UimPv4nIeZK0TiXR8uKTN6ilPqHtKltVIOESjVJUffmpMhU2RfrnuC3yDd8iEhY1jCH6im9gLMm6LNLqgbma6u9Wuvmj7l6kudGy5Ie6yzOhuZnY9LBsDA9H9ndS9UwJlzMYylrFzZXsIICo9Vnccdf8nDM27rz6+c6jXGWrkGGg47bAXi4AwYWXL2ML+H3U1oRFECVT9CZw2QgBYfxL7x9XXSrMpbpEasUwR4JksXmD42fawBsc4dKDvRDQ+p06bnq6WMJiiWCKWV0gv3lt4Dc7OBnrtzpefAz6UdSfv3z52uWnL47PTTicIWAedIOG32d89bVrTz59LrW/z0EGXlcwNNvf3Nor7iynb2C+gD3c2uEGCiM9wJNNuvFo3GjygtFaKJaL5UIOp+2NDk5nJ+JBjxtD5JrD7Sjmh7lywz0RGvOHggbWpFbH0MuX0geHu72OtV7WL99e2dy+h8/luCPkMfpGo9N4aY9FFiYj4++m3y3Uki6r6/zi+IWl87Fg/N6D+7kEcAvVYrEWCEVikcjcwqzFwZjoB6LO199+iQ7LpJLAhnpDPr/XNDkWsJrN0fAIMFJ6m3VsKlSqHiC+y+R3rn/0wfLqhh4w/hGLa8Y081TI1naYfvTRx+6IcJ/Fmu7m45uPjlarDcN4cNzgsuEIfXJyLJFOj4QDly5dLhWLSPVdLpcgVXW646cnkK23gTLjxBGyp9elkxns6UZjY6y3iWSaYdttdQBjiIxEqJrVhnQFj+eD2Znphfn51fW1WrdSatZQzK00Ibb7VpvnxZfeOn1u6V9977cebq5ffeUaYOUO9JZMut3dg3NXz4Wnus+8E3r12jcfLz/4k999iNtku5MBZAhHvbVSq5It1Ye1w8e7Brfz7NICJGHx1Kl6HYvlLQCpGALJfOEwna03BpVa86VX3gDlD/boz7//7gvPvzg1udhsdPErl6ocAYw0bHVx6by1uTs+GZ2YjABgy/iEjKrpBTMt/vAgHVh2ybAUJosZx+BkuELKiUcUDnH71L9Wr85OjC5OTiYr+/gOZKCzfzIBWCE6mkxKSDeTTs4PZBWACZNjBhAf2fCjWscMbw0N5fqggt40LD+OQfDqiZQACw7x+StEA7kT84ZpIpdwrzJnRJRE9kSQaU8oe2fJTSadzHX5U/MLxlFCiSuT7RcveSzZamSDTOSWD3JTf1K2FKg++ZKIKr2kkYdfXOrHSU2Ov1W+EkMlU4EnBah0x9lKmFT5OKYWRUqUINUEqY5KcfxLMuSSx5JK2sydZKfCtRwkAsnkCbeqlfJLS3bSDq2d2upFfvQxmaliJap0p5bmON8vvngouarqyb2qrspdfqhq8lQy0iJqr0RlpgWquKrTtKTHsVWh5CCBKlcpRH5LKlqj2sgvaiUV05omXzyX5qsbqRap1IRlPBObdpFSDn8ZjZBg0jN6gY/uOZo1HRqbKKSXB6lWr9pvZLtPn3/m1Ox8e5wJtY+XxmIrp8sgNA+gAo50hlMwPCsCFGe2OU+F/BDi9aZ3gNKJqeW1eMoCRSrTA8oAvy8OIqR20B71hqmYrLxSP2kR31Jr7qSWwnIhQsX1kcEcHZslSm6IL5X6oIttcLHUAiyzjljc6wkCBQ1DSno7dj0OS2AQjk1Pe2Kh8en5y9euxaJR4c5kZ8g23YRMFodbVgeUuXR7axkjKhRjCrn9bDOBdEhnwf4fmCPjaEDfL9uQ75YS9VKzuHG0DzYQHBZKK75R9+XFU6+/9EKjUXnvZ+8WChmHIwy8c6U5qNtanN4V65UM+ZWL3So4ZqOGiKdwlK2k2u4Rz4svv/mdr//m3ubeD979wZ3bu6Mhz8VLF3D71iwVVnYfpoqH/+KPfntldb1ZqOJq/dqTT01OT3DyWalkfT5LOByLjEQLxWyumGmWuh/84Ptb+wfQ/aVzV4BKA9FzdmzC6zAkkjv5euH+2vZnq3eLjRQ4RoNQR+9pnnvqbKVdzKSTpjIuAV26sTH/7JUzDzeTyUqqY7M1mqk///T6v/fOd1PrOPhtDEJ+7FIB+EGMBUbbzPT0ysrG3VvLC6ebGEAfHSTsDttINIZIkqGERTgDKBQK4Xqi1qhiEYKLCnicTDYLslI6m87lMxPj4wyaZDa1s7eJX/sm7jtxfmMYLL0Sr6YS1YPcrVs/v73yIdpbHgc+2C2rq/uJPOYdjZefefrUk5MH5VvhM7r6JgANgnfeLPYmx+acboe+g74VuptVf9B7lEoCuXrlqSuIclhstjZ2OUxNZXLoiK2vPWq12gCr4tAm6I5mkrVIdBxTLI6gW9Xi3mEef0uFbPXhvfvxmHMyPue22+TolaNW2eXAdDAoBQNOppgaqswd0YJjnEIkZH+A9E80MbElKxayI9HI3PTUo/TqUeGQo1qZgZIYLVyhKUreA5sP2ynzEGVlAQIgb1kbkN2A3dTk1Nc5sOPS1Wpw4IIDjxBYbyLvQU9bwEPhH2UNAFWClVjwUMQgk0gcBfNMKik5ixaKLA/Ujp/QMtqhqIJMOCJJgDb5ZNZpLTt+IjGksSpQ0qk7le6LUC3wmFxKBHVJHG0eq4gS6TiILviFKMf3Uo4iCtr8lzTHBWsRCJAqf3lJTwmBkBDtUxolhWp/qolCR2QNkNZ9mV4qQBhBKkzyVSESWUvM55f3x8uQBJyk4Vtutdgnn8f1k1ZrEYkhNZP+kzhajbV2ntzLE1W6VIZLaq9yVoRSK1JVVeojD06y4p4QylLLEcm0PiCD49JUXAIlR1WajAKVhB0A4LZiwUWQDDY2k1I5iSb6B+h0AuOP7xR4EnP/oH/QKZoqpbrR3p+IzAS90eipUNaQyeykh+Lsa2jnFBe3Zhz+wco3DD6bJ27RTXs9Nv+ZpHm/2+47HeGW0cZIRTuiBdIDI5V9gHaULQdjMCgyC6QG1FYWJd6XbIC41Jyi4Qh4MByqee39YHTKprtYwhoo08A9ZKGCFdHQbsfusl6s7OdyG81oWOcBbgFwBOvi2YvOgDc0OuFyeeqQdCkDe/pWpVk8yh9s7eCS5V6pdtC3CthespoutI+g5haTE584VVxFN/veNlnbsb9EiS9TTQ0LIuUOeu1wtF7dcNTnbjUbjwH9WdvjtHd28bLZZtjZfLR82JybPYPjyJatjjTWYK2DBZFYv9uv9TxmK8Lnqy8+d5A4+rO/+IsbDz4+t3TeVG8U25Pzo3O79Uwui0Zrr2XUOVwOlIVwpOPxOrHTEj+wBvPOYdbiig0MuEQsJdOH5XwSbOAL186Pjs7Um8aHO1veQPHa+aeM9s6n926ns0cPH60kaumLpznz0KeGXf90oFjdc3B44jGY4jO6199aNFi9H3y2MYwCqgPgZKVaMSZKiYPERqGQOrP0JFrIEBdsAgArqOcaVis2yvM727sYnuEtIF8oGIvicG7p1Bw+ETvNLiBxZouhWq45eoDjee0uOzlyPIDNQjQOylAxVyjgyxelq+RhanZm7tqZZx6vbPic4/s7OAmamF541rF8P5neB4q/Wum4go7xsWne12Q03igWPvrke7VeMhjTeSGhAIpWjOVyd+3B+tnL50ZjkVqlgs0H3uMmZ6cNXXOpWHrq6WsXL1748P2fb26vT0yNYsWIITWcDSeiWDKcu7hk0TszySwG4mBnX7x01qCrFis5p2u4s5Nee/x4LDw1PTO6s5cVvTN4DM6AeZdCu2W4nvwRpnhuOekjUIdKltmCP7Z6mTOoYmw8GomGQ+lyApA5jOZQ0UHtGTLNbpvJKesmhFuO/DgFYEr22ENw0s6WVwyTOeDtGD0mjx6nIKh7An+FFzFZbFHyYXqqiw0hxgFiWswJITmxBoiTSIRJstdX1J8Jj5iI9U+RG9KxNNAIZiKLkKiIKBohpOSEfBAkDWTdoIJSEFH4rf4JoZAU6qLBkkZo2Jehx4HHUVRWkgExFNk6DleZntyrxyqSRDsJ5ZsUXITIjXS89qVFOSHsxwklpiKTX5SjUmuJ1DPtQ+XBLTWTjtAqIl90igogTCtRMtLSqC8JVH9k+ZeeqB+SA9GgWaqlElNLdVJrtaIprltrjvSxZCQRtewkc+1WRhlRJauTbFQkFUPbj5w8ktd8XF++Jb70Czes/fL+ZWSSVt6RyA0ZWzox1gKNHl8wjA0YYr5IBgPBCDVxBsgw72rIhrqudZjRp8rtejpxNFufCQ1HRsJz2R5eS+o+sx/84J4euTcE14DiQr9iLrCqGM3evhEA+qA1UBtWGNCWuN0d8NRz9Wa+3azW0T+yoEIKGopo91BRaQL1lNchfSGzgjbKMiDNUZGGKMM19PqS02uOzJ4K5I6atUyrtI8n49Fw1G6zdQb1fKu0fbTv9/r1lmYQR7nB2IQvjiNNJ9IZJ+qrunylvHe0vrv3cD+9v5vZ3ksi8yh3jR2z2xwJ+THd6XfqLvwtogfZ0uGuPrVWS7WrPp9uOrwUjXtd7Y7l1KTX5a0Xy9nEkdNthS78yfe+t75xgOZ2LL6AmVobFKQOEl/jiM+Hz0m8+uwk81iqRXzdS5ee/MZX3ogGzf/NP/knH7377nhoweMOv/zy07/2K3/NaXf9yZ/+6fUbHyW21l0my5tfewvx/YMH944Ok0hNpsbjEFIsfrqt7v5B6v39HzN587X96IgpHrW2jeaJMV98PHaYzO0e7hXbqScuz5W7e9dXr+MxDSNhi9e9slXO5Qu9Ebu5nkI76bkXnrJ7jKbxUWtuP7VbX0uAMd/QjZqtlNQwTX/75a9OeyZOj0/HwwuFcm5zfc1td0fCMXwiI/3iWDgaDh8eHXl87lDUv/5oK5NJLy7OgatcHhRx0Iwd8PjEOMsA8M5urweJNFqk+ABye23hSAiq0sLdpcWMlMyCLZzdffXixYHOup89LPZaY6fOn1p4NvcJfivrHQu2Xh1fW3f+1JLb43HGDLdu3tjYSi1Mj2CeYev6DS3HHYyZO4ajZGZrZxO/DPiJRHpSLldeeOHleqN549PPAyHfuUtLuJNeX2XDgZ2dPnl0AFTz+uOVaqHk9nqxvgUxI2B3L04uhdz+u8v3tlAe9TeqmIt3OpevnE/kP6oWOjIOmSAyUhmaSPCRXfIWZCbKNBPKK6OWiSeuJPAl07U0i/ViOm+b8MQC/jUzkCA9h8mqhEbEgkrAo8O2a/SC3QX4TRBcWV+MAifOlGTD2jebGbc4cXKwBhg5be4DFC+MG6o/SnjKXMFRU79rEhBepfHNhBLPTfKfWjGvZVaRGV8sABp9kbyFGsN/Qd4hWJAJkXKIkquagNAPof6kUnsSwoRC8I80hMoT/ogrNyefGg1TAWoeqyeq47RYKq10kbp+IfYv3J6UcBJLi6vVWu5VVJWd1J5fWvu0aFoxWixV7nH1tPx/8SlxtEy0R1Ka/Jau0kJUhl+kOwmji1QsKfnL7E6SqBCpj6yY6jrOloxVXSVzIqlOVpHVc+nX4/eila4ChMMgVH1yo2VALrKIyOHPF0Fyp3Kg8vyTzOVkSETqPJGsqY/QURGjm4ZAO1isOjbXTvPQg7oAwg1lJEwURpV4KRM2hkwYT+Iqp4uRL2JHbGKa7UI2v+sbBMKtObMOZ4p+1P5xIosuGka2nWYPxQd9w8IxbyPVdTb93qYeR1gOq81pN8Ucdt+osTWq020VK6tVdHbcLjd7a7UPVnRf7XjEkoZ6qEqrrapaGKQlcD1DNMRH4r6piUARAM0zM/Z+ZaMPkSjNzpzDJBKxSdUMkG+wqXd2hw6L4FDEPGYvtpcdBNOlSrd79Pjw5p3H148OV+AES612tV+CS20aPaub+/nUIOh1h1znmo0yUm50W5Ey6duwTjpwkQLuwWjQMG2OWD22FFoddryl+3HLt3xvs1SrBoGdCPiBvClX0w1szdCKcXnzpeywkBt0G9NRd8QXHJ/Ad8t4sZFlu7CyugcLPjEVjIVH7B6sZyv3bz/e2t5MJAolDI7tDezawnbn2ehIzOocm5zBkm1rfxOgeK/XNx+Ph0LB7Z29RmPXETQ1dPvbB++1jWtNU2I7md3LHfnGovulzz67+UH28H67bXLHvaXhcD1ZxpWnc9xRLTafujzh0nWxzzC1qoaSUZ/O6jolnbmrs/rMoGugN6p7shOdi8+Ex/BP0miWwY/FNJnDXl/AwwjL5rK4b4R6cXISjUYdNifIz59/dnNiego2n5eVymRhPMfHosi0geSE1HHqAnD0UO/BDwUqvOVyjS0ovYRUpQzifbeH5XCtkMkU8w6n/rvf/VazU7C6TZV+qdUqZQ8T37u/DQVHO94Z1AWDEUs3dvXKc2awEVqGQqPaaemxXdzYLAJfOhrzNPF2XBvc+PjT8ckJVMfWVntBvz8ai0zEx0GBQq++VCg8uvswEgrdv3sDXvv0/NnLT2CgtoDmfrVa5o2XUJrqo2vVANfk6StX9pKZT2/dp/kYy2AODKWHbDPFmVEovGKjCAkX7BaZbHBboDgYfAwTDLhaHZw1e1x6v9UV8gQagPfAnotTDoi70G9ApFkGOFVgE8BIR8WVjAHgw97fIo7axc8SQaCboPqD4TRXT3Q2xHwY7x8ACqEeLuy/uC9n3LE5pSrKikB2FWKABr1Qkn6hAEJ8hBeUlYrqcmlUTPupVi/mvTpmlIdaHJmGikwJOVKBQku4Ub+1QMnoi+hyzyWTloyFHtFYdS/kjHgqTMU5rsVJWhUmP1T+Ulf5dxLzpKjjWOpLsv2CREoI9ZfUElfaJuRcC9GeSc1VPhKobiTRcRhPvmj7SRiptSXhJCEPYJPlF09OsjvpTlW8PDrpYB6oHEilqJq0/7g+x3fHv04qrWqvHslYoj7yxe9ffH5SmgQTLhyJ6gN50dIhEkJK9fQ4K5Hv42wSv9PGnt2ic9mGDpvere8B4sapkpkNAToZrCpin8KIw2YTHgcbLZgpdpz4pBFKXtOZBToz2222q8MAuwSALB1zLCfNcktcKItQtonXFRSJML9tZKzlBrze0BDQ+SzOlsvmCTc7dp1rLDo2F9tdSWV2c4hZAACFl5F6C4mnS+FRqLt6N3zI65PXyAaDkW/FH4jXY+lXvcb6bCRoOHUBvrs3bE6PjyVS217n+NTI6Pzi0lOzizOjMZvNz0Jn7FVLnYO93fWDwnYie3BY3k2nd41GxDoe8WfGOSUW86VmfidXRT0GgUAEJUO0/oaFcjPkDLxy6VmHtZpK7eEEuJGvWgOe7YcHn91dB1PHbXXgic9mMkaxl+rU8X0LPIs4XReX60Zk1u1+a35ydHHxyUjQmTzcz5VrP/rg50D8jI/EfvPf+xtPXjnXqra3VzaThzt//m8A/exfunj1V37t0vbjh59ef79Vr8SjgckQ4poW8t5MPum0GuxGgY4Yj42OjMWn5qemM74b6x9+/uDnD1cODa6mMxSo9IuFzur2/RvZ7PKwbfRGTJbmIFfJd3MdXUPnB4962Lj69KjTYvjp9z9vFvFhNnN+PwVKXUl3qIvGR0BBfnx4kH94+N/lf9v3d6aPPNlyJnPhzNknrjyJA2bgQyOhoG3UnkglamXW8E65XM6kM04XRndulHvxg4Mx4cT4GG/tYCdRKRXiY6P+UMDjxkLLxyAFwa+CW+JqCdmWE+VKK9j3OCDqtVgkTDq3z+Zt4OraFRid3br89P31z1xA51n1KVmadDhWswWc9XwxPOLCd/GP3vv+my+/mE4VJ8eCrZIu5o9E/dH0drJVr4Xd3mHAsH9wlC+UTi2cjsRG7ty632rq337nLdaGj9//ucfj2dpai464Z6bi1Vo1nTu4/xD1Iu8pPU6PnaFQ3OcMJIZHNrsPiCRa9Ot/5VuAY3344cduuwMFMOYZk0zJKHV4DRKTd1gmhDpi4c8HpypOV99hHzg6uGspNMBVdNsc45HRMm7hynkSAiwkHBrbbGG8OcoVeqHwG2CMMAdjEgonhG2X8o/X7xDGLp0dILwlIBoi88eyl+0z1i0Cp47Mh95F+MRaC+cmx/pCclEEYpURTl9NI+iCbBeEMMisUvIsqqACFLmgKlRIqSqS4OTSyJz6lLkoU1XojkZ+5JMQLglRoVoEiSPkT6IKIZO5zAeXCuRT7rikbseX+q0lUU+0OOq5IgOqGV9EkihfFCm1kLpJCBXQPr8o84sSyIv02s+TQJVIlXdcI7k/uaQ00qhEWslaoRRx3K1aaaooiaBFkjpLvlp3q8qrjLQPxZsT5bhkvk7qpO5UJVU/S5TjUiVHyZ33pd3KPpR2nuQty4CUp/pctHLUCsC7VPoz4v7F3HU69H4bIM9d3KE6+W/UWcRnrahkYlmCzB/unx2hbAIEfBBMQyAHxaKTQjhYYlUA4avWMXWQidvwSgkYdLvZ0AOXMugYWCG6jUEVMB6U+l0iRzKUiz2wz2ZmgjOu6WZ30xwcDn0Vn2UYHgsMrc2uqZ3bK+Mi3swJGwwVsEJwLDRTukcqIEaX/JIXyt7EjO/T2tCYSKRhRnX9tlVvx0d8LHZlcX6yUS8+fEhfe+cWzoyPxeNs601AOrcPs2vl/IOtzK1kOlGolzLVerFe57C62zRkStUC2DK1Kl4C0geNxmG/wSJD85slnwdPv10E7xNh18wYzrn6G8169iiVc7Rn+05dP6QbpOjWNm7r4WLNrmahBqwpqEGYEYRc7smIM4Q5WafmDDoXlk4BJYSPQg4gC5lBqy4WnYVmcmPzYbOSZnojJ1iauUTHzzts/sikzTFwWLtBpyMejyTruUyqiM+qRhUHhhuAQhudVjTwH69tfXjzY5zr2Hwt72TU5ZvXO3ayXQeo/fXuwWYSIb4uB1hGy1yqt6hQNDZZqx71ezavHfBuUBEG+9UuR+Z4Hjat3NtN7KRp9qknx06PXKlgnJa1ms/EFqbjm5srd7IFWFyOcc8tXZkYm4iOhEWrUI2xRrtpd9hr9WY2m4dWjU2Mg4IPSKnVIstDNpOFi0AqgV1hKV9uORoAxKLz2+r0OPUd9u3cQ/fJye3mbMMOVwzzYDEZl+bnWR9MA9OLT7/86c0PdvZWQnEPzm6nzsTPzV9678MfYP+x++n2s2+fLRUzn352M+wMPbq/7zLHx0dm5qfmxhzRXDo/uzDjCtkfrq7iDa5ebt+/vXzp6sW9taPPbtz+1ne+8Xj5EcO+1ihtAvwwx5gf1lplYJuy2eL+pdTZhQveYHB6ejqR3au1Mvjl2dnanZwa/87bb3erXZwf4BGjgUMH5TQY9l/YfRm0fVh6SC+2ebaB3TsEidXrGtgxICuVKi192xa3BW2BoBsQKGHbofpIRQ2oweIKpt0AfqXBSZl0D1tiJoE4hUKaj2MgcRcPNgt+p1HlZ9D1lAWATFJKhOdCHoT9PROU9QLJD//ZAahEio1iHilyyzxCmCoEQyMnGkETCs0TRbYUxdToEBOJlyz0Q1gy7SKmzET5cZxEDQNGDv/koboUaSKn4xzpF7k9fvoF3ZI8VHRV5kkFtFD5pS0QZHyc63H64ySEy8Wzk7ppvwiRAJXmZIvxCzEkjXb9T9IfF/Pv5nkS/zhPVeJJhlpZX+SkRT3JR4IlgvabRn6Rkyz2WvNO2kRc9Vh9HBN2Ebl9mebkVoVJdF6P9i7odlUP+VY9LVCArOuiUy9hyO4E6hmxIQJJYw/kNo994HMMfBZ80Q44S7IDEAaLhbKyRcdWALRIFgMRX8nLZ4sJ1yN6a9B9dUQgJkBNDkcHMGSUJ65j7WoBqLFhxaFUA7AGC+tBFksyfEs6OTQVx6j6TsthG0da4tcHh21Xq6vP9Bv1kjPlXvAbnMbCfr6Wb1hQt8ENMk5vaAO5S+9JK6iKNFy1ir0BU3Vt/T7GAHa8yZtsrk7J4TAGTeMzkxOYBbtcsTML84Du1Epre6ndh7sr24f3i6Vtnalss7n7Omu71zk6yKO8mkvlW0PQdDF8Y4lEMdXoQK3d48EUrN0FLToFzh3Q0J1mI51O4BJx41G5fKgLhosheys8Mro0cWp1cw3OGlWnuM01Oz335IUrLhhdp9diMUQnYo1W/tMbH7cNfdjkT396q5RNj46i++Id8zvqPVclf/jZZ5+8n9G5bYYXX3jl/IXneI+pWu5g9yFIYvlUHlQlj8Ox/HD94+s3I+4ZHGi1W4e0GrDmUGD89KnRizPnP7q+d+f2rcSHzQTYE23d7MXRRsuQSOXsY75hy729W+3kSsh8FhYcnoBjyTSOTUatkTU6nclERdczlUtN7L9N6bW0rqyzn9WFHLpC4265nvFbupOu+csTsVNjsYVnX+o1uxwFs1vr+sPogDKksvn8USIFzRqdjE/PTzg9jloF5Z3U5tYWQh6EGjASeARwuFwj8QgQ4wf7O/Cvfj8m40j8+pOTE+xgUokk7hYsJpFoc05QrVSYJE6by+Pz4cKg2WnEIrEzZ8+xuQwE0WbqWp0Gr6n1n/yNv72xc/cgt4cJ9MLp6dsfrDdLK5OzM1avwxX0xl0hXWCQCmReevE1j9d1auaJo3Sew/RCsXr7xv2rV59s13ofvHfdFwa5m/MIO8Q7UcjhB6nZ7MosSR0N7tzu9c2x2Ag7yFxp7+adXa/fPhGP8UrYwXz3m9/5s+/9xSef33IG8DGEE4o+Hq/baIOKro1MGaaOVW/zDVyhod/dd1p6Vihua9CoFRq4XOjYBl6Tq2b38HbhbMR/RRcTcZDWmziaRvmaI2AYH+VSmPksJ8VsUAVZaNACVUT8esuckMO6AchKQzbnuAsUbl8YfrSAoAJ0tyI+omUkCxLsPxIpaqjojBAmNa8IVLRGuPbjSwm0mHbq4ksqIrNQLkVqNQoljZS85E9F1WanxOenlp2sCOopnyfxJA8tH4kpSeWXqpj80C6Vh5aVFvfkU8tcIkl+TJYv1iWVUGV4UpL65kMVoGogP45/a3fq8zj0F0LUrVbkXwo9iakI73EzThpDKdrjX/w8Tk2Qattxs07ylJgnqbjTEh4/lPhSA+l6uai/iiD9qdpCQp5rL0uLTHfwU+LSDRBxdo/wldA1pdYJ5LnJYrQ79XbjwGLp4xzD59R58fQrxuQDDoHBO7HY9FbrENBaixlBI7nRUNb/4dAi4CfCjlAhJJQo++s53ATSxljvmruIdnAWgEKdvleDUe+CyWzGwCc/sFdxaFxHVNSqmk2gmHTTWVfOUkqZW/EFB/KWo3TW2jS2OmiNd4OxEG4bc4lqJVsGIpMxzQaUESu9IFY+wmJL6Yz7QT8ScMeDXuiB1c1uwPpg/WE5kzx/YXZswVXROwHLaloAOOtmyg+TmTvb2dRBLpfKHLLpd9ks9r4Pznd982h3o6hvlDB67SDs6utQUglGPY12LVtNX744d/nq6XKlsLfrwdW7w+JymT0jwVHL5q55eIj5cbXeXl5/PFYvA6Dz5LkLB6kdVq2vvfnSC88+PzS4EIxndndAdnB43Z9tP5AzbP3g8fJKcj85NcaWwJDLbZvqAxsy+fjF5y5PAZFZyBQy2fyPf/4u6zD/UPTHaGzoM3ZnW3up/d29xNbhhnPRi8qnvhastQd2fziAGdvpa3jbjI/P0tU//4M/2G03JsatqWwnk107THV88Rmv13iwX3CHDfNjzla9+N7NNEDzPrMV38LdviEUclUz5WZJF3Aizzbp3vzrZ8bnpu58dPv2e7i+0rlwD1ledVaDv/baX19cmHGYXPD4h4kjyBP/nF70KsGS0+OuHThoFDjZbzkstgcPHxJQb7TQYhyfGHXY7TkWilzR4+nj/QCnEWaLmaOkcrFydLiPtwKn143VMPnAoXDYUkbZndxdQ5+njXe6FrYW7fbzz71h99lTqS2/M7y38aCXqT//xHMHh55WTxfyWD/+2WdTcdCg55Kp5OOVDwxTrdPPvd0CT7Ri8rhNi/NL9ar50aOjcCzwV7/71z6/fQPnyBfOnKfDlx/edzitvkDwqReeTxylkD9hTl0qFXAbV64X7jy6GS/FX7h2cXZxfm3js8mZ+MLSfCHX2NlKu/3Bb3zr2/lifW1vw+LGYagI4s3w4MqWfojyRM9gGTq8BiRQgOs5ht0eWOKtIedJ7KOHXXMf4/hGq4Yzd6g3Ls7YOZGY1cOIBh0wPkx2bLgUbhoUgP2omHQp+94BroUIMmLv3R4Y6jjrUKeA7AuYnsxRDns7qBUpbVRWEVYB5i9LkzxVVESmNHObEAgFgVCLL0iMkA4hbhKkBStqQ3zZCUgGct4h0dWfogdkqtILtRLqwyXxhHTxqSiXCjx+St5yySO5O06iRVdzXXusPhUpk0prYRL3OEtJyM+Tgo5jy5eWofrUkmnP/tK91rRfSPQ/e6vldPxIWnNyy53KQQKEKkt/fvHsi2gSQhY8Ok4qP1TELzLWkslPRdKFoKtEKo3K6LibvgyQmCq+aujJmbyEEszbITM4M16hmP7BIuhMYLQxs5DlcIiE6N+EVT7gVtwbIPToZTNY1Tggndol4NHdKjy4LADUHF8rEF4GHMdNoh5AvmAO8oDTpi5erjqNYaspCEO4z0YDUxoA0GMDVzFGNIfE43GzBzZzGQzkDkYshZHDQjHDrG4W9POFbC3n7phZSor5AlhWnMHGrX4nYBK5WjsHR9TkHFpwDtXax9DG3zyn0fp+z2G2TU1Yn37Wf5gtfHR/NVHaO3spfvHFqaFl7eH6WipXdvijraa7UEtgV9TT43bSYTW6qkVTYrd4b/tOFeRopA51U68hDWK+O+3umfHpgTm/ur3VTuhu6W4VC8l8KT8emwhZvZ1Ss8KxXNGwfn8zHoldOzPdBkKzWUOV8eoTV689+dxRandtY+3C6aliKfPZ8qeoyZqqRV9ItCVxNWw32fd2d3dTuVPz54Le8Obqw/WNnYWxuXOLY5OhsMnm5RA4Hhztn8JLcd3rsnIE0+2bU4e7yw8fbqc2zpyamZwEjjN/85MfPf/Uywi7Tp2dHY2Ozs+dsbsH20cbDV3d4tZPnBo/PzKv77c/vnUrc1gMBP1et7nS2I9ZmxdPXViYnf741m1dZY8znYp5gApMO905SFVsFv2Z2dku/t142z0xJQjp0TKf0A3g4I1s5MDy9urMph/96KcBj39+Yclis2MGLB6MbPD3dq/fi3EvnnbKlSr2rk63fX5+mn1noVTh3KNaq2AZDRDQ7tYGRQb8XlDu00dH+IZ0uizQwr29PUgbC8nC3EzAGwCHtd1GnxeIz2qpUgqGwrivsRh087NLTq/3z37wR8urn+S2+t5g/b/8r//fydoRQpGXnou8cOm5bOFwLOoJ+s0fpg73Du9/9Lkjv9c52kntZ5Lf+GbHY4hl9pPVcuGv/Np3x8bCmPOdWTibLCR2dtd5kfViKzru7wT8bPW8HnfiwFIB3MLZzSeLh5k9b8A0PzMZDIZwcokX5ZmlpULevLlxMDoe+vavfOd7737v4aOH7HToCwtAWmJyBSnXsTB6hg4/znx0LgSgAJ2XO/X6sAG3gRJpbdhpgAA1KLYFfpa5JRJ+pqUgPCGt5wQA53aiTMd8k3kpdFyseIX44pyDvQQsP/oVTVMD8ClWDWSmsHv8F9th1H6EURLOTQi6HFSTRADCCOcYgN2A4uWFign1kjkr9EMRIUWL5Df/mOZMaJYD2YCr8wMhZvJM+1O/JCKhilId3wsfqpH/L/LWUpBYRVZmCOqHpBDmX6kkEul/cp1kKTlKraV8tYId58W9pCGD/5nrFwN/4f4XblValfK4Yn8pFyJqLeBb6qn90u5UVY6fqgxVBifRVT1VXloeEkN10b+b/xcFyM1JapUfMaVA7V5lrtKSi0RT27HjJFBqFcgjBDAQS1gviDanUaLSg6oPNF10e4D47KGfwD4SjhfSzC4cS0Nh2dE2YPSge9AG2p9+FsYbuSN9S24MO0kFgwY3IYsJ9vx6I84qWgPsOfG7IhBVUhVgq9it6lptXWNg6uAWRt8xg8BQ1tUxVbQ5HIV2qV7KRac8U7EzSeet9z5d1kfbjEqOF2pNfS5fcrvaIU8UbBiTzVyzN0rZgvgYaJsb9SYrFgpG4iBbbLva6Wz31qc3IqGkMzgMOsrxxfpf+fpZs6NwuLF26+5H21vp0OTYwsRoo1PbPQQnpuO0eliUKnljPl3fOyzb+paQP+Tye8rGRq3ZoLUuNx6M4c36E3GnZ9HyxJWn7q48Wl0GvSYzHjfjOQzuDBAJw6B9dnbx6StXzyycCYZ9yVJq7WD1kwfvo5cdCtlA8/+Xf/AvfnL75sLkmSdmZlr96ubmaqaco8O3dvaYseaxoqFp65SrrZohl9Q9am0n7Tt9vWFmcurMqfN4cExn8p988lE6j1Fbr5TPNjt4j8+88vTFmYkg6pMuh+XS1fHR+alqreBw7pvNA4sBLIoVM806uFvKrWETlEkcZR7UjX58VDYOtjY7+mqjOFjXc3LgSGXNfv8Eqj1iWGpuOfX4j8UBuWHvMG0z9U1vvj0VCXluPLiZLzUmYuapC0upRnP1xkZgElGM3e2OJMg7V5qeHROpfRXHAnU0sewIo0wmn98HoUgdpkAdiERDiwsL+OzssawUcBNvikbDpXyyVMpB342oGBj0bq8rHA6iKQa7n0ofYcHMzuuFJ59rg6pXLQ87fZfbDdSEqVyG/GQzGRb9SHB8PnZpOfywghkyVhkWk8ccKDcKwE6XCvvNYaXVWp5fnH3761/N7Ncibv/4aBS78D997yc7xcZ/9b/++6+8+fLDx8uVUtnutZw5dyrmi7jczheffXF3b6+QL6493AIgqFgpjcUn7RYn9saZYhoXBsUMpwufYqBucjnAUS1UK9Exy/z5JZRCMcwz2vpLC4up1BEbHAD5bCb8cDENRHfBajC4dFZOgM1DK6x5A30AfaM+rACW29H3GkjyOOgw4gYSF0gAmADoJDj+cliC2aFATds4QhA8duaicJhiHgB8Ll0HYkuHWYbGEf6p0bLQs2owvS04g2EBgFzwX/h0yL4sGKwA7CSolPD7POOpIs/HdJ8IWv5CQY9vJb1GUSHMwlSSUFuLSH1C91ROWmFCjrRSJb7kooRPQqmELmiXFH6SLSGSo9RKYks06IyoP0kNJDe5VBT5VpEoWYJVtRU/qCJJdx/n9cWdpP3/dx0XInWS4rQCT76+THwcLnXRIh6vMypcq4Xk9EVytU36MvnJ3RctOQ74Ilt+q5ylgyUj+eNG6yeplgRosSVM+kfrAMlIGAMeK06fO6JzzwIADwHfALmH61eanHrxcCXUn4VBGGoZCYyjzgB/9KjNEApHD3PAyRLSTIQhKBRA/EUVDQtDlFsYpfAfkrtIldR6webU2O8I6Fsm3z5iwA6GTc4bUEvoAMdpapqg1eK+Q19p5WGG2QPrXHU8sNc6hXeufj28YLp+tOrdNRSz3b4HpTZchwyKmWKzBBB+3+9x4jxq6NEH3B4wCHp1c7vlchldhWoVA2BHD6+9tMbncEWsFsfMBFjT8Di91fVPb9zf394rtGouo37sxq1sKdkP+307271cutElFYtY32no2WfHzoLN0EC1u14CgY1lq16vlYrJaiN57tz869/81aX5KBrzmdThk5fnSyVRjD13dh5X8qPj4yB76Tv9kM+xMDfNZF3f3Hl4f2X50afdduXc2ctBZzA6Nt26/hGucG0epwWzrUA9X8O/YzE2Gm1Vqw8erVks6y5HeCo2G49MXVgEUSPsAyDB7wfHH2vh3f3k3n7CbrcsLUyORq7IHG9Vnn7m7Nx0/M7tnzcrdZtLd2f5Q6OxkzYP9hJw7fp8tVtrAWyzN+y7QOZuGzKWSceYb6LTKlazpRaupZq65cOkrp7UhXRj8RGLp7tfrqEDNDHhdjpMq3fSaDIunlk0HTxOHRoOmsNBI62zu7tD58CH6xiDbm97PZdLBsXXZeB3f+9fvvejH7z0lRcWTp9FhxLxjs1sExF2p+ey27GeUG4AdNFg1Of1coQLqnat2gyHwmfOnN472IOM+TzecBCIOle1kHO47Qvzi4zTOgYFpWKt0UD3HFkk6Jb1ag15uM2KTR4AESXEQBhkvPbsS/peayI62sjv1qqZw5qlNcATfWp8JuDWuav10o/evXlucWk+vjTiczx5+WzEa0Td1uOLtbs1vbU3MTl2kNg7Gz4FgunGg+3wSHhhap7uR2A3Pj5aLVc8ngCgcv5AlDW5gc+YYsLlMSO2v/7BB2G/wxwMNQC67g2dPtulp5bYOOzsbhkH/ZmpMXRCq6UGhF4jCswc29Bih6Nnuyz6or3qoFplKR7UYYqaum6tjw9f3AS0mTGwXGYDyqAyk3UY43CQDE/EhwCJ4rkU3CcsauD7ha8TkiBusoXS4AeGmQzPpUg7Z8F4+mSbL+d+okUtPrUhB6Lzh+4PBEaUgiS20GGhHCfUhEdcEiTERW7UL+1eGSAJZVQR5EZIjSK66l77rVII+TqmwurRMbFUKQlQdZfoXFoNuNEIqxZFlit5poLVrfqgnuRE6F8u9Hip0WqustFq+EVClUJL95c+tUxPoqlKn/zg+7gsCZGKHNdQq5PkyPyXehx3odzJvy+KVo3U4qnE8oC/k/bKEwn/8lJvgZ9SgvwJkZfsVB+TjDD55IJCc8OAkS9ZxCWQS7MRkaGhSD90WnaKwoQIAZflQe7lU20C5BH3crpqED6CJ+wFRLNSIEk67AMGHB6QEq1nMgRxHEZE62zFQ6CrzbBqiVPSRtNQrHQAYTiQ+uorGNYiNmaEi5MKjHtZCXqIfjLtfs0m2wZbU1/EI8AHH/4wsmHZ7W/Y+6YhFAbdBQPKcTiA0rXqgzq7hEYJWZXLqYuF3AvTkXYJdaWpW5/cRcemkCqfOed+5pXXphae8DmdxdLGzx7u31s5OsrvRjx2EIrrbXs5bx7UqHq03cZWxjMzdebSosfpcDzaWgXsvd2ozceDS7MLeNnaACisUsVVgNvNGtLVG3tjYafHWXv8eKWA893K0eLElPtMpFxOB739cYyiisV+eyg+jh3tG/d/jFtHtCbtvcHFmYWevUM3f/DgZ067Jx6dWV/bvm52vPTCG6+/8ssv6nrpUv7Rxsrt2/cSueVsqRMPDGMh6/mZ6HffeL5SKfXNzkohf/fmDYx+O93mL33jtYmJMZQoRQvIZEwldtF9sTXbF0+fKTf722k46UzQb8y1Wmt7mf2DwkFumKta5yZCofDsKFYCpmG7l3EYDUjOWYFrdZ3XTqV6TfwWW3WTY/Ym4HGZNj3stVqarabTrANvuJWvIsXwra+m+hZdNOTzOPz5BpXpkdGj5fXltYd/66/9rd/7H//VD3/24/Fw6I/+9M9m763MYHFxdnFyfJKhhG+zIHo2Pn8qnWl2UEOEiOkBh3D7WWQQifRDkWAoEqpWayLed6M90Mu06tu7q5ds3omJUa/fY0H53+FBcQh/lblcBq6fkYYvAY/XD65FC5S3XAFU6tffeOP5l57dXL75h//6n7sNxnQhmys0C6UcNmSYSHudk/2WxWX3O7zOd3/6hzF37Nd/5eu+wPyPvv9uKgfaUO/aU5c5CGKRSSZTYELMzy+hr8rRxej4SDqVqvLSi+3doz2M3i6eP//xjVytUhahI0tZscBxeaOJYzH2T0O/x3316fMutyGRPjJbrbAwK2u4J6ph4oBG/rEUdWgG+J95xU65iYarrt0WBWpAxdEbQvMHUFEx4OX0DPqJog9aVQgjmWwY2qARK1oczG5F4QhkvqMVAI/FRRiUXOa1Ii6K0qLkr0yaIQ8sCCwHatsuWNCSiyRjlgr7Jv+E0sjH8Sff5EERkp2Wm3qqxVAJhDgdX8TllypZQiT+l0+FgKkqn0RW35CH42iS9OT6y1VQOR4/UpG0mKpeJymOv7USJUd1WqFqzKMvK3JciPZ18qkVJ6RK3Wk/TwrRmqDlJPkc5yB5qovf6iHVUY+OU8s9f/JUq4vcq1Xhy15T8bVwrRTKV0UQU3vGF2F0nHoiC7SWJ2RebmQTBmck39Bn+a22TupbNDVFUqeWBBEEHa8NZKViihRQaDoaQUovCNbABHowYn2e80+2rGSBPxF0q8X10ADpv1RA7fxgJzgGlO2BtB6+Gz0H6oSKEKqX+k6pDwBxpmrKwQszsGHM7TrExUiUeoxsQnAH29KVmQfoxOv6ON2tuI0eTA6ipxcO83l3YcJpwEN6oVJntehzojgAUgFZVL03cKC0omuY+w8qKVzNWGOGN998u+G0f3Tz1mvPOS6/MF2p5H/03r+5t74HWm+/a0MrU98cXrky3kI3u1iy6V2coxktmIMV222DPehGgFU8au1vVVGBX7esO4zWcDQyMzmTzSQApRfdd50ugnJKs/3+936Il+C3vvbNK6ee/fzG7cL+USDgCnvCluFw9tSi3uRMJUrrD/eW9x8XypjROi4unY9GR+t6XSZf+vH7n7DBv3T62bNnn54aicwtXZidPmWxO4uNohm1WwO3HoBmvvLaq06Dfmo0GA4EfvrTD7b2szC4CCcy6RTuCJ9/8SXe561bn5WLmagX2Yp17eGDYq58UCnFJieHepYGx1ZiJVOptas2Q3+k3mlka5VBMt2uHKysPUola4O6zhPAOwja/xZOr3HDWBu2cZQ7MebyOU1bW4VBhXXfV0maMkVA+eydhmm9vGM6zOuqbSO+cPvGQNfqKrbqLot3fPp8djv9/Xf/7e5G0uS0fO07X9tbe/zk5avQsw9/+lOLrhMK4BZtenNl1Wo0+2JjLrfH2kWuPsDpJDSoj0HSUHe4t9/p1hZPLYXCEbwbt9p1AE1vfPrxu+/9cOqDn//qL//6wtJFlv3d/Drsyfz0jNfnQ8pUKVfcXgfDz2V3cJwR7PsfLK8gCw+PeOfmzjkdMVdjEPOEqqay1WnjMKrfLwRDM8Vh8Qe3P61XC3t3Dq8ten/NGDHaE1OnI0fvJ9ptXSZVgCWKjYUuX7384Naj9979YOnCqZExP+dNNocNOLVrT15uf9zYW9tfujD35KUrN258UisXbXZbvdXLFGrLKzvh6JTX6UVi5vF4F07NeQP+ULUcGZ3VOdzLj+/UKyWXBfsakbcjJ2vhlHIAYHm33m81jViqYUQDjolw9z0mCLQa3QrxoCrsj5GVYKDHgw77afyU4usIERmCH3YCajEA8BP5PZsTRcV5vSJoEYrAcJGLb05x1IzHSTBLCsYBbAREui6HycekQREVWSSEVggJ+JIcCsXQCJo80C4CToqTkwMCj2NJaZTHJYFcQiXk/iSYe6GF2pcW88tM5Yn8+8XrOB/J6viZCtGCpSzJXBJIpkI65YmWhdypHpDHf+mSJ8eXiqTuuVM0Vn5QE8lDawsPJHPpEsKFIKtGqJQngVrxPD1OJd9yqW9Z/U5+CVGWWqu2yj0PJBXdqOi49DwrsxLTqTVVsfBkLwmlVsLIa7lrr1fVgBDC5PP4pyz3giEoUY9jS2J0ASDTog4mJUrp4J0g70eO34GIMwB7urYRo0yjtW+y980AhgwdgjjS6QN6wCgV+3YBKIEtYQ4rxgMhnVgvIu7p9lsNXTmrS5UslSp0BvNafbUzzFhBehAGZNBivdA1If1ddr+DNog7LAW5Uv2Zy/On37gYiEWuOd+IHU6lEiurjz8GehGPLsFAYHxkKl+oN8op0PxHgsFctlbOt5+8ePHb3/7VM6fjH9z97M7D2gZq8/srg7ozU6lXkH5k9jnLngg5nzg76bbrN9MJu37g4oSz3ctDMqtAzww2rZvsHujXi4unzAbH0eHW9U9ujOHpa3zMbw+bDc5iBmF9opIr1/EXBk5DOHTp4oUXrj2PoHptffXilSeGVuedW7f37q8uLp0ZmZm9dOXpN3RvHCYeJ5PrWTSNNvaafQvODy+fe2Jscv7td97xuSLZg0Kvb612LB7snHzGq5efeerCs/ggdjiDoyPxdD4BCIbZapuYuWKwZIHjwKkixy/VcrlQ0OXyZbMtHpsc7bRbNzYebe4AY7/CxutrbC9s03vpxqNEvlzu+R2ekMszNRI12arJxBGqU30jvsFxQQOPCQC2YL97vYjRWozBSNyHWcbjB7uAPbMKctizvZ3jtFDX6KH7iydkU3o5ZfC5Bt1WLr19uA+bq2S5Zq+uWP4sWx9xj3/12tdmp2d2F88vzM6zOxCPw2Ox69dvOJ2rbpu5b+gfZPaq5RZgnyazrVWvs3sE8A1vARyLQl5TmQLA91A8UZw3Wg8TqYPD9GECs4nsr/z6by6dPgWkEKO/USv7ggGn08GRKEhIkUi0XCtRT+C+69Xy+7/7yZtffyUctLdaw/3VAz3Hq0ODx+41WfvFTs5s41RqsL253CqjC6PLdOr+Mde7P/5IZ3CcPXdN37Pv7++7m6bHDxOHe9lQIHj56XOZDGpphmDEc/vWzUA0/LU335o/Nf9//b/8P37+k09f+MoTzzxnvX3jUzYiNosVSdTGxjJOGfynzxlYLHpGbNrgngZOvd5reT74jD2su3vrJhiCTnQtepDzFvtly9CKig/6P1BxSH9rCHAtpl9yCMcUh6lH7dNh9sTGxlnYi4WK4Fe0au1eU3lMhGYgWBIlIOirIoLsrWS7rl2QEuY8nca7Uk8hGYpQCi8oG3fR/pRymP8iGiaVUB9ZNzS5kEZZCNSoiTyX3YYQOe2S7CVnCVHfUpr6Ic8lmiJI8gNyQcQvUmrRJGMt1klkLTtJ8AuXagW/v0wt9EwLkBtZvuShENNjDl79lqXvyzQqxf/3Dy3HYyr5ZSoVfNIKRde1KBKkWHAtx+MEdCYJVE9Kk9VKJNWSxzwgREWXL7lT7dfc+aoHhAv1l22ZFkGyY01XrZAOVtSfpGTExS8VUzpAZUUqFn65l/cs64bqX1kwpEQu0SDWQtklMg5ElC/aO/wXrVCUBKgqowAjEoTbwOOi99kBwsxucGCcA7S4bAIw/2KAIgACAA4WBs0DMsGbKR7x+l0DrEm/A8ZldpApm/JdY1O0QrE0lEMoC+avrBtykIWlIvoNdp3HhaadIdOsuHUW74TdEjXavI7o6PjY7Mydm7a9tUfdSspg1zkN7l69164CnGtZmFl48tyVV198PhJ1l8rZZOLe7/zgX916sCeCeVTabbYoslIr/mkQL3VtYcfZM2fm5iJb2yupo2IuNXQLIJkV5xnYzzD0aVQuW/Y5/ZHIqMcenh2fcLhAKkNjxYHkuVlrBNzo7/um5sZjI2G4PacFdP5hvqybXbxg9wTqrc7m2s6DR0c///iGzfizcxfOPnfl6uUrp71uX7cfxYjH5cQpPXowcad7IhKb9jv9Vr1zIhZAH7TRaqHghLknLgc4NdHb+6dPzSMnxykYBqHTc6dxOlmpIT1GfQ/EPVGaEiGtgSPx1PKDB/eXP0ll00tLl0w228bmaq3cPdw/3EocZbNI57z5Gu4BcmL6rzdEwxOhhaDV0stXc4/urIg4wWxC2lBJ4WCsYfCY2ulCqV1L7ZQ7DZ0VqwmReQ2RjEEoG7l6t9ozOeKGkbC7bRn6nfZIOLCNQKpj8tui2w+bzVzlwjPzs6cndR39W+986yfvvTc1Fv/qW18v5XLZXCmdre5vpTPZw0uXLsDAYnsWjoyw18Q9gGJTh6OjcdSY0un0zvYe4Aez8+Pgl46MjyM86bUaD5bvNn/nf/j3/8bfBmttZ2+7hsJV0VjV1/A4hrDyzp3bnI10uh0Ahbxhp91hyKaSDuvI2MTk3u52Pp9k2DlsJo4o9BV9PluYO7t4ZW7up+/+NGvVTZ+fKDtqusnW93//32bKpacvvrRwZiyb3B8ZHTcN7Sv3tz0hz/S5+K1bD0yHpqVzF7d2N+7cu3f+1MX/8r/6L/74D//k089vcAofj82jxYzZYLdd39h4cOd2ZHQULBNL9f/D1n8FS5Jm+Z1YaO2h9dUiM2/KyiwtWk6LEY0ZYMHhDrAAd/ECgoTRSKPR1kA+0Iwv5CPFA0kYjSSWhgEGwMidwXTPtJru6qrqyqrMSp1582oRWnu4e7iH5u943KxpgIysihvCw8Xn33fk//wPDBW9BhV5ztCk3+90R/X1W5lpYGf3i73GXpNUATaY4XTROo2gkUk8lJZA/PViU0GqgiWFSCYfTqm5f2Vrc+3SNhGzTrfDgqmWrAnBJpJ1srpFsgi5J0seeWDLU1b5K4GDAyHLWcaZF6L95SsRBCL3eS1fCwSIVcALsSpFqPFaVIJtfrItW8lh+ND+Iy//k8fiexEx/7/f2zKLre2dcI4i2eTt/7+9iZizD8GuLraTvxdHX+ybZ/urxXbyzPlffCYvZGP+8JA39ju54IV2sg/MvvnYFp58f3EcOcxiN+L82D+2nxe7erXVq/1e7N7eh/0Zv7nYEW/tYy32xqeykYz44lxka95wcl9uL9rX1hlsKBuJ2r44tr1Te0N7QHjFbZNTst/KHZeXF48vRw9zQIS8HJqt7U0W232Z3+E75oKEjBbnbW/MrZfTJN5P+JAIv8wm8JuwsEVhPnfNNCChUkYo02WGj06/FvwGNh5ipBBgpMhcuPopMSRVTM9Bx9gN4aCFqyoFwoRuAAH5QwDeaFA1IWsFvBTGclLIiMNQsBBPZTJ6IjYZGZ345o10rKCkg2qpMrj2gR925Fzqxo0b9z//4u2dwq995zuvvf0G/AI//P6f/OG//9lR+wi2SMNNN8epM+B1w1wZ8S9nAuzZG4aFfpiBWcDS7n58qqtwARUU39QaYveg86LwwcBCRtfKUc/ZaxgPR49i0fRvf/s3NlaXmjAg1ypAZkiSXr+x9o3N2zvXthR/2LAch8fnnz4++sULkOu+hBIw1R4sbLmQ8utfeZu03sp6NrccOT2Fa+eYPi7pVOryzbdSiex8FhgPg8uFLWnVyqn5A6RADLOrtirwToKQfLH7ZE4xnDkbTCaVXnlrdZN7l0olXO6QZhKqkmSI30fMXMEPQ0Ksrm/Rh8DjfIeAwLOXe4TPG/W+o98+rVQZ95CYamOq/5Esc78vlw+glSGXD/vD4SBy1ZpNhgFPGEinoZm0dfPXDVD4syk0OiBoIPceFZKhrdWV+knjpAeq0OG5drOYUKLlju6aa7RpIHadiERv7eR71ZOy7nh59svkVkDxxU9++vjJ4716ayccja+uplPd+OP9g2q3cf3Om/Bh+EZ+AkDWyFLiCiwF2WyWSE4wAFTR5fMFhNfUGtWbKjCZ6zfffO9rlS8+v9tT+3Da/eRnH/6PVqkKWPOBQma6DSfNTgtRS8oCgh/67NTKddXqff3X36mXq71Od2117SCfPy8fAhul3JgS266mdRs9tbp/+dLKUnbre79xo9lqvNx9dHr2NLfkOzq/654Yv/6N7wEM6FYbSmj5xhs3q+Xq3Of95ne/+dlH93//X/9hJOZ779330cUf/fLTG7duuX3+Lx59DiNQKOIzJ7AWdl1Wb+/w4YsXq/7g6412Fwo8F20g/Ga5031xuD/Q2ko0vnKlSPM3rWWqmoZBNQCoM/cBZgMqB2MPcX/bHJdlzRoUoRzw0wNueXObC6cATFEVcxSbtyeGDjwOEB04URHVItREI4h8EAkhIlRSASJ/RAJdPEQciICSrW2TfyF0/lY+LQSlvRWCiQCRyJELmSMn9Z88Xu1NJKzARxcbyo8XP+Mo9nnI7y9+KypA9mjvUp5tGfflO/ml/EQuZPGLxd7sz+VJHhcfvfpjb/lqs//8r7314rxe/fhigNjNq6Nf7NM+oDzZW4j0lFG1z2Ox28UZscGXLxb7tJ9lExl0kav2db/a6tU+Lr6WjeSq2cdi54udyc/twZe3/8nv7TecDVvwJAJaxPSrU7APyybcTZ7tM7EHjyPYl4c3ae9XthelL79lM5kWckIi5eUvDzklcT74HvlIcJ85giSRkKWTOt7Z0Ae9oBcIHoF4Clro30GDQ3hk5zPpbQoGDfOfWCLHkOPA2UA7eLdUqTON7ZDR1BjigbugLqaSnyQmLUtDTr/XGXFbPn8k6F3PL+fyeS9tU6AR9tFkYJpKbtx57be++v7fT6QyN17bpmXj0fk+gIe/+Iv/cPfuh6XqC73XGgXm7liKEAswOgLpsST07YFUkma0MFoO+j1L93SAj9TbjngwWkitgSGiTBjyR1hIWTKQjQVd4RvX3ijmV5s91Rgaq6trdIjR9H2QzbTVdXpjmWyG/mDBSOjo8OzoqNvVnMgffVIbWT3yHlB2obuKyeSV13eubK+nEsGuWm3U65veAq3FQ4GY1h8+Kx35/PGYUlwaBRACBLz6hgpOku00jboiL9nEZ88f0YL45Lw8dEg4wGhBxNyC2ZmYCKuG3DKE+cRIYJXAc4vl0u+tr/iC30D+/Omf/3viArFw/NLmZrlbm08T4VAgF47hZNFiBk09RNVagWal7QvYt92EhZpMD0FgVviM9AP2JtnNGddkTAIAx+chOMo8lKG2elpbXVsuBkNez/FBqR7ytLj5TsdOyh/JJp5+1u53PzRMx7e/+1ooOf2jH/0/Bnov6Ys/fHacStyujI5HZknXOrsPelZv9vZrOS/lzpqTHHlf1dGAq4UVCcFpA0fcCXqG5EUymurOVOx0c6DHo8l/8F/+18Ao91/uZwtKv2scHh4DLCIwR9B7aM2UUIREdjqTfHj2jKYC1sQ8OykBcUmlKSWfpVKpd7/yQaNHQ8fHuDt4IujCVCzabLUqL5qBFQdJi3AidJ4+yRaSwzSIZa6+1Giffvu973pdkVZ18tHdL65uXzk4Pf7JX//oe7/76564v3nS/tN/+/3X37n5bO9ZVSnvXL5OL5fTcgmbmRSc0Tdop1mqH/3ox390XoE3HG4sWrRUiWH1TUwO9wBOcnc9j6uyswrpVPm00ms3/JZbcUQgDaJSlzPkL2g8gVrjpAGsns6VmIKq37x8Y2DoZ6VTonFBJYxLblKCgV6WVS5PIv3thS9LW1azvaxtyccrexveiPQVpcAnIi9kI/4Tg9OWyxhlsg9eywbsUnKDtuThHZLCFl32r+S9/Jatedh/ZWfy2j78xUmJoJMjyBa2yLNfylsEmpifsoPF0WzJYW+8kHX2qcsO7cfihC7O/OKzxbHlzeLI9se8tLflbLhQ+eKVqJWvX+3m4iVfX+xkcWWyycXPX736lV/Y377aYLHd3x7YPi47s8fx4piL1xyCUeWi7OC+vT85t18dJvnQ3kbO2T5p8fL5FHef1SZDIW/kGAhXbFf2tjgbLlNe2e/4bBHNx2ywN5DbcnEv7d/KyV3sXgZdTER2xYHtfcme7Akh++RDCQ5KzznSUTjr1Cma/J6fEHIUT5Ij0JEaTjfySkxufiytu8RrJKVEUMtF4SjyhVlMqg9vl3MRCluI8bVwIJRf24hEyalSGTOGMoe6/kI+v3N1ZalQyBRW/B56hzkioUgrGF2+/VXCUcSOnhwe/vzDf/3gxQM6m/SHk3jO70p4UDpBwq3eYTK9lI1mOStXCBqDXv+w2W6YpycT3GoqbdBWYQIoUx/QQUrwvdRBmmNA6g74QL2zaNj19W+/d/XajV9+9MUnv/jly+f3gWDs7b7oEtoNeAZjS0lF9Kfz5s/PaRdYr4+jqUIsEiL2OrTQFxYVr27vADKhtnE+H/eh69QHLY9nlvDmoFI4Ke89Ozpze/y3rry9tpIHSrLup5ip125Vy+UGjUzGI3NugTqp0GI2MZ2dNktI5agn1HV0DmZ7BGEoIWLY/QFPsRj1eIKDCZAXnAQ6j5GCoXdt3+1QfvOrf9ca6G/cugoN/c1Spz8YBpzjZvv08OVxf6QOehoUFqMuafaR2tfRoMlk1OWfEUdwzE2v4g67XMGxY2hiXQRnzsBYMLHTVslsn+oYinGFnDSpngmhG4A4EwBGxc3LqXjwtPrX5586HIqjctY5ptjZrK8Wnetb8Ull8OzlJ17FmYlPXuw/bpZDoXHm7sP76cSx2xXd3LoMbrjTNP1uXxsAaam5ubW8sb6N+Y/Uxvk8r52UK53l5dXrV2+urhTrb5R9QXe3o9JfTLfM3ed7K8tLWm8IAjYfzIZC8OakgA/V6P14Vm23eoXlXCSiUKz21lvv3b7z+g//6gcffvbTTDqIP8do4cq4C2NLA4ww6ZVbo5mPSrR4Ns30CE19T4/uMe2/+e5vf/boMS3ab2zfYWIzb/7wD/78n/+3//ye8cvvf/LLH/3oB+uXVjFviNkXVosJqkW6nJfRbHRms07AN2k2z5/8u0eeUNCfUEYznQy+n5YGEErMI4BBT8el/OpyMBleDxXqx6P+uT7sD8Hpj+EpRT8LSmjMW0QB0h8q7BUltlIs4NDWa+qob0CiC6uQ1JJhZqF4aDpGkM9mwmLJSrBYPpZlzhK3Bf6XkpQlzxd2iOdiExHK8pEtsJDvkgAQGbB4LESUHEY2YL+yR/7ZT4utxJq39yXrGwHH0eUL+/jys0WggR9xIPun8nM7cC6b2fuQE5btF2/4dHFGiy/tbeQQ9re/stXF+8U3ssGvPPjO/mSxV3vLV5vLJS2+XpynbCf/89ni9C4OJJ9dPDhzXi0uYfGHZznHxXnLVouLtrcXAc22CyXLaPLV4sq4fnsEFke3fyRPcnhGAMEtx+ftxWcLf0oOLbvjcKIZ5ETkdGSXF8/yu8XZSCpIPhSn0d7J4riLw9vj/2rv9tdyMNtVsXdgn6cASO3fiwwXnB7JOBqtEO9nhoFIw+QX0jeQQSLmJXyELWgnn8hU2XAjAReT2bPbDnG9MEtYYwMl43FI5DwSjkBlOJqNiGN440tg1iCbTsQzgWIins/dvLKTL+TSiQT9wFeyWRDevb65WSxozerTF4+el07rzaNnez+rdM99Do8/HvWn8t5wzDCqkJwsra8arLSeRjN38NPEwM3WaKQ7fBNPJJgJE2IHbQKm2u0xdBrFCPKOFEc2maX5dsRlVprNxw9f7j47efj48Xmp0lcr0ajHpJ/6eFpttiHeCipLkf78aO/UMAZOR6iChBp2vZ5RcSn3W9/7HrEp1FWnWp3NzNPjw0/uf8ZvNzY3smmjqbZqnf5a8ebrd15fSy87ht6+Vi3XYcXTGtVzp9NHku/e/XuHJ0eUHeBYESprdZphcgXF9YA7MPCDHsK/FxYO6rR7/f7UoYGo5IF306p2T0/PeEH3x53L31xag8oyCfRHnbzoPD2gyHVv73G1XIE7wDJnPfCejglkakgzupyMByOyMmCfuEvUZwNedI8JN4cBk1OANHd0ghG3368MNCnWOD9uhqJzz2//1o142Pfxowed1rzfObmau/aV1y//tLM/PJ4/v3fuSDj8N5xrty6T54hV99qTsVKk7/y0+dwcusyh27rfcO0EV+dz5fxx9fr61Y4+HLuufe1b33p67wHYGC7S76PjhDOTzLF+nh/QimswgI2uCzm3nvbG19fWq63GSnKzfHreqvemI1en1U3B/hNTNla2S5VzVFMyFf/0k7v3793fuXqVhjIHL89uvrHztW98+/7jx2qrSk3aSDfItsZiSqejBZfCzOfS+SiTtKI5f7PZiTpDq0urhk/94ad/kVm7/v7KNVdA/yf/9e/9zUerP/jzH/1v/+n/5rd/77vf+s57//2f/HvS4Nd3blpmz+8uZtL5sNeoVipBT3SgG15X8MqNndvvB3d3zx89fOmLu9KJHBCK8WDaGxu4b/Smb1pqNhneKCxdub6hxgetg/agY3oBwkHob1NyQfYDhhNBT1u7WDhMY6Rx3xz0+2hxIl4DzYAciUmNsBFUP+XvQuSM7qApx8L6u7D7EOgIAFnWSAUJ6PNYSJHFspdnERYiK/hf/rHBQkraroL9rcgVhAxSSJTDQgLJbuwfXzzbbgS/v5CMslv7IT99tXP5YCGcRB6hHOTNrz6+PI4tuxa7t7+/2JA/9gnYX8sX8vmrnXz5IRstlM2Xn8ie5M3iAngt0lTe2t7K4mTsbeyP5RsZgsXjy53Ye+Uz2XDxJDvleu0Rto+4UIf2oRgPPuc49g2Rb23tKKdw8Xv55WK0UJyL7eQbHvLOfrF4Fq18oRXlA/sgr17YKubiS1v3yK7s2yRHlLvGCYh24Qf2mcpfNpHPJWokN0fey6yRDeTKL7wHIoR8TjaAZJPB5CLCwyWJMS/4MTYneG8Hd5iqlBMIGJSzAfOAYUSXSDH+6dBH+II5PKPuBRiGK+YlDhL0YFHmC0XgcEvxleX1tVBeySylLkMOPw9Qy+WHe8LQz+svT+uV3bPnqnp42j4EObqxurxk+cMKXMKDgWfY17tji7IcGawvHp7D8059MfFbkhNDdURL9GlQxBpJbSwqsp2oIZyXiWX6w6Sx0WB+4ujAgFrjQVMzG7/8QpgWcYd8TlSIl+oaN5SdHprrIlJrzfL1bP7K1ddPDw7hLZ7M+kHfNF0IfPCVa1sbyXbjIBhw3bx6KVWM7+8HY0UyJ14w9g+fPdSs3vuvffA7v/3rUAF3qh0ndbmeeUMHvjcfzN26qtP0sNvFUD+g2nRjex2ApKZq0Ia6pH1yxM7SQPYegGYYtkd1oO4+21d7fTSFakJbFC8srbiALZWpJW4+r5yTTiid7h88f0lkyUU96VAbT+HLgTePagSoXKX6D7gKEXTg6Dh2lGohcWgmOJP7CwxsMnEGuK35TDCe9vljuVbJqJ/2SNhwxz1ffHhM99lzYw6VX8CZCYWCgOWLa6uDhHve70ULQf+Ku2PUZ4FYdCPsrvVqnVOag27chDMvefyzkxfl555I1zQ8asN6+eyXCWVtNb1x6dIlzN6hCvypB0y0q2qxaOLa9Z1sMTkaUfehnp4dIe2iSkLtEfFwUQdbKBbHCUwTxx7x+0ePlagCWAoqKGb1G7fv9DTt7v27kGFfvnmVAq57T59lYulcfmtwgubUMf8V8rNed2TV5424ri7dAFN0fF4fndUIHF1+/VYmk3B6Bh//9V/oNeV3v/dP3/vud18+O/B7AlevbZ+VXv6rf/n7b7z3+v/4n/3T/d1dnONOp/3syZOVzVW6ycWi4WtXLpUqc9qf1mqjD77xWiZ5TQmvPXv5lEZxLqgCB9ZI6FE90ORB/KO39ZqjGtmO3v7aW+aO9eSz+/Wzhq6TDEKogM33kOThdSIDMiEF+Xq30+H8scq4m4z8ZASeyaIJMqtVJAJAa1J3svJldXML7dVMSGChD/iKf/YqX0gWBIItSGRzvhL7kvUu1qLsTNAhBIgWAlq2sPdm70TeLMSmvJKfyoNt5Aj23i6e5aOLb7/8wwv79YWAtvf86kfy1z5L+4OFUGbPbG97FSKebCEr0RP7cHIBixP+z/Zj/0pSEuKRyNnZ29vXJW8uzsZ+xSEZPgQ1H3LJcgaLx+II9tHlMmQ3iy/liPJWxlI+td/KsEu8hC9lbNDLYrUtvpfgoL0DuTj7I/khP+VZbp0c3f74Im8gR0KQyrfsXM7H3t7+gf0KIWYn6r8cD9mCbcUolxPi1LhxsinHs89HQr326XOOotnsT+3v+ZyP7AtkD4vNeJaqEx4SI5Q9A0uDgpD9AUpYXA0nLnNMBk8KFcEVYaM6/WSBRWOEIslkOE47OhIB0Zh/DF50DHYIhhhHKBZZziorK+nCSmb70kZaWY7GgbKHIyKw+31T682N/ZOjjrp/0Hx5XisZ454vYDmCejjsbY/o3KHqs64/4qGBS9vsvHjaMmucIz3mNafPEZ4Cd0Hf0WBPmTuwxnSIz1lrgJd8nhDLicwCQlBS0k4PB2t1j2ATgFgHz8DvoxEjcehxMhbe2ViH3LPUObcsOpthrQ9TmWA67SfaVaMzwDywHIuEFU9hObqxkv/kk58Szbl6ZSfoHL480uvlYwBUgVB6//hk/+Up7Xgj/tTv/z//XU/vX9m+efXyW8CWZm43AJsSFAzdPgzDr7/++vUbV4hmjywi/f4onHOh+PbWVjyWJrDGGcMBQ56TFrn1XmP/4IyVTgIVOq+B1dF7jZPTk2NoL7+YNYzWcADgygkJET3+UO8+ghAUuJJiFkEwNKE3mvlGRAwcE9CfUxKuCFmwRxTixRQ4jeqVktXoRvPha3fygXikVNYCETdM/GoTumiH59mxEYoEfRnf5sZq9VT/V4/+Um9hPscSjuDpcWcltT0yJkvby8JwnwgpcXrdDLzj6fXCDb3h76eMWHg2pNDVH5+Hxv1xNev1q9qTpw/NkTXrtOm3M6cSDIpB+osmgfhmstMxCaVRvVWZ9vAr/YPhsNPtPn7wJBaL+YJBjyBYk7rVf/n8cGVlFTHIkoOVr7CSHd0dPLh/1zA60WS0dt6drl37ta9/40Fi+vHnn9KZBz92OZNJptNNrXJlZaXVhWluDLcUHRR+8NHfuBzDXDFUbfZp9ph+9MNUPqZ44rSBu35j/fV3/9v/7t/821/e/RTgwHtQRp+epMNhnMGXLw/hJX3t9vX11TfXu9mnu8+fvXze6f7s1s7b//h/+M/OWuU//vf/77ODL4hCeqFJiiigepyhAPzjNAColtp+X02JJdff2cEEOnh+bKpDJ1314EgEo0X99NxNe/guZHiqjlZnzQXoPxDG2hoZ/QFSn8CqRFmlggsZJHIcBIgtyhbSQ0QUK2QR6hUJJ2pA5M9CtKAVWMMSaBZJZC94W6RdiGiRuSI77F/Yv1kICXsb+Ubeyq7EZBaJs9ivfLh4yOKUr+Xzi53IF4vj25u/+nZxKNkTYoo/i13LxvZmNlBRXtmPxe8XIkv2/yuPi3cXys6WbvYeFpvIWCw+s89GPAH7/GSHogbkMtgDb+0HmxJwF9Fsb8ZbWwbbco/BZ8rJ75C5U3D2IrUR9xL+5if8xX6zr4KRZW9ER+RE7OPaoy1HsC/zlUaTS2UL/ltIcvtridDbW8mZyyccgUPw4tVZ2p8uDmQ/ywktRngx+AILtq9AroGLFJHPoaXEBLiQfdtFD9jH4QuAnbyV3A/FglywZBw42hQ2ElKTotvcfiS76AKEPfEhcCQ+MlNuCVUDLw8E8svL65vrXEOrpsJ47PWFQt5wwI2ZlI5n6BAZy4DWi3mUeMQ9D6EqYSPQW1oNVp7miyfne6XqS2Nc7k8HPrcHusSpc6SPhqenVb8vYqnUSdId0tnrqmf1HhCkbIoKGShv5CL9tEF1ujRavgu/waBvaEGHZE1DMPrS7QV5Qh3DZN7QNK/XOx6THCB/AEGLn2vhkpVwVIEjYiUfVdLA8FvwJk9H2OH5BEic4v3P7u/u7a0X8998561wxH1UOYHhpVFv1+q1X/vKN6/evtnoHhGYCQaU0dB91qJLV/T1t77XV6effHJEV8h84era8q1gON9Xx6ap0gPsyqUrfakraFHWAzc0lbB0Oz8+pXNkKJEupJM5ZhcRENMyyMSN8FzGw3AsmMinas3WYfWwArHlUaldq0KKNsAjIkmCMsHah8lbUgaUBzmicXwIt0m8iQbHbjdVU+RqDK0bSQau3Sk2aUDYh+VikHK7l9dSyUSo2z+mucHW5dDlm8sNbdR5VNHbI12nVkuKAT3BNfdv/zffq5X2H/50T62bjgZQJkdLxWHqwibx6O6BZ9u1/eY7aKBsPOy6FTZKjr3P9p//8Sf5PGov+/yHzxwpRygfBKWbybgNb+uPfvivi6nl99/97slp5+pOPOkJYvb2O73pi5c0aowrSdpJ3rzxGgEyKKCx/RsNDul8vvtiYIwxiu+8eef26zfoJ4zqzGYypHtiiQQt5YbG4NNP7x4dnr525xokFJ6hb+vK9pWt7fPS4YsH5/SHCYQ6j77YH+uO09OaspReXt1YvpH4+ccf9/uo+Amk/F/77mbA4dKr5//ur/5f77/2ra2l1z2Kf2m1+K2/89Vo1vfZL76oV6pXr12ejvX17dWkpj17sv+zn/7ym9/9tpKKR5QgWd69lye100/e/8q3b925CQmg1a+NuZXmLOSOeJyBfh/aQyo7vCN90qzVcXVUmjwPzfCyL5WJoopgHSfIU243WW4DXNRua9iz2t2mz4eoHhLSJFAUiytqB0AGpKpki1mKpOQwwGyBIQJ5IZJY1yz3C5uUBW8LOD6wrV1Z2CL9mSVsxTq3t12IYkShiCFb9ojUEpkhctEWEWIXygf8aCFqRHzIB//5w97K/tHffrOQ3ggeEb887G1k1/YX9l5enYn9vTyJxPyVA3x5KF4sdvfllvLC/lp2K3uVh3zw5WFkb7zjvcjLheZavFlcjFysPYz8nH+iVu0v7LOQl5zJRd5F9ivHAGVgq0wR+pTasXtbaCJNkZ7YzRxJIkLyRwbVPiHiJ2K0CDmfWNMy0DLIr05TzosDiQOxOE/5sZwYEk1eXVwaXy5+Kptd/JMDyO7YlewBaSBnaY+BuIHsQ74Bxc98kGwS+5Q5IBuzISA3wR/LUbh26CHsoCQXMvMHBBuKq4HJAToZ2jfMR4LTYli7sFi4jJHoy2goHnGFgTl6gw7qPnNrSyFFScEUUyiGIlEFie0gDs2wTgeD9ln5uNqv1HqVevds7GhbrlF4aRyeu4aay225NLJ2Rr/V7sKsSXPHa5dvYuyo/ZMHLx5TOBaPJoKzqLQkAxaNk+LzdKnJ7zNE47jPA198MpLyu3zIhxFtZf2edlMDvcRtgPkzncnQBgXVRdyVMSKnylBNRqOz8/PSuEzfb+p7L21fjueyREtMY3ryeYnO9FtbS7eurtO7zx3IhiPRmZfmHNsby1vA9n/52Qu9Y27kbyyn1/VmzWGECutr1y8tBf2uwhLFWLm5SQ2ywblQe0wRENR15L3p5dKoN6kTWFu61gk2sf2VWMLrj5BoqdUrEB4QB47H6Kg4EvI0h3F+fvZyf//5SwiVm9w14WJyuiPRMHcLJYbQ6PV1bidBHm6Sh77I85kx6If8YdiaXPTy8Q42ltJXbq5d2Uh/9vjsZbOGtUhILE0ULp+6PLp0vle3rOnHP3vUGzj0zkzrWRB/R5NBouWe7ZWkd1Sa61VAj5DJ+QllGL6uqULIF6ZDUNCPMvibn9wtXprden17PZ766JPnRk8sCvLxtXIjsoL0dnRPzxKXt2lq86x6pJbmJ/TZ8YZz6WKpexihy9cs2O62AL/Tue3Zk4/onXZ7+63l/Mpu70XA59tcXaPmERlBugAAytpJREFU69LWht4fQiMaDPipI4unEqEgPXHydJipVxuv3bj1P/uf/083r298/JO7pAf+4e/83f1HVANUwm5jPZPy3NwxIDQJupM7l3afPuhUhh2t3G/qqbdu5vKxWk0loU2B2FLyyvbK+kny3t7T0oH+YNoamrvOWq346f2PYVKOJJ21xuHwmbpSuD4YTNa3Cq+/cf3ZvePv//FPv/YbVCCHDl48RRNDbPV/+T//7975+u14Ivr1r32zdqztH5Q2L63F4pGDo91qveQFJj2BX7VhTKG+7lC26A+GU0o2pHiSRcUJR2PNYjaPtVr99OXMcvfbTQdUXcCoCf24cJgSBH5wc1GNrFgsNUBHsrClHYzti8uyZz0TmkXqiBxDXtvyh78iapjxsuxtq1aEBm/535YW9muRWQuhIlvLdiLgZEt52HuSd7bIks/l9/Lefr54Wuztbz+9+PJVfOnVpraM+tsfLl797Xs5V3tTni9EH68uPlx8IG/k21d7lL/2m8Xp2T9fyDj75WJvIqcXJ7wQkBeXsBgI2cS+ansb2Y39n+hOEc0iOe1QDx4LOhixwrzFBGMlIiJFRvMDGV7OGFUnsnuhA+Rj5Kl8IsJZPAM5EP+J74PY5bfchsW94Rrsfwy9DP7iNGUTORt7G7bm/i42s3/NF/bBf/W07fsuP7ZvvOxJ+vtyF0gdS5KA81jswUXsAFlBshYTS6rE7eQu5Jt0AfMicNAJSBwuE9g2bidxBuxNCJ+tQc8xmIZ8SiKsULQedPuX8iv5WDoQcCxfXg/SnyQUIXhFxpEgDCA9tadW6pWD+ounJ1/UOkfWsO3wmOmc+8qN6/AfnpZ6raqltebNFkEYEpEzGpiOOs3T3c8zGdfVS+5vvL22WtHOy9NWb9geqHMDXmgq0aypNaWmqFgsKH6/CfVKhzQBeTePboA9BQtJFz+xk1OQwkQCo3Z7YMIyQWjIS6dCNAgt/wb9iWc4L66kfut7r+9cL0r+4eDl1PDmAR1uFS5vrQymjVq/FIsHr17LEZiHxbOjlgxrHIzkMMOVyNpS4VoqvxUIhVeXM0h6GplQ20l5UzAaXktl/G7Bg3AbyE1Y0tNvev1GMRB20zU4EIh4AnX44Idjc2xNSW5HlZzb7+O8S6WD+59/tvv8odppENYfWQOQ/MwrpgkGwYwQPY18mIRu+nsLD4fDgTxWaOulGS1YSrcvL0ezcWfIp1t1+k0OJ0o0BpPeOKY4Nq5s55L+ka71WkMaWWIItLqjcY3gD64RuFMCLc7MWpJ0pCdkue//xaer15Zv3rp+flwf675J2N+udrAeXM5A1BehK9CsZj1XHecnB1l39+RQ9weDhWuZhloPhpReo2WZjkAGGqh+KrFqegpqo4Lmee+dlY8//dnTB1b9ysnNa68bo+FO+lI2tWO0rfu/fJwPLqfTCcgAQQVsbq1UqjJA+cwSehRUAQrg8aNHABO2L2/GEzFIN6u1GdbGu7ff0+oEgbCe59SisVi//p3vxNJ/70c/+8n/7V//y/qg+cFXvppUYu1Ry+OOjruzn3/yEZGl3/zm92rV0vOjR3d/fnf2tnHS3C+C2R+3j2v3K3vDs0pO17XhhG5wXX3YdOvTs4qf0kFzGCf7/p3vLN+7//wnP/jlt37nm9/+rb/3+d0PHY5urX7wiw97+Xzu7dsfrGxQj0Inocjbb79xo371+z/8j6rK/OvVyi2/QYQxFYlF4J/qjDsz13jun6FCfJgxA71dOp+orkSiwAwmAQyHNqmqIHAH2LaZXj4vhQAsXv5jeZOuodDmIrCLkHbiq3uZhYh/5A/LHIuPufdKmIlDQDBNRCfCSZazLbYQSBIREvvVFky2fBLhI/JJ5Kf85ckWO7zlIdJGnmSTxTcX39tbyXf272yJ++qH8on9EHm2eLPYw2Jvr76139kRKpFRPNh6cUAOJkd8tR/7nWzCC/v51Rfyo7/9fPHa/sjenby62JO8/NXHQtKyPxkc+4vFgIjvgrgXfAu2DCk2f9BLGMQHfJFWdfDso4NJqlFszzwF3EHBlOgAfsWusJEl5kCWAuXMbu1TFeXK/+K/yUaoEKTwl3JZAj+vRpzv7QHgmb/ytHjwsWgCeYiDIFrE1meLmjD717L9Qidx0IUfQAgR44ACUx72fokcCP+nnc5lI07EDU8o58zOgPwQbpRZhuiXyAwM5iY9+AD7B4Le5ZWVrdUrK0uUddLrMEbcg2r9bFq6Ng1HQxBB4OYwdF6eHvTMbnPQOW2cnqsVw90MLc9j7rDZ682d436Dj3v3Hpyqmi/oTc5MZ8AZ99IEcOhuVc1uu19YcWwupRxjD2TsTkcqW1iNRIcTreqZ6K0WoDlHRkls5DeozTzaP+80TCdJUDe5Q5nZUujsdlrDQaU58uoBVesP+h3hq4fWfkycpE9HskQykaIj2Lz57NHPVlc+yKVz56d+awa3PaHtAN7RHgyfFbq0u4/2D1VCPHPnjde/8ubtb7z3+tqUpk2aN5tcWtoswDRERReJv7FqRSPBZC5GMJ/BZomRNcFEI9rhD4aikRg5iXL5zONXi7nlgD+s9uuQI+BtsGfQm83z83Kjsr/7+OWzB416hZrqSATw1CxCGJmUxZhEN3wwJLopJWKNkeSVPD2Q+mKeIuRJIpcdmeFUIUxkn6KN9nHbUM3ySe1xZOQOuN94fdvtCw30RuWs3qqjv2NUNSBZYmlJMxyddCJLwUsrUEQ4252xp/yyy0S+dCXrdUerJy86vVn+cjF/Zam6X+47Rvq4UViNvv2V21uvbfzBn/3F4dM2M5GGXUvLkWTOF/KFVSVBy7B2s5XIJ40+YH/V0XOc1RuntcrdZ8cOHVD7h43O/ptv3UnmzV7zlCKsdC5Jyxfqo+Al6HZbwbCP7sCNWqsPQFc36e3+/OmL49PDy5euJhNxegb4XP5Ovw23bSaSuXPj9vHpydnhYdgX+Ojn94cDx6//zrfD6aJUtrdnT+9/ng/G6p1ZdjPd7Db0JvNjWDk7PTk/GzYcPd/o6Pi81OjRF9tPTa+hHve7seKS2x8j3z1SxwO4CwkhDWthy+NT1htqKa2k/pf/h3/+8w+fdPuD3/69r0WTke//xz+gqpf4odYfv9g9zqXzuHIagbxCbi0f3amf7T190C93rPE44sjkkuuUUY7GFFWaA8pLqErQqJkXusSpCYrUxMtBUIzIlYhYGVBob7kMzAcEEyaVMKTChI5gJ18vcgAgBWsa9522yQEqyPiEJYsfRwqE5kp0W5NSTCEVZQeiHGwDU97ZkoLRYPHbQsEWIrbsYuWLpLQ3QIzYkoat+OSVROLrhYiRZ76X/2VSyltbfi5+JZ9e7FF2snj87VcXr/jDb778+FdeXXy8+CM7XxyJv6+k9MVHix/LCdinwIHss5A/XIX8kW94tk9BRCCfyRueZAQ4vK14RPxh+8r2CFcJuXno7wwjgA+zJAR6DeEv42Vvz+hjEkntvpvKTWxE6L5Zq6zTkYl3Td8eIV6So4j1LI2Y7bicYDDl1vEF8ps7IScggtzerX1aizeL01ycG89yqWwpn4oKWfzGfr/41B4edik3Qj7m/skhuBROU/5wWVOhg5bP2ZfUFSKjUFiiGlAoAAUpUGHDKZS0TDTAaUNoh5mGpnQ5dUHRc2nz6trmpWuXrmMPgYqOKGJlkz51z0ckB4Q2Auvb6+hpzf2z/RcHjxraSTJLhWo5l3F4wl522OmZx8j3ruabEA2d1Es0RXJHImbQ651C0TUfXiWX+OaliM9jjmvNbvnje+VaxxFLDMOjRszjS2bJl6am/UrfUivnhxSaqm1eNIO+JIVYmPa05DPnQ3+EFrPz8bBLaD2ZpzN4tO8PAR30eqbdbmc46a/SQX19i0V4WimVW4O9Uh1TtVnznB0R6++4QhC47Gq946g/vHVrJxACrNFPpovXL7+TChaGwwAEjb5onGjIYGjRnkmaljndZD2iQViUaMM0Ip5Fr5SRxSB76TAT9sS66pD2iOenByTDO7UhcTUGBGxHV+0f7p2cnZSf7j1ttctavzU0VD/gJYeTqL0gdlhSUPNJ6J++KTSOldVNtxIlSbp7TOe2wrJC2dBKfrWvOuvt+n7tnDbKIKRyufVgNPDg8X48o+RS7kYFrv0q/JwwVihKzuMkijdKZ93RpILTlE4ouagbMlWIMTylyjCe8h/vN5vlF53KDF4/zNZIDo9QrzxXXeuh5JVsP6AOXM5LG7fPPv/o3XcvpVOu85P9cGjpw588ivkj+BesAc3R4MAEGh1xh6Nq/dnf/NiRkbULa+lKNHXSKP2f/rv/o2uS+vqt39pc2QxGXIbUzIK0Hyi9iCuApJpr/S7ZEjTE0dEJfXZ/7ZtFKOcI4wVA3s/T6ETCc2iFQCDMslraXDrcqz56tP+N7/2GYRrvvvXO/WeeQaMLCWcqpdDUDYkYjYbjodjzF09J9IeVuNsMdksOpxUqH/Qzq7DFuVzRaalVAo2pD9q6oS2t5uKhxNRwpBLh508fUdtWVzTzL/+qWbf+5sd3/+j3/83Gdpo1RTCm16qwMCAUEpGbHB+ft37/3/x/HEA+aZlNaY018nmCIU+0U6cssIcH5/GMvVRJTA34LVQTwAftOhwEVAOhmFBnwzs6ph6CzJDpEzIPL2uUGC1JLSI8UraJfALsBdeTYETpzorB5kKloz9QBgwRRgOahv8o3LQNCFwGaL7k7Fik/ESkn/in6A/sFJE+yAsRRotX2K0ShhY5xUO256tX5i2f2BvyiQgbexvZ20Ks2jvgjXxr7/XL1xfv7S8W39qb2FvK7+1f8tHiL3PF/sdb+wiy7cU3tnC7eHuxI34tZ8gBF8/8RI5rn5V8ykO+sDeTY/HPFqK2+2OLRzYXiSxD6wXGyI0JRUJBGAgVD6WkZN0h5BtKdcZ8MhG/zYthF8QEk3AQO8NLIGDHHaWZHZTiGl4cPLqEEhl/oGtyMmJgk3IVwx35jKyWg6MDGEMZ+cWFyr7krC9UFp9fXJp9+ra7Zu9MrnVxyfYF82Nbh9hbyzf2B/JEZAEpIl9C4sPO5UeYyHIQYQgSzQCeUbZnYoFGgOSZALY5BNEGLw2M7YVccWtz++qlq7SBUpJZRYlCquMlrRp0+zyuWIiIpBH0TfSx9uTJg77eNqedjtHsOdquGIC29sxdj/iiQFc+/PDRi+cTmkq53BGfaxqPRC5vKJxYqwn6YQRvg19xJooYYPFiKtrqTu/ee9GoO5SI4plH+zUVtstJPOmlQkqbj00H/WydQ3IHQwLf3AbiJHQroVMBnbZ8YUT2rFoDXG/dvHX5Op0aT0v3v4CBuasNB3FSsd7gQG3RRz4aW7l1aalTVR/d/bTVUGkXEMkEl9YyxZiz7o2+duP2xsrOxJwVZ96VzcvRSMrhCPqQ3GHFJDEdmvj8pJdDqAM4zWx/m+6WLpUAAmlGatCom3O5qSW2GBA6C/b6iXQ6FIbvYeJBdrsmp0dHz/cOALycnZ20W3Xh25B6CxiWxPNifmCEUJaMexHkQQtLwkXC0udS0sr129spegeE4d7Tz7pH+yfHowHldiAGfZh/2PvRIDx0aqnlAEY7CFeI6I11RioQy2XVRodw5OZWIVn0mgPDN4GJdag76NgbSU9CHkIL0WC+0xrWKqbEykPufn9A09w3ruUiYHKKRWva+ukvaj/8+Ytw2FG8CuRrflAtd41pffcEA5/eotOpSfW4K2wWV1bw20pz1yA9XM9FaGH8uH96aW37ta+93zH1P/hXf+aGwXMcfv7wk52r29ubV1k7fZ0S7eVEMo2EQ+S9+fY7jM5HH39cLlewgAPhIAtMKk0mNsXaxB0NJ9Mp6Z0bC0ffeveO+bPP0HV+p4eas/29E8tJ7y0Xx6U5fZRiv57qTSW211frlXY0ECMwWjtpJXJR2pO1av2QEkhno5lYBETwpDYPe5Mg+R1B72CgP3n2PBz3nFdrFCIe7T74xru/9bt/54O/+dnnE9O7vnztaPRsCnat3/N4Q+RzDEOlsrra3CcuEAzBQoUBLmU1nUabaOd4asKMEomh5X0THwy540GHBkNegBYIbMFV+5jNhHNYnZyg5BplUdLtnXkxEuFEuJGNRZbPiKOKdU9+UUx8uvMJFQtrGhQpBEvsR8LScnj+wzIh+UWkAl+UhY43SRgAXUG+DIGEyOFnvJAnW6kgrERGiNwUmYGYsIXLQmDxuRxQfijyi38iz9iA/YholefFP76zha18w/b2V/Kt/aG8s3/Bd4utFl/xLHqFr19tv9hg8V5+YT/sF4sN7T0tvrB/crGNvEaE2hfFSwl2yZ5ECC9eSOREQgYIf6IfIPsIgweiCrRgcWz/hajkEvihUHRx8Y4ZXexS6STOFmYvUN1AwE8HbCgCAz5vOEr0wEnnO+QnRYuVSmVg6lidcCYC/7MDcxwbZU5I5gJchOhnFOWkmCJk6WX0Xo38xXhJLsG+XvsiZVhFdtsDL4MvL+QhqkP2g4bnMyT/RQiQI2AfsD3Kzc5iyI9YMfT/Yhs7WMjxJXRC827GwEFHblQXGcb1tctvvv7mG7euLxPuIWQSDE0cEJXDHicBMJpY44mqdAjXqqqp0kH39ORA7ZYNq0QHLoff0zHhaqkMR/1sbHkptxUMX4onezxmAPid82hi/vXXr1KVdHpO23iiHA5zSiJA/fGPfryxEpvQJXs4fGMr6fNn1D5ZibCu6d0O3MC9mTkNegLgdrBv0F2ICaplQSbBsRxSpMOgYQ3YTNXMAATtNDPsteugzFtt0xgAj6HR4NnpmSw4h9sfTb8E8t89c06UqzT8W9scz939kR51D69tf6WwtNrV6cbhXJdYf87vB6udC/gT+oBiqyHIIqjvA25a2kPixriBPMLsIkM+ojzVH4vQT1DtGwCZCGRAZEwbGci2G7V6Exaz6kmtfba/+7xWqYMvos5OuFZlGnBnQPET53cj/6BSZhK6PQGMCGbnYGjiqMEi0+92zs5Pu/1WJDjVuuRnezTfIZkjzZwhE536mnX9tPN8StQu6MllkquFIJomFknBlD8wyDiqq8VkKEy+s1MFglLRQkHnSJv7IIowRp6l9WUq9QyfEaeWORFUu5NyqaR+YhWz3k4TZOPQAjw/cSxfz6fjkZGm33tx0D8j4e8I09xrPTbXqpurm08etSAE6erwKMUKqTBUfauFAnCrrTR5z3Dp4Iu2pSk+urnof/on//dEJvX04Oa3vvJ3uJfTuWmO9K30ZZKr1LPhZK+urN+61idGsrf7MlfII8Xws8OBMDO6P6DMYt7raOOxFQyHr924Rlbk+//9nyWSWOWwfp8OcFBlRXuRcrSiVMeOUrl+df2SEhkN+gOvlzYHyfkkUDnZp1t9UImac9WpDMJRZxxSvdBS+0x7eu8lrpze0ekjgCE40HrFRDZC0DOb++5v/NqjJ19QaZEIJWvlU4rAWNhqv1urqt5QOEHxmidMGTM4Hc7N1HvD6YigMIqN8jxiPD4yQipoXUJAYrATAVPnLV3vMopA8RA4iCQ2RwiwagnR2lEdbANxCFi2zDi+FvJ2+LhEREEwhFh3kHFCEmCgynagtiVyLQflOAACiVgQpkDrDKXMkAzUEGMEkQHYUfbJQ0QNwWE5MCKDf7y1JaD9BcJGwheiGkTgyIQVYbOQsAgdpJvYtvKQbUQg2W/YVF6I2JL3tkKx5/vi28V39rMtDfn1l7+0X8vv2d7+8eIn8rGcmK2H7JeLs1ocQST8xZHtwy1MYDlzfsS48SsgPYwgA4LARIUK43oMrpdcIpEB/k1WhW/5z+uXoj2MD0YUBc2PfD4ceBfyiNBvp9lljLl+zoTW6EHYu+dERAOKEocfJpfOUOjDQNNggi7T1HOCfhY1bJH8k/vJmdh8IPZAMbDSDULOXNI5ZETFJZOrWPhri9cSyhMnTkaBu8G/i1GREWOioIjlJvApt1W2lcIoznAiERqSAPwA45SjCMEnIWW7xzrGtAVs0cTeQJ8lEglIGrfWr1zdeW19fWMtl8SIwe+BX4HsaigSsKNKOENYtY2DSu3ZyfNGt2SO9REtXNzmyKwwtbTa6MVhyxrRYz2U9AVqdZJ1oytX1pNppXH04PSwmY2PLm2l2uqoVAfC4mjUe2gWwJBkXdq1Gh01immaO/qOS3XsdurOoNWydMiF/PSmJeli4TXMCGgA7nRyapBVwLQF4BICHzIWgCICPsUfHJdP672a1qUdmYee3XCwE3md+pJAzCNIj6cHL6GQT2b80EtMfI6y1iiXa8/2TtbS6X/0e/9ke+PtrnSjimQSqyS3kwlkvq/XNXC+wz5vNAKtURhryiRCz8zAlEJw+0KqNuy3WhjNvW6PRQymim47ccplZ65q/ez+3V8e7788Pz+pNKkH0rlPPpr+ARCwi63xvISeDxQPLUFIAIqxJ9XBIAJhVsMpwzmbTi3XxFs6IvlNYmYcDUdSqTxZeQrH+hiefYtabqLGScWTSERM7/iNb1xLBCa9CWTM4cnUQ8v5fDGHI1dvdo6rWk818QZo5xL2LZ/tNhrM50QsfrK/e/tbN9a2VwCxg4XUOxZuAaXSVtPbap2v3orMRrrbDCULSy3jJJkJJqKhbpc8vAq48RvffKtZO+180naojmfPtNhSE1YfIn576lFU8XuSsQcn95Zcs43lJZADnk3HWzdu9dQJtRI/v/dRJJmivrCwXCj/zfcHw/Hx0/PS+flXvvGVa9vXd0Y7sPaVyyXCX+TaCczSWhiTibKU1+688cXj+8+O9ujv88H779TrR/XKCfEsmELgptZkCbiVaILFFp9mWTWWOqEYkBwRdHXjsVOb6l5noFXptrptb9wFSRsQT9rEuZfCKxtZw0zsPz+XqhKTztku59Tbqhvf//mPs4XsB69/JeQf06CGNROMJmCiyy/Fmexn5ZbTaLs4Q7pV+uiVBh+rv9dgntDWmpgvyTYPBs9UY3SlrAsZZAd1nNQ7DoYDJbEVNTMdowcQm0iRn1bz0I5gj1v4lIgGtzRFxQIxTa6Lj0boHTdOKIFqmGbdIxrxDC1WIWFcUscSKZKHhGcJYUMxCP0sEw4ZYRKdoimxoVFswoJiQjGJJWeAcUiMTES1SEmxjEXqLFBGErO2Rc6FeOUrHnyEDBNVgPBZSKTFJyLZ7G8XSsGWWvamogt+RcbLdq8ebMo9+/IDdsqWC5Fm+xwXB5Cf2FvJ+cnW8kZs+4U2khP+cidyXli7wpbPaLM1ghEzmzVJfi6XK+YKy8vFlTCyzSvkHDRX4cKRLGTovHTLhvCSNAwOF0E3+LyJ+bqdiUg4Hg0PgSXSqs0aohIoXkVpcwKSj/F6wKoRP4nGFQJKrFX62e5sXYXaidpRykFrjYYKgZlJN1YSiAAGMcAx4bCrSbXiytnDL44d1ySxOHZMeJ7/7dHgCT3G9YKW5HLFq0CBMyL2BJPyARkyrlC8AFsl2OY/0wxRCRgGU4BPJaRARMEUtDHITpLdAPh3rt947bU7l7a3AHUHlaSP9o/w4JDenWAw0UE+iK1qDYyuWnm59/j87OlR/aRSLU2HLXo2zgGlRAJMsbkrSKf4sNNEjtEEo1Qqd9omC/etndidm8VqMvV43lxdT3A2pdNar8l0BQaNfmIUA37Kv1xxnKFqc1qpH53VmuxV0P+6lYokvbSgAcMz0uKKP5qKbW1vMbOPj0v93mA+Z4yhT2cRUJjGOXCXx72e1aJxmcM7nnjGLAjY6UJ+Fz0mg57VVOStpS3oWpzQy5HlHfUHajPpd757dT2CYnFavU4toqwowST9KMczTaJ7gyFxWzhNA+k0dtdgMqyrHelUTDifMuiAj4qzs5N6o3JeOimrqpbKJS/vbEWCYa3RfPH0/t7+s4cP7nWbZ1QnMI2YTRJnjAdJz1NdgYBwDjAjhB5AiWHgAsNy46+QK0Za4BFw70P4ONEsqXgBOYaQCnQLHII6VaClH0nbD2xCeoTTPWZtKQH1Tm9AWXHn5NmpMaBMzwF41OzPHAq2BqYPfH/O7StXAvMu+gxOvXodzuqh5+m93Xg6ePeX9w4PHcW1LFyWxFsSmymcronibVboRTYmM7r7+fHxk6PCChUgk3w+ef1qttYZNBqV1iTszju/+nvrz5+12rv6+q2dua9r+XrJYpzi5PZ+XU/Mjl2ODeiV3wYg74ag5/TjF1Pa2JRa7m5a7Ri4y9FQhGa53bpWPirBv5P5vez6+man04S7VQnRZTMcj4eJbs/cKQxe8uLtTrfda68smXSmfuer7xw+jGRoPbaUfXb8vNVp0SQyEiJv3DWalsvpf/P669n00oMnXyAIuHIY5/DoVQOPxTNqj2utttc/9ifCnvWZO0i9VjMUJ0qGiTyh304A7nGn2ZtYHbXtGk2S0kE+P5wNCHydVyjVrsKou3NzCyAablmn2ZEyX6hG4GEVrlZiMnjmSCCQnLT7glNd1jN2mi0kuRyCzHRCHiLhuZUeXwDXndIbNAj2ougJW+hR7eJH4GO2SuCHBACSwx8JR5PpHH4YBHwGlSUDzph4IbEfsOwTLAdew9MyCIFViKZT/EvTfgmjEI4qk2zzBF/OQAlI8mCC34K6R7QxxiSUxhIewGO+EMIIdDljWywjZkTU8MxH9vcionhwobzi5eLrxR+R0HIJi09fvRCxxQDwoS3ARJzZX8lm9g7EyeCVXSQmP7743pZui43tDexNZCg5sgh5FIP9zxaffInEZH0Q9pBGFJ4A3B7F4sbK2mYqlVUiMY7NQFGKE4r4lUiE2U6Mg5gr4BYxlKcT8Re8vBZ4FdzCJOKk7xu+kht1zvlBn49gnZKngYeXwc/nMgg2ydI4YMKJgnQfJuLoY38wQLFmp9MF5Qf/CTZNlZVH84cBXF6UBFnIWe4ocT7yDVwsg48fzNEZJqYANrytZlnDhKRQ4SL3eeZrcRh4ZjPx9GRu8D+KgqtAJaCcSBgxdkALxPmwN+PH4C8QKmuXVy5vXl1d3VzfugJ2HjEs3oSEYW2mQA+ufwjsE9Cgfrd5fARa5bPPHn3W107dvlHET0gS2rNBp+8dNpg8EHA6/TMoNkNrxWXqPh3O+mio0x0kncHhbAwGKtEaGgI8vF97vt+k8TlM+IFI0B8IjgdCKU1BZK+HXYJsoU1jgvtlmtTJgk81IBmF5yaVi7722vW333+dQsu/+Snx4fLYQmgqZAel6NXDQnND2gh1qdRNwcVr4RM4qb2FAM106OfVLsScr79+9dKNdf+kRoO+eNIf9RTd/oRz6ovHkz5nqFKb7usNj8tUQpjyBhbe9uV1st+OmRUOkPD3aDRaGQLYo30mo8uKR4HS66YPlHF1NQcA9fysNhwP1F6nfH5yfHb24mjv6PCEQDFNQoCcUJ8hqSU4q4kwgPzvGazq9W2S02vVauNo96TVbLMU6Y/GLQvgZTpneJMubwDst9kbOXwjOubSkgFEWnarSFEcqrm4loymC61mB9GBvfP48ctI1DPQQmeHPWPogZCPMjOf06N1zRMoJ0f9TGFtY3W7db5/flY/3weBS50BbpLLZ4xD42PNn1cm8cjJ86o777lz5+bp4cOAB9rtUVDxx1bze7+orbx1KZyZ7X54eJYuv/n2mF0mUrEn5/u37lxx9Ou+yHD1Tq6YSh63Khubhdtvbh/sv4yswuIa7Hu1QNT9xm98/cHnjx4/vB9IRvfPT2lPE4hO1rc3YysKWGNaQ/7Wr/8Xx8+phava/Ph+KPV7prq/9/K1q9eYnIQx8I8OTw4Pjg4Pd3ep5D4Mx+5/cT+mBNMeZXP1ciwVbvTOBka9r1mEVOheNG9Pp8oYUJcSDuSyqXKlih+PdQV6iRCc4o9PXKahoVojzpH/2cPjZ17C+s7MynI65eiU++O+U+vCM9RH/kIi8lh7tLS6ksDX8lIUE82lhrSQNiZBqtqi8ahKvd9JrVmtCekHFpE7wKpEnoknjiXGekZiygLlzorxSmqMwMSYJjBDagKnUERRJUhQlPoOarwRQOJnEtE0h+kUlpjHhBLF1h4MBR5ITImlEmkEkhJSMFTQiFBKCLSKKA9SyI7lmMMxhTkEhYgUxhJpajuRSorETI1uF9IrwwyYCBCSC3IsxKFkjiXtKZoARYI8EXUir3nIqYutbssZ3srVyAYikhaiW8Sv/bFcqrwR4cQreSOvFy9tIS1fI9lkAz62Rbh8IvuU6LT9QM7Z+5NvZdgwceVoGLMMpigCfo1r46T4jvEStSgqgDPG7RJBSDYUgZBUwonU0tb21WJ2CdkHMAacI/UowUBQiYSUDCWG9H8emcYY2kvujQC6/URRZsRjcREWmQD0OckCFBPHI61HPoBBI7tCFAUhjauOcRKLRwNhQm1APnDjvb1OD+5jfDJc1zmdpUFsgawcTddWVzEhuRp9YBIfpj9SqVppt2oIca4NRcbsAFs5HNPtQ4YCUWPLfXFieMeN4EPZktfgecTdQsrL3OLKGQHM4Sm0w5CQS+QHS9PPVUGxwGnzlC8ubWxuXtrc2FzbzmYKxLsYfarDuMu4pQBmGMYgCM14jBs9wG6dYlO3ao2TFy+eHJ6+TKa86QT9cz1gG9wkvJDZI9BAjrHWXi8m33hzKaAQhZ7PzABIvLEzgkyDA3h/r++wEpiKnaZBJC0cmAbpIZnyhePwuXmbDSrCmkbfKq5BDh07r54T8byxc83ntBzDNplKaAY8sNvElHpfP9k92j0sj8lMeBzSawkvaeqhzb1MYLBLU7xJLBcwRf10gk4vyyNnhzGm7WUkFixX9v/wjx6/sb0aiyQSSnFz63oss07IHut7Cr5m6EjnVzHTWQkbS+ugAOOpPMTL3EwJHLJSIWwcj+FnFtwXOR/w/Cio4VyhHtoXhmuoramnL+ke9uTsfK/Tb3J62GHIbI8Ph0agv4BEpUCQqC33jPtFg4WxdXZ0Uq+1idJS9mWbWU6Qx4GQe4SzCdsMozgegU1JrObaGv96v/md34xtrj785BckCFaKMW1o+mYeKtrgUiUWlC0C0g2nkxlPi5EfYK7k8onRlGQrdETUHzgOHx50yg3y6w6kKYSgQShVyRf32+vvbV17f6mpV19/bycVTh6+eHzW6L1xR8kqZMFgf3N58sHTTvnGldzyOyEAA9rUv7qy8eLRi9LZ7PSzF3/v7960wv3WUa90/6RS7p97+sV5ZK4Zzp5TgYNuODrUdt9YLoa9Y78j7JyEo4mE7jDc3sDxy4MHdz9z9EZf/43/sgj7X37VtkTHoWhoOZVGF5MT/uQXH+aXl5RYPJktAJNPpWJEfs6oM67W1UHn2cPqP/y7v3f10vbH9zp6ZwDPh3vsoGjk0uWdw0SlWm4+enQP6QvPBNGS6RDHLaA2DCC98XiUVgOeUdA03EYLPlkzsxHN52G18qvTbhIi8EvZ8lmtW+5ZfUqUvSNTB1FKjIh4L9hU8oFKgFCyO8B6NEgMxOcrzEdwdBOcbcQSxjUWIuajhBIQhLh4Yt9dADtYxvhl2D5kEKkUW15ZB4PRbUMeS3c6+pvR1QjxyuKXFmLMNiQCWQfwwWL4SZAfUwfDApHmJTeVjKdpo8Z8IgnppntDjA4UCCUnMKoMFe+JNGaOx+lvTRqMYmSugFebzVqCcGFuT0UbBXxhTg41wDUgMrAFOT5iTuxRCaGILuAtcooXJJflE+LEKAtbUcjHSF20hoSc5TtRDBQuyzMDhP8rY2CLchHz8pkdq7a/JQIiUo3hERkust6W8vzh4Ig9USTyCzG/vVDTSKkVMg6jmOykj5II+pAyvM45lpAwozgI1M6CsUQ8lb61uVLMrieSGSCDcmoOinoisTj4qyAmpLjm4ylFPR6yaRFvLEmhq9RDkfaE2J59ErsDViu2PwzxxEWQ+7AdElvH6JVADd2zZpj5Xp/0bGUfY5JyaEyHg9QOAQ5cEGwobnIoFBZst5P2T+54Ko4KR09tbq7z3Ox0z8+OoBqp1Ko4Zex/DPeLtIx2cL850GIkGWAeSBKOy1hwPoh4dIStCJAs3KyxrRUJE+Ev4mpHN3cuXdq4kk7lI4FwMpHgmhIJzAZmS4QJIO1KCEaJhwQL+Uj2CV1ZEKwTVVUuWlKMxvNOV61V22DIU/m8UoJ/ctApjVrcZY8H3sN8jiQsmH5GyL9zZQVcIzHl8Yi6Yu/cqYxGXmra+w1C1T7nxFft1Ih872wrS2teT8RfauqNDjy+vvE8mMrihAzWNotu57incRHuy9dy5JFHeun45OD4HJZFx8F5M/48huRhEiQTseloqqo6M9UHKMvlwq+FWhhoqy9kq03/fGUdEz5LuKCQg7eCJvSO8/Pq1OFdjWcy6au55Zs3dl7PFC/1mlqz1zIn8xtLyQAEyn56zI4tO6U84uyD7sFsFATZT4J17NAGhF9MhDXhUyYT9Q3GgGg2ASNIAHpnlepx7aBcO+vqFZ9vwjTD7YHLDhZggy4fPmSI6HNijP6QK0SikBz7bHp4dIIsyebSOIgwi4HRYNFbrLD5MJEJBqPSg/b2jXWqju7evX88qkJBiWok600yeK5TU03R6IRWgl29v7WTUyJ4pZh90F84oH0OJVgEsfHQX9XbzpGjdayicYcGlR/+kISYSCO7PFiqWI7FuBKEzWjoLCj5vUd7Rw87jjxdfyZvvr9z98EuDdiWCmGPMo+FRlfe3Ix7Ip8+2P/xL+7iqVzaXNp/UX7wxel8Gqifqsl4MBe50qgdn96rmdNBt2bg43VMhydk/Ln1S73f8U6XPXQhnfqiPs+bb7+djMYPTvY+/8Wn50cnf/nHfwzpw/LaGhpMbQyuXlqDzcEcaT//0U/o+JIr5t/MFshr+/3ogOTXvvJOvVl59Oip+QuDzjCZXBp0JS50pwuJhcMTUN68+XYx3vrLv/p+pzvBCqfJO+xvRNQRARi451jr4dbKxsqt7Z3j49Pd+j49U1XMivaQlj5O3zydgYNkqKSIAhMy5N6Qj3KSUZ+1HSPIpoOwKbkhKVwq5t+4/UY0XXz2+JA4IFh8xBByC9EADyquNwsWoSaCjI8W7rwdxsC7xyagxo0wV3ZpNSJ5avo30KTDtt9w1alCAgjqDyBZ8WZIgmHmIBLJBGBLohUITiCTWKuQpyLewYVidZKFCscDyXSyWqr1OkYhl48TlcZiRXDZSJV4DPkXzBcKCBO6L/QJsA7oq0zvOj/GKtFJHpD8Ah6WB5kvQqgIPEQ5LgLngejHVMSNxTgkzMRDdAByXxQBtio2C/YNigJtIcoFQS1xKYBIrFZbTYguQYTIp/IlpGJ4QNIAWT5A6vE7ZIAIUWQ//6MYODyjBwDA4WJQgEoAxEfKEHIPwUIQS1FHkk5nRC75SX0AuBLzN0o10fpK0jUaEl3gi9GUGD1JGvK6NHQjHcTJBcO41EJ4yUl6glTXcRmWJICljhecB8TIrApMcknMBKaUZYo2IpQnMaIQ6cmwRMwkvbxAp0hikMoVAKXY5Xwl6lH8HHIPYS4FZUDUTT7HllQ1kbMjC8KFncuby8XM/S8ePXn2BJpxtJmMHXdIQj0L3YheZHhEn+LZyNldTC0hd6BYlhEn3M0zpVqZbOH27dvY+Ndu3AIBHwxEyWtjyNIsRbLJTEZ0B/pQEgFAlcbEfSBUII6CDqONIyB97gS4Pm7jymaejn7PHp3ee7h3tF9PJolKu2FMKxZzS5koFAJuV6+hWV40nzWotscHx6PTo850HkgnXEEy22hMc5qOsMpTvoBnrbD0G19d8YYbA7dRbClYVk8flNA9uWRoaWkZhq5mqx4MkLedlJvHM/okDfoHp83jU41rdHsTtFilCbE5NAjBUijroK+xB6eWAtthLBUEDuRzjfK5COitjq6CuNCmnflIi4bc9N2lV83aUoTOUc5emAxjbvlSIpUOhhNnlS51YuT6R4bqmhhEDAF1wshMNswxX4o7E7YlPnYoXI0XCwXzPETyh044+DlDUr/UqDaPjl/MiCWM24P5eTg3ihXIBIXVFspSFZLVIYMrgd1oAiwLER5wLwBEJjRvxshnbhN1oA6V8jvuO3TNTDZKs4PhUCpNmAww+JSATne/3u54po7U9//6KXHKarVLkYAeGwIcGs4CxqgXTYXyS1HWDRiZQd8ztAABE412qP0hdqelkblidU2kA4OLem9QhmDAgDnMPViIxVziZPes2jqrdjpR75kOADcXDiexi42jJ8dGXYpQrabRfjbOFCOhQnTv6e7JQYcpSZ/JfDwQvbN8/1HJMe2HFT/pY5ddeaz2/bQCnU5MWIAirqxR7+5prWTaPfaqQ3VQr9YJAX3x8UebG1eIWGSgxTB6zx/e08z+ysZWMplst7VLm+vf/MY3nu/usghy+dze3v7y9mVYxZmutXLl9PQAyy8RiP2d7/4GxG0f//Iuo5SKFW9eDz14dP/Te88GlnNkmIgg3Ljl4jr+WKPWYIi5sXjGYECxl3utzhx7ezDMpLKY2BiVQZhdR/oQlr5xVW01WJbBmMsTZ7Rn1mDicYTM7tg9MYf6fKoEUWSDeTCYSedWl1rtwb17d9VGE6ca6k/sbxFZmK4UdZBdZNlK0JnIhMgQpAXiEOSd2m3H2/VQLhVwuowekOIB3wPl4VcY9y5at0qIhkaeCA0ay89s2CLWpDzYBmM3hsoNRYiqsnoLxTxZ5XA0LBxKw3nQb/AJMUp4kAw6y+GUYCkNTDaAb4P9g34hK6WEFXAU4BCwVzk3RC1UrIBkMrksDNuJaJhIKyAlhJYkjsWeFWwLhhZCEHPVVgxIc5HvmEXMb4lc4zPzoN2dpCTE5eUCZBsJXshnCEbMH2QaX0gEh4+xIyVXjqbCzmbksPLRC2NWOiIYiU+sRgmEY34lEU8TzYSI3qtQdgMlmEThYaPBdh1oA34bB/itKOqAci13HAZ4pO1w5gMy7QGsiLz0kMlHs6UyqVDIVy414HkHWh6kIlSWBSxoEl7iHKneJ5eDEO5TY+TEoZ4psQjBdaY0whToNWEfsjvcGvQhghrpEItGbU3vptsJ40l+BbtUWIsl4wsNcZxVyH6J2kVjoXqNBdcygA522oyr2qtBL46Yk9ahxPcF7mJbEhL4EZdI9ohzQmtXP4T45CBp6OGlZA1bAZ2F8RQJhze2d5YKBFZXPbT8Doa9MMXgiQjUkFgETIQMLqg6QQ2gxIAJwO5JMB7DCDZ5uQ9EHYdEd3V0CST+iFi11T6DGOH00BWYpZbSyXw8l4+uLqenRh/E+8n5uNYQfsqn+/AiE3n3J6PY6d6xhhtiRcKu9Fby2qW1bFpRe/Fi9vKttwpHpxVa2kbcoWiAjMM8l4vdvnkp4HfQ++/0pGoZpN08+0+OXz4+S0HkMAtmEiHOfQxMi0CtjzqyeNAfGU1c+4fnQEmVeDCsxHIreTwWSJfXrl1CATz50WnzoBatqTfXE+FkaL9MM8Wk4itEosXVq7e3X/8KCEBPOEGCvgc60IR9wUddNyVw8AihdIMRIqxxZCsTkfs70CwCxbjd6HO6xDCD5pA9kNDp1o9ePj49fbF//DKQmkazs1Rh2NKNpULS751DdqE7qG2dpQIFLJcQPmcoyOIn64uTj12I64Qcwe/Xpyo3NhQLZJcy3qDb0FWsH5Bn44FT71J8hvVZAwI1GfqJRJaN1tg1ApOSX+fuzPgvEIn7golMchYKep58cdhrQIcd7XYsMKKY9/2ecEzMKEOS2KHEIASaYhsVrDdMO4/aM8UlV4TKI7esRDz+SZkU/+zOnW+v7IT+7Z/8mQqfR9gVj8Z9AfPTu+V798rJuKPbcBQvbZhdSKUB1Du3NhIkpcHql86JRndII8Nyh2xJBxN0t9HrrYB7anVmU3+ULC75nYg/DmSWVs/tRmvmiRA3mWuNRCx5eloeTmkI0Xr+ZPdnP3H85Q//CjM/GY3Sb+3k9Ey5f7ewXMRkhlf75z/6cavW+hf/q3+RSme6FF0MjG9/+3d+9PPg3Xv31i7dbhv9Tz5/SKlhOOyb0D1zPCVcQjn1WMdCJ73knhL2NUG4jmvzOvUtKchO3MF4Jgb/yWQaTKSUKdvCW21YWFfBLGgfr9aAF8UrUoHwHI3GdL24lDndr/6V/uc5OFfPm+1aCSYucBZoFGrrpVTo1dojNokgEQ/druxmkiEoUUVISgJGhGJRFPiJ1LxjVhLVAcaHVYbdK8EWAfsLPSMSgCVOP4c0rKqZvGMWgfgVACJyAfsOYYRMD4goC1BvmYglchk86zRxF/pxIne491RWR/DaSb6N4O3yJqE+iVBNg0spAU3Bz/oYHic2LIKAUCRDNwMLjhGMsepzz2BeBDxiJybZBrVGjEL00IiydRHu2OhEye1PbN0AJwqCZDxitosaQP1yGgtHAD1AupEnQcVIegOoJDS2hE/wiIWKwAvOCR8FMBY+jxsDLxYL+ea+TCQN5jcYJcU+0cwS1ltPVZtjs9HuwVCGbISa1Tef+ILgo2mIRN9b1NK8TcMQMZppG0LLuQTdrKBbne7SNY9OScR/fGp/QNUJY0SaBOsSjcL4cLpubzCZirkDxG5Zt1AUaviayBRgIKLcCbvTrZZsAdJxNuM8qcfmsij8JvzPqsb/F8T0fAqIa+yybFIJwOoTS+vOLDPgccQilJN5YMjpt1vu2TCXUjLUag7o4cT6xZ0huAHkm0cQmHgykYZ7LZ3NEFKhky3xHGnJjuynRk0hjy2uASGGUDDMIVBdjDGKDM2BthZmdXFMJXaEJAgQY0JxEA+FkRmtIm6q+CvYB5jktXKVzIbTeUYRb6V8snY57E7SK0nZXo2j44k1D3rtcqmFgd/sOsfjoLCRWc2ZsxuNUUyBBE563MHZUE8mPVd24gBGhr3mdNR9853rdUPdrXcHbXLIw9MuwfzwYDzdP60SymycdcpVzSWlZqHesIceQrAwIcnDYHLMJG0zW12NB6gh7Tt6+iQaB31FMiyIG0eonrbkg55BMVCANK7uog83hZKpfAE0b+2gNxr1b61ufPdr39m5dj2dXUWq4hXRmbwIYXIs3VPBe2NqOMmWMD0jEfrDQ9A4R08zZ3GHTPJGIE0h8J9hFDh1CC60xtPde4/u3df1mjpoOZTAuGfWBgbVYm59BIqD8gIa7LpDLIlJLBJnNpHBhpWIOeMB+0/YStYOr2QmkR8GxYejDI1Fqw0PqMA9idPTkAxjkrgAaLU4bEyzkTdoxjKRb37zztJS5Ly8p1tablUxrXbM76LDbyii1KE0sKYYOvgLExrbE8RlHmPXSE2ih+UoS1Don9ADEkKUdBazn1RnMZ7Yee0KVNOwIqSIcXi6lerB7dfinz7uZfOEO8aKsnT/s1P9hdVIOIqXU55BJ6bM1Mko6otdu7P98MFeVyMlJImTSDgEF4JjSvacgtXI9pV8q1Nvj63WwEenFSg0XG7N4Y6mpVtkpNRqU3EXjHqvbG/eeeudn330qVUfxJKxO6+/9ujBA0LQ6OG7n39K/wDqsyTa6nP+g3/wX7325tt3f/Lh7rPD/+ofv318fjKqngGX/Mf/6L9ZWtp4drT/8b1foPK6jaoXKKrXD+AyQsAeOCXBSUw40h6jScATYu0TAcbYIvgm4njYog4ut5TVTQ3qaLAzjkl46h4vLcWDrqAe69RPO3RV5nzYD4ur2emTxmg0qvMnU6dFVyQJEBAFIPMnOD4x9GkAQD23IB1FAUhAQ4Qg4hK5zMoN+OYgBklBIl6ZEwQPxA4WMxoFIFlHfULHPqigpuSIAG9iPQKnSCWVdDKmdeapTJqg08AxgoM36opj3mG7jIYCYCOQTZ2wMNtIItpvGAaSnyZr5IjRKSQSolEMaS8iF6hAPB4iBIRuYKYQDBHTlXQJXqrTAZCRiIHEhFkQEpYhTQhJpLzmhFFy4ucIYyTXTa5bDFXxcVAELh8yFkTKnMnrEpdIJCYmJjNaqCsI+4xcgETEeZDGFOBQcEcYE1LeQdNNihWo/Zz2rjIs3FsCL91mD8B5E3h039IGVs+cj5SY2x9gkg9Pz5pEMrGKg3AWCGyOAAY4jTkpW2s8xC/gfoiEo4RmFoxzwcHgcEBVtNMwZzg7XkwvxorpS9QdrDH3CU0lqWAyhDMyxohVQs/YNJqhoUpQuaQYqPrAz2EsCGSR7PUTPIHtz+fHFqUwmCvkbgeFtJhiSVEtAEnk+mWQYVNw5iIpRWGN5FeWVzqtnpsu6mHYBVilQkQHvsiu7BBwjMuNSmbi4ujAsk9U10qlo1j4C0tOkic4b7h4xGTRSFyBw4t1Ke2yEP44YuJxiQ0gITVcFSjhZqCcya0ChIWDnbeUSYGOoCk8Fbit2tkuPCNFul+lEmYk3qy6EoUYPzMpqO1pvbabudftSPROn/YSIefShm/j+rLDk6X/UvVM1ToD9zySS9CryZNKE0cMfvGCXHeL1PFZTSuXh0YP2cr0IB3rfvl8/+njY3zdTCQh1M1KEgvXYJx8c83q4Ae6ILtxTYIJX2a9sHN9mUjmg8+PmwD8qCKaUYijMtIEZdUOqU66KnWWV6Pv38yp+iSRylk9X8lwZUI38ssr337/g6+89TYhBFCeeE4WEkpHIwZJs2noE0L1yGqBWY+xYbHBx5gkhBFwP7mn7lAqm8jkQ87J8LjUODzd3dt/fnC622zUMMBCGSrMwuPAVB1QUjekBWECh5JmvkVfxB+Ztv2UmzHMQDykmEH8Y7QJoEymxzSNyc1dc08NAxxqiZIdYqhUOM8gqCDwOxsGo3MlOi2uxm9srCOajsuHBOeiRf9cMV3pCVRw/giNh3sHpVGt7T8/GLbrBN+oNYAbQ2K2LC/EDUpfAF4QAjIDCEpKFJopI06lhwAsIQpSAt1e+xc/b73z7i2cs+MX7VCo3hydhTOu61dWkgk3DMeegH7lcvLc0W40hyDENlaT5/VGs+2k52T16Mn5uQaGwusMLech/THhPpgMZmAxydh5ZhqtG/yjmdlV60RPUi5WEGuV6B0w3UQw9ME7X//qe18NemPeaPjNO3f+5D/8wWf37o37yztbS++/9g+xcIyp/tOPf95ttfNLyReP9z/8yU/feevdUFQ5Oj96+OxxNBg5enH65NHR/+R/8c9+7Rvf4TZ+8cVHGSU0VaG98yj5zICsGiGEUADwI9cOuFesZlQVPNsMFQuYgZ+T6HFh/1Br7gq409EcMZpaqTGH+mc0ppAYm46VPBFWfww68iPEqScBdCvU59ipdOaRFKZUmkq4ltQgE0oOtOj+zCLFKZC0IRoZCYl9hirwwwPR7lTOzvKFVeIx1JpQT4iVYFmGy4/gc+umUMWR+USNiUAZjlhVsByaaOmuubW+pvX6TRWYneTukKfocgQ+lWgK6Jd0HKuaU5XMqdOZLywRNqiWqtRq+oJS3RSNxRHbzH6EDgEKfjimbB2D0EsmkyDnzI9t5Zc7xeggdBBdRHLJXjGbKHZiatm5ShwVkE4kCfBbxZbEpUDOkFnF0yT8IhMemxcvAQwzy25CANSUmD+ni4BOJZe3tsCnhVMBGIIPD5+f7T0B1sSyGxPBhTAgGve6Yio0AFaXXdR19k3KYq7PdJL63f6MqUm02E3LaBdJy+4E6ynBifi6dFcamelkmACrV1ghR4wt5wmJwKR7mk0nyYBRRwRDU15fpm01RgEyXwnFTGOudtoU2nDDAv7oeOTE9N7YvOScFVcTSlAh16JB8g52BclJpStQTsgAuOU0QUlmEoQPuM+Y51BRsv6Il2GgUkSM54m2IIzGuHE37eQ2+2djBGF2c0useAk0z/EkyOgwl5g8WIjsmEwJEhuVxLYQHePCktQhwkvJkeRJ+AquePQrnrcka5iaIu2xIkQ385drBi1l+6Tks70wyzIh8E9xheWtC6gog6PVgKhWTyjXfPrw49UraSh2GMxG71Gt+XyGuad2j06b7c4kFSlkUwVvaAaRTtQN9BP3jAmiYs1kchEK6Y7HbSCCkNJs31qOpJMNwzyua0el7g8/unta7R69rNFNbIh5ih9tzvo9xDHlQNNur6coXtIrmMPppAcax4h/Ondrzbo283tyq/FcCtKg2Wm1dnBeIbxSzCQ2Vin0sbrderetRYOzXDbywVu3yBFCtE7HGKszwYtczqxc3tm5dfP2xsY2yXDJXQGdJ6M2AIqLFHa1AW7WGrATUc2B3kViatBcYBaNWE09cWDNQS6d9tI9kYBd/fTDTx5C4jYY9jW28DjU4cjNtZS7Y/pXQZgRChsGuCEgPoALQ5D/qjRCo+5J46baAGLulo3QhfQMMYw5SwAPuBomKea4eNF+V6qQEsFsji4Vo0ur4Vye4FLw6lIqnafSsFEnUmBQjVE3CC06YrWJ0Ws5alVnuznTGpDRYJFhs3HbxSjAdWf14cLL9BELjoMTCMJykAdmG4zneN/T5UtrW2+vtbX6ZODiadJ0PLvfWHt/FQ6LvjVFcfcHFuGtd95ahcpU8zkiq/G6elaujSdtBek8c2pJ5ovpw2fUUazIC3HosexYyG66JWJ1B/jnCmqtntE7j4XTaKWm2ml1evnMyhdPX+BAf+dr33Ybw8rpydrWaqPVOdx9CW0c3tgH737FHcGg9f3or37sc3r/0T/6vZf7h48fP3nng69ggD3Ze/bB+2/9k3/2T/7N7//F//pf/O9/9+99RxuoCb9SarYoL4gSPgo5Dk+Isk4CVPJHIuJWmUO6QmP1jE1uniwDYqNeSE4oHdQn8BESWU4VoppJEGiAdujg0kdMoCNT2Bwyobk5mbWlGSQ1CYQ40AshwjWkhvG6Ef0YD1iSGG2yNrmh3GTMOQl/oHV5YANyA4QChLIjH+7tsFw9xyZPIemIL7omdMGUOjyMjSmE5xZ0rkhKS9Xopk2Ajgp4rT8xHBaIB5ixwa60NJmKfn+Y+BOSQSpZnbMUpanhSEt4C3EaqPZcVmJRiYF4gZZyAWPKIzFjsRbnEc4ZM8CBARUICHoET2I8HUBwHU9GMRvwiNkjrgKmLoqIydPtqpLPkMpMMqVT8gci9mduOjljVmD2YlQGSNUCxMTfoHsDwT/ahhNpsqRBdUj0SjCTzS+vLQUS3lQuTn1VrQ5w+tH52Yu+fkYOht4aXhqBzCf6qIsphr3qD2E1z30RkM1OctHEAgTBZo7akMfqSCrityMPpRUOR59KRuro0D4sovEoFgdqQoBjHk8lCbgMBwCxx77gPBlFUbqniSE8HbEwwDvPUDOfPXtOh2nmQjSauXrjVsifonAsm85FCAynosA6OXXcCVYrYplrj8fT6ST6U2qMcajj0JRB8Od0opCZGAhv9JVE2GnMGiF+MANmA3MYehIJLUuRKYIJyqSQ7HVAMiESMsKGgKpNSP7InLBCyYUw+OhpRtpGOjoI6hFvFK4hm+DBnInmllAIXFUgU4foSrq4oMpxhnC83CDLOBLhBthm58R+uAw/RiCROipizHK3d3y29/Llk1J1H3KvxvTxsB7qgAQ8b56Wqsh0wkanR4w00QwllIoTAIcqUZsMlpeDN17fdvit/RISfkBAJZXMXH8zc07LJsLT0TjoxKPDo316EHZnP/jBzww8MKjoHQGau4Bqw9kpFpO0QfJ65uRxtEHd5TbzhdStmzu5dNTl7e4fPdVH3szSejgutmtb7dTq0A05rtzc2Lmy5nYOjw+qIzjht1LxWBiofiyfHg2j1T3d5U2uLG2+88a7b965mUA1eanTVwb0JRCjgRpmwCmsXf9wLHhcP/dMAmHISrD+U7gTIKhvtrvdXouwH71WAFeenMXdZEVbpf1zKJP1aBK0ZRirncIpwnvcKC81cYm4g8g+7TYD9PEYzduDkeGikhd9gHmJ6gGggH4iJin5a6a3Y04XW/JW+CXCIuN2xZfjBPNMCkQMK7cUunItCYwrpBCgwF8dNOEXIBcAnz6ocyCorqTW9ahdZ7/l7TTI60qhGKiFIWYj4SUJMouNL1a+RB4QP6QRxTgT0S9VtaIPAIkHiHi4YT8kGVittU9rVmsUhv0JIEVzfPuN9z/+4Y86TQvIf9QPFTKVWyQ+PWOq72jckGp3eqAg5tm1WCyeap/3DNWp9ro+2hCPmW0gLKhwA9ZCGGEegPUmECL9xDTGDOS8gJfhtOtTR3n35d7B4WfPHyYUAPVUZvk7GnXn3dzW+kd37/UN4+033sCPury6jYMeS6feK2Sev9x/+Gz37bfeHk/MRy9fFrIrN197g7LsB589XV3OFZPL5fMSPjWBiFgwPB4dDHRkCtRHrBCatnjpNIBH3mm38cYg3ZH0J/gKVDiV2VOH3jYo9yQXGwQZQdBxPrNUstkdqgoz2TWkZMCDDS6YPVi6CWiIRrHHmsEFQIlPIUNMvA0LUIi8GQphI2AhSwxOgifMZlHI4qHNoZbr4C4QLbKDQuAwXH5WMOzgQ1T3jEwmyPFwTMpWqRcnu4xyyOeyRH6R44gVsTjJvtFBcziVRq5ICOzGKQ0qTfxjDMaEQv2aD3J3hDA+EQ6mKlipMEUQYopi10tgzZ1JxxXsqBkELHomTRCSMEmQCDopXz8djF0kqrEovQSRcB9gP0HFcf4gKdFrSBRsVrbHkGF7/AkKoAi1I+OYd8SRgG9FopFcMQOXuFRdudzZbMYT8qhm5Uc//Q+HT54NBx2KIMqVEmEBqvox652DWZMJRaH/fA7IYY18XzQIGW8bbd7rcJkRX4gImptmI9HAoA2WzyTyT4aJaU7WRyEig1dECyoQEWNHzBucC5njNIA2plUgne3afRK3xBig8YGTgJKMQZ98bcjlDW9trd+5/da1m7foZR0OoclAbnDDDUzxsVsSerHYBlkQQgSS2hOsPbdXLHeiTNTyAPog6M8Nx1QXUJPcFCliQB5TCyQBQiJbLAMXQQxMTBxzmgnKmmRtU8LHeAKuZ1oRyiNly74pE2MBU2bugioG0R0kVE2kQBQFxwUqzE1Fu3DQGQkkBh26MkSM+GOkGFDS5KiFqpiwD19SGCdLz80YWIbVL7dPnx/uPn1299GjT47PjnLFhNfV0efhvgfo2TCUDLlmvk69j7r3haaeoJZdnVCzMj5uD7VBZGm6cTUGvhQr8OS8RsfCelcnRe0JB+kE1v7xXQ/Bma42tnzzebzWoqZ0TAoX6g1I1bJxIpdBkkAYUplcLJvKdjTa9tWhbQ5EpiHF0al1n++2yRQ4zXltoA8tIyDwivmbb1zZvnTrvHn++OFjGi6GYymXsnLU7NWaEuNbya68ef3Xb9y6trl6hZSJ4MX6rfHMReWa2rX0bo98O3aYxAQJ+JGZ8vmoNg2BIJ66qcJtdWvHxwelyn6jUdb0Di47d6QynJ6eegNBmKBhQ3Ul0mKMkV2lhg3uR1YoSSOuC+TFQO9PvRPD55IqNYQJet1DjgSzTKwkPHUEfaengcVhBBAegVkINyJP6VEqRHsclBMTxTkFPUoOBtwi3pxVb4GJ6c+nTcq3C5kczKIEKwamq9edNstNvTsXjmE2J70rMR7sf4QuAkb+iT0qooZJwTLimiUYjQZgVTJz+BSfJUBjLPKWv/jBXa3d9mPkOYAZKFDWN543P2z/FIqFeCQQGy9TJzJr9l09AIiTwCUnYJKlbYdII+c4uBkBYBHktlsDcg/0tSSaCrkyEAicQ/xuhAXpBnRRPpM3cL1wZuGdk1pzmEDncHNYfePF7jOMHwIpPtgEmVsxXyydNdXZo2f7IR+5Sk8onDw+r9Q+ffjW2ze3ttY+//zpH/3RH9547Trl9R7viztX7vza17+C/UPqr9osb21crtIaZjzwhzLra5cOjo45bbB3RIIw2Yk2m6P+TDhraaHBXSYBw5EZEzx1agnFoIe/ldEEmI1wJF4xdYZmQ4/eNTBvESAIEn8khjTpdfoMPxPTrhAU+1f+sdzt8bZhkZIYEICNxH6QBnyJ7uUuMAY8RPcgSrrOJgEp0icuy8VcJ3iA44btxcYsf2kQgHXvcVE1mU1E03TsjHomo17fHMG55EEP+InX4woMlSQNmEl9IpwnIJAIJdNTIeTz4nkBeBKzGpBR10QWEWRkCido2ZOIEm+mgRFbS5QBskdwc3QfJXDoko5LFGQQm2RswqgIKYbyQ1Qusj3gHlK0NB5zJ3FfMJC5QiQgUHKpYxRBFEb0cVwkDzF2hA+yrVKutDvtk+qs1etUmoen57uHD3YR0ls7W/R4g5kVoBHisdVCPc8BZ3IapM8OdzUSwWgyxGnevwxcD268TD6TTvq1keELSXi1mPOnEzHb13YNiQkbk3ZbVzswaGF+6ZwCt4A1j1OM9EVRiPcCagtPYazFfKA306+9/fUrl24XswCMIvVKS22bpP6G1gAJTqgLrY7YVUA1JkPY6VgqeDgMHYFisdUJCUrEnz6KzHfiycDlxQPmiPai414zzajAIffEMLNipyMULMDfERkCNCeNpbjprHvmG6WjRFG5RXYCH7pcTligSiGiW4h9DD2uBmee6cOsBb/DtvzD7uOIkhSQ7lzCAchFsj1nxO/5CgYQtAIwxDG/9DjbevPZ7qcfffHJeeV5e1x2KXNV70RDDrNrVOu7QPXm3GMnyQYuUokmXcnC0J0ezJNWxhuDGU5ZVrrjbiqy5PHkJsKb4YddgPwN+Z1G0zQ1ggWBfDq7spInwoO2QcFlUr5kOuKPepOpBDxDmPQjSi5kVGGFyMCVcVY+Q8XfvLYDCdrc6S+kl8+OCT2p6Mh8zkGbbgCfpb29Tx8/o5fit775tVqjVX7ZsYaxG0sf/Pp731uJL62tJLevxNU+/C+jHhbqjHJhX6uqNhq92cjk1vvCIanY5m6gF6Uic0ZcQO8Zh0fHT59/cXTwpGdQo6BBf4QVIcvU7cQX53ZTBtc3gQByt7wdmHXoSIPfFfD02e+ALOwIwUIAlVmG7wr4nXJoQJHEhfGSk+koardUrVEJRiXbyDUGfgWmiahdIDB1e4aZnGN5NYEgqDgC7XYN26ZbN2CuDIWJWkJPMJljw00DWnfaaI6q5THxTrNNhotYsyStCBYuZDu3244uiZy/EDRi9MsDTSBKQP7yDdOSaeWbZdKxUCKiPtd9syBdu5hTZB7nMB8N+nqjl0mHHUCXqrWJh0phCC0dGZevv9equprwPXjCE5Bsl1cvQ/wKaMkNpiDr8Zh+tW2QxGHGStYQDIvX1SdyYU2h38Jwwe4hPkksBkY1QJXIGdYC5HlsjFoCb5LayOWXckw8ijso+rW8vquXd+LZSSB7+NEvf3HaaG9eXs6up3ef7Z6fH3/w9a8pHv/B0fObN2+CQvvxj37a6reQsaPB/BQiUF1F29EcB0IGwDnk2EjknjVOJ3SjTzAVvKM+d5Q1SnkwPju6aUaNBkY06wkbAa5pGKlYVSjR0YB21H0En4D9ZxPQviQH0RAyssh4fovglP+YV6JNWIfQO+N7i7uP4GVxi37mEuU/EvX4Z3yHliZW36INpBdfH53CWsVZYFFLihJgDIEqpmc2DXZuao07fd1zeNDKLWcJaXnnPrUHUBjYQHRkGSFi2Kk4x6ZTpXBY+QIQrmrmELo5DoT5AeKl1WrAfS0lk1g3hEO4vdQe6Wa3jiR0bF7egIGEVCfGPeVsJC6JFkPziPhD+kMr4ec6QYaJUpTIM2X4PrDvCD2RMdihOAlwYZNcBLRAjBWkOaSmCP2yanZ1DdLA3snpEX1AzcmI/kWw9BKrzF2/qrcHdT3kS2W3b95mnE5OS8EYuIOYZnZqlfN+u2JpBjbu+npiZT0HZr8PNnNoxfMxXIdmpz2w0HzRZDJaSCsBqm4g6fTSRrQLAG489FI5PzYmhAikSI0OzF5HKBEgCjeBGIeksN9HlQicaMv5y5fWr+VzBV2t16tN8Bg6fIkDaG38hdXC8mp+rLPqVG/AT8/rk+OjZh1dNYrHYiswKhby5IGJCulQ7dJKCYwNnE72QkTWi4Am8y3/MTemAgfCiEAIE6nFlYPZ2MPsIieEbSr9HvCocCklsiBAW7QB+RYXzYVAr5Lek/WLucEUl7AjexZJL0uKj22zgjoluhqCwxWcGe720CIexYzCfpXgnJ+ihBBJILp33X348Wdf/OTxwcPxtOfyz6M5qMh8OoEzwrcQ0gAfsrAHnPDmesNOX2RaKE6X1kahQCfq7ye9PqbewwcvR9NSp8KYQBHWHw0Jo/snQ4euCgCPAgxQrhisnvloDXbnQLhYJJ1OICpAWVypXOp3BgllGXulXK1qQ6PZHB2fgX6ibON8ff3qjdfeLZ+fI2Az1F/GcJ6MUR+qacx9Ktc877z3biHtg1Fn9dp2KrWxfum1S8tXAzC6GLVHD15ihQqGWkxKxiBCPtXsDriVqVwamuc+vfoAlhBAGDnVVrfbbJ+dHJ0e77aap5OR6vROgJyCsWVUUanxNExzAYKHOvoT7L7TMYInaDQOhaM0tiIfgNgiTETLJ24EYTnMIfJ5VCMMSJVbI4ww5BjkK4OO3lbbUBAr6VA0lUA09htWs97pdBrJfGht1QuDDMg+iIzI37spPQrEg4ngnITXwMQUoA9Y41DtNoeqNtepMZh6nUP8O2SNLfxFuNtGvm3yMzdEyiN3xO5hyoguEOGPYyDzBCtXTBoI+QbE+FJw6RDDqTQJWLA/2ENmHhCmLn8mAm5OrdecFl0XXeNzcoPeCMG5ltabO1Zz63NfnYhB4wygjV49qKPZC9t5Oo49/fx4xNVgmWL3z8A4apiBOObE1bhsTorIiSBHyIaiiIlusugZRQl0uoFQYNw0Q4Fj+tmrg1Awtn3z6m9eWV1iPUS6z46Vv/iLP3/z7dtXb26tbCUe3Xv48ce/uHTpcq/V/JsPf/S7f/+/WNlcuXprk5hm6eyIag2jNUqkE1ev3wQSVSrtAxmgKgxbdHV92aWIlD562vOSWPdGndQutlSEvshrRDrhGmiloOhBiEtITaK08XRMVXuG8KcbTszbJFk0hycCB0kYgw/aFaCcrDfCtyDx2AujLwtVxp5rsq016bfBhxKhkxtCwoARoqMaFuMAc28I5hWrF5k1oSRG4kZDDIpAeBqLw0gDpgMzAIFsTkITZZDqNdRGXVOgNQiFid2nBOTpr1VqRArjSeDhs26nOp0Nam0n3IZRJQROolo+pQCtp2ZJAuMaOwkGI9IkTDI9P21ZDve1G1cwJ3WtTUgBOilqDvRuK71EbTSiiqSS0CGQrmR9iEEMStSLMCKOGdABGw2GcAUL0E8CElqHUCrdUaFuUjsOHx9p1khD0DhjVIo71y9lb0Z3YqlkMBoD9dyswcWYuHrjSiruu/f53VxhiVl6drbXqJ3TdQQDlkhX7fSo3mkBuvDFPYRjDPJeXSgmx7jQkIc3Wzoqbto32g1j2AfyA1zTDRmJNwghcXA8VjQdG42yWGU00FtlIgMCtSAM7AcTuxRNJ+ON8vGT+4/JrBO+pGhOHOXJqLrXOSof5g9SZNQJjl7GNJjOsAw4PSBHWBUAN8W7IgUxHhsUwDtdOFWYCSxBwWLiI0PTtEjb4ttTkWcIZoBb64V6IhiFNtGH2AC8IV6VA2eKABHcfYwYSV/BuHjdAHb5Fp4IzAZQRyB5mKiYsHAcgkpGEcB1ixs6nKDJrZkzhKsGVeDcxUxV6UClNQal0lmvqWdWNm7dujWZWVjEz44/fX72YdN4rmT1XC5FYRhs8hoKAONoPo7lZmGFJEKEnq4RCIE9UwqqyE9NwBe5AtTJVo/NVs9FJ1eoP3XNl0itQqyNMW/S/W5kQraa2igYWocko8OhZrORt29e3l7LHZ6+IDw7ccV6xrjT6Q8t0O41dg56mZIQf6CYTRQarSr1X1295vT1ZuOW22Mw+1a3k5lodNweYdYelUqRriceGSwlhx9cj2Y9wd29zyfO3Z56j0yqbugud7h2blmAzEMb4WgG2vmAI8qkpbNxMp4xCfRDcCb1vdPTs/P9Z3vlg91245SWM6hd9B53Ab+T+zgVZgbYjYgTmlBOg7ALQJjHtBBeVUBUYUKqBDtngTCVdB1dJ2CHpwwLByzW1phCcapYkNOsdAJGNOZyon42NjNr6ylPwAkJCL3NCvlgIOHbuJK9eSsHiOPhR/VaRU2nlFwhhm3QalqNOjBNotAztekY9HBlOTsxQTGYF8QoTDBbXdsYcxHu+Cycu8gXJJ3Y+XwvIQdeI2nw6kQhIIX5ykOQqdsEhfyIOA2AgIDLh28C22o8F1paDXLERCZKw6xpz0nZ10i3cKcApBLcgnGh8rASiDmg0Tj9uIp1PWoCm3QD9qpheRkTEh7guBlMcIy4ogFfxCJnN6WQiigTg+yg0slWT7JO7ACDAOMhz+T8VFh4mkjqCU0trV7tlx/9+fY6JU0hiJNef+NGrhD+wZ/+yZP7PyuuLmWW473BeL9cguuRlfEHf/bH2Gr/g69/2zmaApdRvESuWX+wZoIuAPcWSiiBvtjHfb9nAryQ8M3U61AK/subq3ptZDzoUIljUXYCTActSNkA0pnab9BdMC25/Ljz3FPaRIAUooRk1GyBAQDCSK84oskAkAiwkA61ARgkqySoxMVJCI4h527gXvHSVgjiMZDx49ZxHwi1Y1cAKBqaMzcDTViLABWxdhtY45lGMNqIYRNPAxlJtc60p/ac/VmvWevBLZZbyhWAvHl8fZN6deq1LHDjYBGZtCRRkZGEJSge6dUa9VKZyiOAgS21bgx1gg/BeNgTihCnROgQT5rr41IbcF13YmjEIo1B9/OPPx6POm997T0ayKrdjiQ9mUQeN6FwVBcJM9jk4OYDSqxqvXK1Va2WAVZgLTh9gNs0XQrrdfpq+JVgJBFwRh0RqlbQwC6vsrZMzRbkyUajD3HXKvSqiQQ8kK1q5+rVFQTjF/cf6IP+O199P7uaKlcbtbMzsP6TSf+8fOr0Ux9hNdp1ckmFTGapkEeXIdS+uF/ut/rYXzvbmww1yJ9+16K7LQaQP6FkiGYGogN9TFQVSzoWjBPQxMoLB/IBZ9I19oTinkQayysCbrE9Nq7eukKAeHdodbp9TzYdTMfI99BhlIo1ematrC+lM2nyqSwtsfIwbcju8QeTgQIiw+AztsTWwazhtjPp8e7IbggM2ItV4SX/RODAZcJaSFm/JSljwVHjFAFKHg3UPp3jkOXhZNbNdBDBP6UYmp7h1DGghYAQd3HTh6o+AIM3IwBH8LDb6CqJQsodGY+ag35D1WpdtVytN58+3u3V+ju3XotEq/1ksN6sP3l57/z8KRfH8WpVGuJJj4Cgx7G2osQLzlr9eDBwrF2ZvbldaEMH2oHmKG7OgienVqMxade8aiM8NmjdJLw8LDFSjSmFOeJsdSzd7Fy/vHnj2hKVu612Rev2sYFB49JH72TfODzrBeNkqcgqRDCYyCuCvPOFwGnTN8Y9soJaHSkbsMaAecw7O7krO6vDqXp08qRZDnz73e9RFUatmuJWl8LVteiw4NdnDV2rGNOYYzlxCztZAXzgX4Vg2D3L6l0vNQf+4CbeIR4wJVx6A7i6Y9Cymt3OUen4+cHzoxfPx3qToI3Q32GrEwNmTrD4PU4igeTpsGuENgOPl0oViaXjVnCnxhR00JAeg43eiIgLEsJYcAElCBIApTHry+rGFcaDw+LD/ItKlQ7pnCnFTH2tiw1RWIpfvbkejBP6m0X8YypRi6lAMz4IAfygdKo0bms9U5/S+lCHU16bQG6H8ETgYy4u3FnMaeSIPCPVxeq/eEgGQOxP+6+EtvlcvhR9gIQVocuDCk/KpSBTYmKBSMJmwQUgOBWZFXbCiXXn2anqNmtuv+WM+8C8CMoRyAPAbJjaGs36cYNKF/oMJ2KRdnfgN93DllaZdanfIBGEBAWbwTIjCRoEPYgr6fVDmsrywBNmRcjhAXYxwBhUSEkUJ0/8Y3kQyJ/OYLK89NZav1V5+eTRv/y/dnP5Anmtm7ff66gNCZtNrFA0sXP9LWM6qpaa9ZMT02gNekPvRN19lt++dYtIxJ/+xR/T4IWopAD3qPFx0BosAvicS6dTZEAhCx3PrqbTeUd4dT5BOOihcQ8WqvmgO3DSU49xA5IXoMOX4Jq69bYj4AbqAkYlDPkPzTQo09PhZUKy02qN7ZH22MSgfKQilgQvwS8ZbIwCxp3pZT+YXPg8CB5BfeA4wFGGSUE8mNHFrJZkjvj17A6JAiTJ6cEhYzDdcxBghAadGoYfchX6dTfpNEY/PlO7hyDgp+T0zqdU8wx9QBaGfVig5k0iTEbHmDkSWAZtkGLOWTgdqLWeAlEMk7kaVUrBdD6ZRezQOI7EzPHZ46OXzyZqLZ2Ols/oXFravJwPRugPQbmVqa/kMrlcgJOZozQmBHOa9dLLvd2Dg4MzGh3PXOR4YHt1ukdKMkw6lDZS0hVXKgWA5lFwPemZ0vaStNgACvX5nEgxnUGk9Tb0kQlIwvx2hYyPRhxYZ+FoHO9x9UqxWa+Z1DPjY5HuHQYhLcYLOilpSZiC/b7yUMUSng2dpuYadMdzc/a084wIJPlp5LFz7B/q1vleCbMjFktSA6upMCz5tzYv3wDaHGT1ApWKkLmm1Hj7MrTPA8e7LvK7YeoqBqAAM5RJ5DJZ5iaJWVpYYCyxkBAKfbUP0ixESbEXJgYSaMIOzY1lesPkwdQX+0EWnzR2wK9CGQDOEWAVE4D1StWEuFJjNCvgPuI1UpIKTFai/xYO1ciY5Aor6ADEEpRQlKuTdGC12NkDB9Z+16rXaiVaEtKVTyqZaW5NatFRelyClqev9xqNdqkjDe9gMzEDqZk+ffb8Rdnpndc6FGh2dZDFM1+jPIFBgD5X4ah/aSm2dCmztjGP17UXT1sqdXadkDagqmZQPybAoXQ7oer5ZKDBRxmBVCmZwmrRax2GhYrMlp3hdxSLgWtXs/HwrNKrh/0utxKrnjS//+gLcmV4imsra1S8TNykDBKm0Vhez775+p30sv/py8cP7p30dCu9mkivZemTOJzUr+7E33136/T84PCF4/CI+f39PGwnbiuVmXjnWquu0Xl+3g8EM8t7vdbZFy9u75DE7ven6lRJ+ybB9gmF8ITpMDauh4hpeEa086Fzy3m98vTli5dHzyut0+FAdU4N0FtkckFmYKQCq8P9x4am15lgZqmYDTgQYNmNDbiC4G4lqEe/BNYZdXNdaxQdsYBntGmMhKhVTCpe4Rx0QRU5FXQ1rEoUiwvtkdvfrsPEOAvHAKhDc+f2p4KGAzU/YKpofTxur2qI0uiAQSz1JzMf7EdQOoPPtoPMgBaYTEw9ojcS9hE7HzEq8pIoOnJTZhoCRyQ5nil6ggAipqN8wVevHvYbpA87I5E4AkKO3u8JjoKE7DSQcE2DI2/KdILTMJLVBzU/WsJtMR7BSGRmOhpmxzXypLMxDZZRi6mACdMgsupzBBk3wuxkg0lZIYbEoRX8C3JOYpmcBsTGZAtFeXH2mA7g6TiqrVQFoWDHsEglCkQT1iJjHoMmL5+f1boHp6ecwdba0sOnH+/XykPscE+g1aFfWHdgdqiknM07SOHNSzuRRPSvP/95xTF77dbN9SvXTg9fDsw+Vrs/SuBPI4129Wqu2j1vdppjL55wN1OEpCMwcQz8zNhNv4ewmhUYVF1qqU+PHSQaiSBKdqicqjd6IDumlsaEAJ8pZoAwqRGwJw3HBeECoISREnJBCw2LnhZdK/F2PmM7uWHcERwP/nBv5JZy8ydTagKYKwhl8gbcOJikCFKP4KUYu+AbZiOX10fJE4FvkgZ6D2/CBblpIDBfy6esUeu8UoL6DbrjmccFOYng0iC/9s66Wp0EV6tRj3fDETCUsJ2YlAwmsNirJxXFH07G8wGX0iPEk4/rEHkfPQ8mwod79xy92vmpCwKMRC6+dinbqlfUBigPJVUsMJg6FRNDg7bX9HAghgTt2g4cQ5GU1gUw3po7B9Q/4NXgOUH3iD9DMNZDsMQHtowZCWhVehVMq8hSWl5AS2AyDOqsUSENAeNCNk5Z2nm1gUBBT3SOd3cfF2HKwN9OhIK4JSTq6asz0sb+ebh7rvebJ9GoFGrhonH7VtNrwGo6NeIsVD5EQlFvFiqaoicV0c+OKoPWNBpNvX/zErnJpfWN9999I+7394FzUwLEKZPYxqQnzkJ2xeeRPo+B4aW1zXAkgVHIDXHmcCfgiIXRGaZ6o1UnxK3CACHkHKxMuwwQNBRUg6TB5c5jhKGB6SYDzzp4fu41kECx4XDPceiAJgDnttqdaqtJUhxOCIPVQyYRGCHmpNsdcYzDitUOExG0wPmPoc6F0wIMLL5RpXJcV0uddgUwYauDSUAzdE8s6wtMAwClKnUYKg1yLUDBwJFS9pxbyYSizh7YARVXkWojqG0V+M9WiPKjd6Bfdgy9jnrE7QjOAjN/JOBgxKx6qT+fKV4rAS8xQUlUW8wbiEYcQYqTQX+DjvYMGZ/iaoq+uZg+Zl+IbrRu53S3VjqphQIxlyPUbUKZ5nb5Qzs3t998baXdPmiNNHMM7ZkOHAHHLxZMRvxpJWGF88ONy9GtSwrCgIL9fHzWa58fPyuvpjaVoeP54xN3Ql1b9VHayXB3GoEeybVppjcL9jTTk5oO3IGUQuNJT6nv0c/0gxft2TS1nDX8u4ekeSIJH+bDs0cvHz58BMkFqTdQb54pKDtYMUC3+Zir0kePDBgYneFIoQ9EHK5Bi9LmdCEJBcfebovsCLeO7Bc4W8IFOAU9IlmAE+Y031DoHtbqG+SfpwP6EuDg07xeUjmy1oeYA35yARCD5FbintiEnMm0NU7Auen2dbq+XmVqtN1qFxhASBUKTxr3jAkIEx/H5mCuIN8JJkqsACEvOUUR62Jp2sqAt5iaEmtG2mBU2uW/mJhiZorcEfkkymOhEOSMMcGdrgTMy7kYV272+650LEUaLAmjdvfouKmezVyqY30ta8zhp7NC/niVXifDWWzVff3tbcrFf/HhwRTuJbi3cp60sjo2KQ85H8xMBeYFqiAoXwJjz8zF6MUH9/qIUQvUyQGTVxBMOZVBciUu/GJyK9DLCJqBynYWxwztYhj7AzUOhVCIbgjOrj6sqn24vIFvawBou8Qw2uWzPQtVge8zn2RSxUR+q9I5KXfr/S8+JsclbZcnJG6oObMgesxmoqmUb+7S8oVo4XIGWMLL1kmn0k2GEwPCn4Gay4+xEKK8fJgLlEMITqvbgkaIUIxXEXwLtTyCMNdUAPZDQlJ8AcsmUl+IW201iy/GgIuQtzW0JJFEPSPAUQCMPd/It7KN8EDJLSSNAEMgyg9mK6IAOKCUEfi54gDmwIC7zdQkAkybaIQCGELpUuEExT2lowkQZ7BAQLDgnAfbmZ6GDs6OT6uHfmoG5hBX4PpAQuntTWb1SilK0WYhQYOFbrcGB23XmBFc7A1PE5QsBQaTjh9+Ve7QrOnrmk34gOfjYKfRDeujdLXhdvZap0Y4nlvdWmnUppVyvddSYV7IF1evX7ucyxRJFhP17wofNlQ5TWvSb3dae4cvS8enPbVNmMiFCUSmgUoVZiiFN9Ka1jkczw2V8Z3RThuliVaBuMjd6y8tF1NxCiOmnWq7cnIKC2M6XUTmkrQg6kLgG1SJ3raQKMuFLHE6XTVUHQw3UzSydHV7Y/NyLr8CNg7fCwEcT5A9DffUqR2p0kGkLRdXoRfEx89nslIwAHWAxF+Iw/vIVBmqqffJojspl54HAPvplNQQIpMoeR+s6JhkCHXL+BbQN1G+T/ANgk9SvCw0wsrYZQh8wJx2YZcDUBPXBVwcZxR0b7fT8Yfo4on5j6zBNO/3xbeskpghFclWQH43NtaoiSVOG46AYzl6uadSH+0WxlbiDiNmNHPFkEa35XqrQmodMLo2BETYiGnOgiNOEUXX0Kjc8yeCtOTD3+5VdKs5PtHr/Zwvn5n74j7PeN5ttwAe4QEvrSUoH9RNpw5Qs290Ts/HvZjRC4za2XHDIFA9ttxRQEg+BUvGH6Xk0N1td+aOYYZ66Fy819Lo010IcXMdak8fM8709G31mOy+adRlekIxZ3prGQgBOdPV1eJocka9ULmDyWsdlyzFYf3io/sQF1keM7fupelsROk5p12PawyZvqp2Xjw6o/Bje2UnMqLpYPfNN1au3wxYo8q4p/smEY3B6Le7I2NrA5bDcHA2bZ1bjbPx4e7w4GmHVg5e7+C0vNdolEjk+kOYVcM6dET1FjkSQnQgS4nsEAxnnZJ1p0qD1tyEbIl0hJIwOY8RvNgDShLUse/g8LRRUek/AxcT8CpAbSG3H1yV2w1/IqRsxECcZttkGrhZfcCuNRNeIICWVOzhKBLwoGVtFKh/1EvU1Y0Bakzp7ITYhLWtdG6pLYIVlNBOqXyXKnrI2nAqMSGRixIxAOKIKuCB4LfFCBKFB1gSEfO2QCcjR36JOhJkksglkJXIRvkJUkdEv/yO9zjDyCOQSrHwzDfrW71QzEfUbB4YwYoVVlzl3RP086zrivvp1AyDd7DUVcdi+YziBU9qI0kKkvSkI2JFM8ErW8lm3zo5OMzH0nQVgtdWo9gdoB2oBuAKlk2L76dbb4S0VXfSA/rgpqyAkCbpASQBi5SHrQkQlkhLMMwkmuCgo4sKhjFp6ike45guLuHi6kpmSjVNT9cpoMMZD7tp9ILpRfoLtdAs8RM0j0mLedOMQWymREicCjs8MHnPtHxS11wtb9q9ur1Gaf/acrF8UmIRZVcS9UqV4zmWXEQwk9GMK+OKJRR30qHWJ7qlOtumEHaSAoVAhXaShH6Eh9y2Csn34uNLFBTfRSJxDD3DzUjbAX8R/LgCXCEfIGb4XHS1aAG5dkGZUWElMMoQkoWCTuFnIBEhd5KcFnQy4IEdKgUnpFYHTAucX4EV45MypamuOu/rFLE3ulqt0yE8R8kShHGl8xrcI2RKCRpwHrSApiOAMZppY61V6oOLCHlizCzN6vqUUX3sPTymAkbL5XKgs72JCdAGsJ7UqtLA9dn+KZxjWmO4TiXdVAMd+fD+w4nlf/Pdt69euVnIZUnnSLWLw1ouFlY9RbKhpH3AFleulXE+ms0m/AD9Ub3eqZfrNUxd7BqoVU2zJTYuyRuumj4lhFwCuUCClUgL2QQkhavuubZitqptn1/55re+zaKwjP721S3y4KVybaDpzXaLnCjsi71m99mDvXQ6e+fOrVwmdf3mNSCluC+UOaGbMckJPEKcG7gOSQm11QMsrlA8RHkYWQrMA5aQ9F4LBfDXyA9z+yKwTCAhhhJq4w7NZz1KsLmBsXic60IVQWVH1+oEXNxJZ3GpSOaWaAnKQwpBcLMgIgQEEQhgWKMSiHsQDXP5HEDh3H5Kdgadbq10dkivrdHcKjVqBCihJWM20Q58RPO3cqmYR814h021WSuBHZKukmMhgwrFgJoGB70JUZ+ZFBVB9J8LzC3EiIcQ5oC4zrDd1QhLErPgphAbA2pCmwknEUiHcBrH2b8Xq4JSc+xSwk4m3athP9DNual6BirzDV0+gA04DhrfcM/6UkAgFWYTSsGDwDqIiQN4h1CQZFKt1UcmxgggAlx2zmjzi4VKyWqczKw/PMo4IBadBOAoJPFMJ6/K3mCvZzWhbIqnC+X980jet57MRjKewaThU4aFZS/9CmkAFYaTRh1Um8OzU7PddYKh3D8+6x7UN7eV125lR8Zxp9ZwuyLtnrumwWpqzSJTskBTK7pbcp6UXCdV//nJRBQ3OnraIs4J4EXIpyZQv5GTxwQHahVEZWPCc3vBItJckTsOXouyLAn8Br1zPCBthHNITNgVCWpNuv6OvIT404kod7avTyxMFlnt8YQvvxSBIqFV7cf9SbB4IDL68xHcXZh3SAw8X4ir4X4nIQAdtBLzzij57/SUfGqou8tVs9cmX+4a9+gFyfzxgKBhEtoBEc5OxIUISKn85h5K/hYZYksRCQLxrcRjbflpx1GweyQCjfTnSbxNufO28S8AFF4TGrLtHWFGJKQ6HV25tkP4PuShcWHv5cFBTKXZMRnJQJJaG6tfqrVxW9sN4h8jD054Rkho0Ra7eweRhHd7Z/nme+vVVku1tLbeKlxJ5QoRWqr1TxvEnnHSZUUAdbdGPVc/V4zTuRJoVZhs38Q5mYGmwrFl9eGOSJdUbGSiBIhDEmleLwB2H+12cQV4C04FxdHuNIHLwOvsVtyJSF4J5/R2b25pxGKwoNVWjUKCRCQOwh3aNpK9yDgulnIFAc5NZ2Ew84nVicuon3Qcngp0aMv5uMBMnErEndZbdYiyXPGp6QSY5U4oydk4cvSsU39JcZ5w6LJcCHz7ZTyBpTCJkNZSUYz2kqghKlp0AMuSQRbhfjH0DL7cJLllfET0R35vawJODighuhs1QLQRLS7POKAkDymhJesHiIeyIC9IMAerksIgeh4TrhUHg9gBPf5MktROlBJ4ZHaFRoXrkFopVTXpATwCk0ErNIQrVjeJE2LnMjNoIQR3OvmGkYMWElEvdcwVbUBo0x/G1XU1G9NuddpvdcgoK6EwIAp/JP32N69dvbZZOnoIVV+rNFnK79D9TsdC88OWEwaCTpyBoAsUnQTTmZdkJsLx0Pr2FqUh1F2CLD85OX++++Lk5AQgjGuqk62FJxFiu1QyQecgag0RNKDs0WpM2gkYCvGQqGLFLRhuX7qRzSXnIwsQt9rtx2OdYjpJGOqsdNzvtnJRK5u8BMf/8vpSPkH3rli9RvSMOwMtkburG3DBYloUlnKwAsqyGI9dAxc+PqYTWFgxbL1UDE7g5cZMUeIKJ0CYHj0OqQaeF8JPKtmRIni1wqZHcFWQPMvLSwQM0P0oFYn+EeUi9IM2lPVFBQB6Hz8PsQns0+vMpibzomEU683T58/o4NATzBQqpqNadlk4oepICBgXMWZXt9UXYmqgZ+j6OWjUQb1uBpRIbp6L5Ndo8FDIhJ1uhJVkICRs7RxRCzV0qLpZPzp+1qk0uNVg1UYDYRX1o9UVTyQ2j2WD0SxpByqjx26yWd4JZaCNU3hUySh4HUPYTkIAUq3BjDZhkDlTNUW+BhwLXPVcC7KQsYBFwUHj3omjul+TSLJENKJOfxioKE0iw0GIHCg1mxmg8+kt2R816u3ppBz0O5JpMuxhmlMT6rSovXCqGzuRK5vknCNuinW9Q4+3Ew4YuP/mIEAP3W6HvtwkVMP9nvPsoKKedPzOzLOnhyqMzRNIPsLdloNC2hSaKuzZOxs93h2ftdK9VhRKTZQ0FHIaFbNOKuT9GKHEYMFMsfCgQYKrxYB1f4ZgGKO3MAKmFF1SahckC8x8AHfngrbN7/L3iLeaUi4UiQm7UYAmYuEYPKuk7nsaBf1MnZkzbFFOGYm7+214BoXiBYLnFHnCRBRpjojrayY4ARERVIEAFHB5qC2BE0ka2Thh/AKHDcQGnDPBApHQACRtS50/C9ltS3EbSo7oWERy7PDiQsDYSkIEuy3lxR2Q+SlmKJuK2S/erdibIoQIwYqRCtEeNLFkdB3hACE7FUuM9JR7EsLa0FQXjWUGLVPXW+m4o9bQc8lCYTlaaZTdRJZJ/sG70jRiQUXXjUrpJF0KViotx5iMF90TqFVxeuN0RPRanakTtEWf1BckKIbpGxRolDAHU0qGXRBBE+fQDdHAhKUoiDmgN/wXjAbwc1l+pNf8PhcJLlYPwU9IPyslGDAapM6X1nP4RtBDxiJBo9mgHxa5L37baFcobFOCCVQOK1M40OdQgfpZV3hRqBbicV4ntYgKaDZ6ZvaHrQQ1zcloNiGd4SOlYLfTAr1arzUjmZBC03ujPvNCBkvnBWwmAoUiehkXIsZk9LlYX8hrwH7LmLOGxXvBhyEKxIMxt/U144/LxTNKmhuBlOBmXCh3uZvCRWRSD0ksmAACSUKSmhgoXteUY1HzSawZWcOWDALJEbcDZJMII+4ovjkpY0807I+lFGCEnW4LrHJj1iEQQ9taIissZRw5ST2EfJSzshLQ4MHsvFkGCoVGZS0C9keqYltSD+/yRyNk4Q7PGhOAOdgLTngFepT9gnign/CL54/uffg5gZTbr339gw++Bnc33f4Ex0k5BdG8OSiLOYkxqocofUHuSAGROLFT0g/pVHwlt3lt+2alVuv38PF1CH4oTkhlIB8PURiM4KNpLuzWzH+I8unUQbAD4Kkn6wRH1KqemFoNU+282qFinf4F+tZadikNxQXEKwbTFwMPUvJWx8l1xgkHEbMkW0BA3UO1AUEWpDz827k82cU5QpNyZdg/qFqi8oq7AzMmYndIeyAaVoSl8gquD+DzUKbCEkkAh7UuxVZMIRHWNIEGC4ugF0uNEC+WF+yB3DbiQtx7HHa0AqtN7q7g+TFApPCLGn+tp7H450OaLaxMnTQTHfjc+CLIWmoRARl4YkRwPIEBRO5urPsgPQwidLCLOKDk8scSS6vLyVjONQsVMgWAG0QFbRgSxRakVafxXOLo5OBH2n+sH36O3AXkB26MyRP1e6NBRzHt3ViBT9tb71nER3ttDK8IcNZBizoJYqg2YmE8801Am1IiTiZTChyRF3LdZLgwSODlEC1INQIFOvglOjQKwZCLrEijRhwPdLMWimYSa1n4fzW1Aivy3OdYXsuL65IMwh7gGHqOMM7HGHSe9fWskp/lcmo4Dn43CJmdNXbrxhwX0eiz8MOqStd1fAsPKZc5OdpYqtpEmOhUd44GoV4P4htvLBWhNQFJ84Pm4KyEypmClSBRDl6S4LAIUqJt3GC0N9aEyGcSdsx9io3D6UIEi7vf0VisoC0groJ/xe2xElny7lKS6jKmbl8UCAiJUhlnqZ8j84cUoeIDjmbWsjtXVHJLXoojE0HPrA8XL8YLTjdrFhtClj6k0kIKJBQs6BhC0JTlQ6GGkR2AyRbB4aCEDIUKBk9qujlXggdATDD7L6L8tgRZWIzijiLqJXyDnS8T7ELwM+HtdS5Cxo45SGc83ogGEPHE3tAPtgZAA/rwdSbU6XgiEffXv/Ee1vKTjz6GEmUbOB1XYY5bbbC041DK0xEaKYc60jYInO/s0HPJ6tTUhlY97tNTyerOuidUBh0lYumAios70x51yFygfeOxBAqTEBsFYs6QJ7Icj2WiJrcy4NDostVokBMH4xHwhqbahIAyowp2AqwFBEX6SBOcIE6IMSCLj1HpgteIqDGW19C5tJy/cmOdBfnhDx6RAZvNKdLzDMYELDyAIQiTYzsjnIVmmVizsKy48fSIxkuwbDCe9UgUufHwXOFAeiveNcbRVEDv12NTMBmkXWZgn+gN2GxpUxB7OMgNMEtA/aQ3CwIcLCZrg5AIw08hP76LHXOTcjwp62KwZeRFyjPlRNXyIbdBnmwvQWCuQsWFOEE/yJZg60WMyCzlGdIdEkdgLPEcuaOoMfHkQN4ynVC9oSntfig4RKbwIykKkgDSHPIyWIOIIWAlUMXsmpCT9BBkheUcMgP6gAGfqdfqyGrsGKjCWQnIfcQjK2XkmHjDIBYchJ8GMJtZlEzP3NYoGQ4nVuKtRoVIAEG4n//sQ9KY5CNShe233v3at77za0QZUoUsSAI6NFAyz2xlFjJGI68JZwwMiOhcmABIBUN0SuiTrEk2FkAXmGlzNAYlyf3BV4ASZhJTYJvA8RZLoa93291Wo1UjdgQDJW4AIHe7zBntR4DU2VOH+CXtSBc1DNcQQT8WK6u93+t6XQPPWo4h5kZSxIsJwcCTAIith4cWxQoR1DbLSux0cn5Yb356dHAHGFugm2hsm8gUTcg6xxTkJkktO9VtRIgAJgmLAJMIRw4pjxdHXFwQXMLUJ3VY+HxsL7/BMiS85fFwOeBB+TlqXbZkGpqUmIeTsWXXVqBajzumvj5gzVEbb0DIfWhg4gklY4X8yiUipZAxgFSj4hAerUAECRoPoTgCMcKegL6wbTXNgN4VJjmwKky8KCmSsGd7tTccBLuJ561uudrRKXpHmaciynIhjj5pVgfHR8bZi7Gp06kmAMRx0EOJUdgn9HyISer6QFQxbpJaZFrbtcQI/8VcI3wn2oyJy2BR3CAePGbGBEgR3XOjQSO2ms0GErAzk+qjbga6KnOuTbwWpcAjd38pXXhjee3w+Bg//p2rkIU6TioH7cZkHolOp+EOBC0NR7uDkRxHtHabtUZHj0F6CVGcpU/gdZh7G51Z46Q/GNIH29pcSa0u5TxZX61qnTThzgKGjRxgFkoBJRlRwZsjscHYcRe5Is6aO0u3BN80nnSF4y69SykjFfMuCwffMUkVlFQ2BiyV2C4JdBom0UMtnyZPPDG6Yyf+ENAgjAFYkBV3OhdW2/W1Zdel6+kBiIWGRikfGoNsPUEjsnPgYQFawq7PL8SAwLAFFY/jwWjC9ERuVOwMMCAiGQgjM5LYDgy91EWJNbmI3izEB9fO2hJhjjxg7SNc2B4PhAtjU/5ieNhWPj8T2cOtFE2CUrYhQwK8ZCu5n9Tx47aJHvBAGdbtaEF6GGmOuTI5rx4BeGKljLtm8Vp448blvmnsvjwMOCfQcH79779Nb4Rhf1Yt9WkTY85GJIQG9Equzrzq2KOj/qfSDtPBtBgDbMYURyhN8Z/cTmpKYnC1eF00oxizBIzJENlPla3fy1Aw4i6FWTqPJSLtAQR0E5IyQ5D00A4FYdinv0wUfD0aDH+iT9LL6E7IoU1ajUbXPQ6EfdBnh5isdpElRZWWn4ArN5zBQR+j7f1oAqFmZNj83IT+EIo6ePx3Nq5/9vlTbTih8OCk9DxCQTqOH/z2gJNmjvJ5P5OL0hll6nSjWSjwIr9DmAIqOe4DFi7GHUMMhTFCWGqALXKJEpnh0AgJWSO8Zgoi3OUjub/Yj3Jf5YZJeIcIIsFk7hC3m/tDrRk3GbwsNwvZRinjovAEOk3uGNhYDoK4ln5AdLBnplMqRi3XnLGAvVZi2UQcxXVAvtIpfgL2wxOHCigw19qAiz3ZeAwEU79HLoAOKVRHORNZGrlSK9SduUe0fjENHFJvOKBQ0AkShvEHHukNQNOn0xw9IjZcbGUFoLjrxfPPi4UNE1Snrp2flDNxgjjFaqOhtoyNlSVCqtSPk6o0LOmcTucioKvgJDQi1xJmpV4ejmSEKW7bjJAHkgSIPUDCWrVG1+J2t03NmkUxuob09Cwli2urOaQTrQ2pvc+kl7GT8JcYZFYWuQsgZjduQ1DBLUFX4RsxsoTjwdXCt+zMZIpIdDgbuL/SvQBaLmHUCWLZUh/LttwOkfgoduA/xF1sqnRZLQT0bMnOaLlgAXdjafIL7iSrVhbrjGQ2gt42y6Q+jEgRvhvLV5o9oQ4JCcqeeY2GAfjAgAd9USKd2fwStR70hOluXO10m9UyDSXKvX6do4On37h056233h8L30sHJcq1gquOJdNEekl2QckKUTwQe7hacV8BQ7NYJIygmr0m8YrZ1bWb1zaK/ebm3Qefffr4ea1mBlDuo8DpwcwYU+NhtCtElIZwpM0DxBpxMrFQhRkUHBQTFUoiHAfRiUzJhaC3jRpuHDaOZBiZvbZdyQSDSgM9gUiTbBip6ky8ek66rTIwwcLoYEGqjZ42VJUULhMzu00BxztXr60HIk+fHJVbo7wzMxllkRI1Ldhoj7s9oGB9+vHS4KeHnXkCpWeQhlxAuFstfdyfUe7mQZwQrUCMh9C+bqIr581KtzMMThK0/eH2ErdkOhF3BqXDXWX52/dWViH6Q9I9IUkHFooEeCbtRo9oGGBs7n48S8UFQGj4r5w6xDcATVrdSATDLKwNyMAhy+eeBPJdKxZCqwlPsZA+2hsI2g0G2d6s2ZhrtAxxudCJQpEDmzkALES91FUjMWT1isnC9GTdM1nQU8weEeXYTpL85OZyWQwu0RkxMNiHPHFP7C2lOpWxRg/IExfDRORLO6LDhsRluGEL2SNiiDnPbSS0Yn+HcSIuAT9jI0qFsrnUxtqqB9D2Jx+9IHvt2HIr2aSD2tlRf9yD25cCASvocBYh0nlw3Ktajpjj5z/4jOYYLvIe+IE+R24t9e7764bW/vgnJ+VyE7MBRqxQECsjQK9mFk6vLsvNPYm4rZlZ00y1l9nMx30p7hwaGWJlqwvWR0dAskai0Qjlzue1Y3VG2+gwlUTG3KSp8Zw+bnOUqCso9p8Ub54enrhC7RRYJcpnGWWYY1AlMqoAXsRYEwkpzbphSMKuI5XvclBR5ReyPCAco7bhMcTUd8BiFFdPjtsUVcNWRmiLDs/Uj8LBnC8ApnPogsQXYmaiLs6AcOxBIiNRO7wJkEscT0KpsMJSLAhrD/rJvrWLeybLVu6O6Gxx6qTOAZGCgLDvItEc7p6tpUUPiIIg4sK3LDO0OkqU0AmES8w/Ig8aphEEobShHk89lpvmYUR30UTU/mD84ZQQCwK2TEQPyAf4cagkEbIS7YY40sWyHxEvgydjTPxq4qr3J32DQjlnMkUkZKrh/iekqRYQfCgpsD8Iijjh6ZJLmkXTsUgq4Bl5SFj63NDPwWbTr5YeWJEi3JcvnpXonIxIdF3dbNTPK9VGREnvHQ/6T60lYhWJEPTkEIIzhI4gGTMs4DE8Zd4QXDkQ9E+IfSIvCftQYo/3Tu8i6aLpdtK8ltp0ZC2RMBL5+Rz9Z9FfEpcgawcChyAMpDikr6aEDONhnHvkOyNItIU5hyxid6woMMmwP5FfIp3LrZQAjR+on6w+GrxwOyQ67/eLLJcFyVIRRB1eBedmyz7EoohGxhZooHgJCHNwnULxjr83g0WZm0jIjuXLfljNss7snD4mnCw85D6tTJinyGjsMz6QnrvgviQpkMimp9MrwIPoVnh2fthsn3f7XXBG5lixhsTkYqGxX++pXk84t7RWAMxoqLhGXDRTCXih3G8YdFjj3FcWA832Bn1WeTzkTiSVhisVjCbd1Kk7MPIcOnOHUldI6Q24ODFQkf9QLpBqBOkspZkyf+0ZTAJT+AvFLeJjsE92Gs2WNURtRZhSMWa7tvKKa2RERBZR1OakR8Zor+MtqZQUMpulMt4xXL2SKaxE3d4RltbMjQVAyRXFsy51NGq9bA8NvMU0yZ12HTYyZOhYRw7SbKoHozAE5bMaGswaq7W+bxQASy+V0j5qeKAsgS7N8eSgUqu3FF+ikAxbxGYhZyeWQBGNCFAUGNR/rDhUs9jYSFokGLF2mN2W11PMHsoWZzq1qZ5sLh5O0PNAq55qQlHmCmK55nOBq5ejuKmViuZhXBPhcC4AfCG/FgxTx+ChkDLYqGpVXFUCTrREgxhevA+WtKx5FCRzEcGPMpX1LuIc7gZGeSG6EdG4k4wicpyXGB7EDxlLke0yzPINv7HFCoqCeyVBIWYcD/tnEgayt2SfbMUkky/tX7Iz+Q7HjroiageFaEHuGvYmZLeKcue1m1uXtzzNhgYKw4Vbnots3NhASj767J4zGgNb1e6rz/bPhg+OzM7MmYwSEqQ7gdkbJgDs5qLlZmXmHxggx2YaxjhONZSScIDQ5wjuDQLwHI+ZyTqPhUI40yMCQ7SuCRjwjqJiREiPyYSYkyDLYhoJgF2JkaRpHNccpsO/nC5kEggFMq1xL6Q7EJEaqHJZ2AxnZ5oZBvOBvNdnAYmgSkNm8ZSw70TShvjRXgx2S8qxhGsFnCVwDuHaJMfjhM4HcTsBORQcd0cv7x7OdCLkY3/YGcE0o3sz8WtrQuE1XlEE1kjTbJTKg9YIW5l5F6IJvCCscPGR0hLIZ4CBBaMSuE0E2aRyF5tc7EVGHBvXjt/Yd5GVwi1d3CWiBPYtlLsod1nuFnah+HNsIP0nJ3Mi47Sgo/0LIeZ+t8pXhK3FWp37wLKBKQG24iYrOhgxj7BrIDMjHgTxLyIUo5uQOkh21ehg8IIvBw2FAqud951wUDn88Tg+mYOaMewhwjFgjThXav0odRzpLDohXgR1CQFzNEJBE8uH/o+dgYEtymuoS4d3Xosfl57du/fY1J3tvvH4ycNo2Ld5aR3b6sWjB6Fo9OZr384uZbEJAHGBI0PHmf5xMqlwsZwu5ggxKzQo14/ARdyQT6GRdraQJO5B1R5OEUE8xC9jJNfso7oZEYXhLjYoFicOtRgzol+FC5OQvVjlNsmSWPFCt8idJggJI7tBixvR2dLXidYQkAWBzRYjhKZe6GmCePwEUx62HG4u7pTsnLuGm+edkgRgRcuZSL8Y0SJwQNlKBUIADkGmlFYvVISD0ZUMHqudsefXBJCwVEm+Iw/EJSFkh70Npwj5ASLE4Mb9IY87mky4iLxubK/To4TgF91Pye1DeR9PJAMUAOOLMmUd2nyG54kjSBkBLpOf6UJ9M5lNigwIJrQqVa3flPqhar18dqr1z6F6Pqg0K9UWJNzDAbxmuJVezsBF82mBMEAIStwONigYIyBLDo9ww4i0UteOXgDjSN5HOgwgLjlvlB+r2R5vkUeYuXbEQgQQg8g/e97S04rSMjB3qCdK4v3S/9ajWPR3h6PY4xqEwmOCua5Rz9Im0eBWt2HtPoLdVc0lYgA2wDx7fLGuzhDRqwb7ZxyKR0niMnq+OWU8EYngAB1kkaP3iCVYpGERLDSZz9A4DrpqcmksRU6NZYLwY+gIdPCCdYUlALhfCLMFtm1FYn5pEaGRuuIGUvpNAV+I8BGA3dk4gOM44m77PemV8PqVGEHYaCXk6pH+J5TpH7gjdAo810ajUqfXmagdN0gasl+IAyw30TUIcW4zK5ZjMx+oySIiuBDtTGXRTMgK1j3SQVQnU51FAfcYvwAEIuKdgZV/ogtEOrAj+dLWBbyWh4gNDikLyX6PjcJBL76Qr9Eii1+IX8uCkxQWvGIeT76Yv3375urSMuSmHqtHGla5fGMTfKa3p0WTEYdqFbKFktod6Y56D9ITzZei0ieo0DgpOKucVUmh9k3VlwGdOLq3+3xpORZemivZQNIbrJ70qU5yqFNgZTTSgf0aUkmycXY3AGU+8logwvGLdBriIpFDzG0kJp0KuU0uum/hVyhe6TTrISGCZ2p26s1kAki7myIgjBF3NAD10Gw4U+uOVkCf9C2aKTCepFfA6DDWxHGx//gMI4yJy8p0uqxwKAolAsY/s5aBgN4LaUeFLhEPlEdwSuMOco7WHMk/huUMB2muHem0nPKv+jZ2MhtLsfPj7snTnkO3FPKmDDMpZpxGHzTIVPSJ1OFAOA7SJQborlRuQHcF0whWB3IPjSA3kFXCQwS93B1R8KKj7XsrwTkekl5iQjA9OAL17LjrQ1pEg7kDQ8XFgSZEDrKvKQIbZKjgxBGLYByFclISWwtLjDs/pYuGG3QNpilcnkyrkC+hdnoTmo9N5ykqzak2ID0e981iDg/57cA8lQpinMxrMF84+51+KOyiKCkwE1lvzJ2q3UyFErKpLwaS7uT8HL6IQnHlxe6h2Z8DwbeGKjUGI0c3nihyMm/euklHemQ1LaZJrOGVM5kFIhQCeoTgJsyFyIVbH8sVQk3MZ9Ldtgb0YZ7EWS1Ab6gbxp4nZQEbAlhevucG4twQoeCGY4czmLgNkiFEeBOgIaiJHUKmBENLbjWWgQTlxRHEv5PVwriLCcvikPC9vSpwh6En4QQkmQM35ExUJHwMPLgd3CYRgGgM/kiIVUS52KB2uRgxdL6xppK3wYMhimLvB3QW5y56hCOKIoYYTpYmmTfZG0sWmYDDJ7AEjMGRoDEFYQ/XZTjJtDjcPyHVCRqDvvN0zXn2eLffq04s6X66d3AWKyRzhayG70y2k+4IGhGzlq624VkiYnZ0Xq3S7LxNHwXAjbIipCIZk4waJNrwihoDq0HinGuhI7yIp5FMUWFoYVUwb+l2lMqAkQ6YKs1MIOi0U5MMnJh2nCcPeZIJK4mHC8GGlMGxYLrSPg/D14AIcDiOZ/y5NZ8SnC7nQ/FUmGul7PZ4v1c685pGgpZ9x7uYeb5Bnyljgv7EOnS7zJ3rGxMHlni3sJzvwao58fZLkIo4wBTZR8YC8FBdhJvGsHGXpYQSI49ogwPiROQdNL/4kdxTgpiin7ACkZWUWBKbkZEmajCcHp40upRLQHvIaptB8q+POmTATHogAUD0RpygetYuO8KZwawPbsRPr9shPWXpDzqhO4Jh9C1clRm9x4doJWa3mGGSKJcDykxm+siSR0pz4xk8ZqGYByLNMeRFIjDqLFWcAOIETG6+Y+baf2wpIR/xW5k5PNgTv5Wnxbbs274T3AXZJ3MKQchmMkL8iC0xkrgOZAK4HtqdoVGzSdqfZ1eWi8zIzz9/cH5WImIT4jfDLjnpWf24d/ii/P+t6r6+20zzPLEDJEEwgAQzlVWq1Hk6zU5P8HrsDRfec/z/+sp7sfY5u+vt6elQXUklqSRSjACRA8Hgz/eBun3MKpHAixfP+4RfjgspPXqlnpPRPjr8+FpVhOHp/f2VeI/j96eRzm4XxGU++Egh7o3X79o3w5Uf/vBR0bXr3eXJ6EqbBvF3s3oqbyp4QI0HYPcMl1gvJ1+EqoWVGSM7CUPrt8UV1bCux4Pjk+NHe3sNYQmN0erd8rB7P+zdyjG7Q9c4+u6W9vgPZRP1TWF4+W1reqLfwrVQOXSdPcc6xc6o7a1ehgATMpZ9YfAhQKrXkChNwXCrDUfUkKzHhprMs+pM/ycZ/Mx22gYKCJboy8qgZ6zkl6uKcLj19en2ZpJ2VtZX7qf3eoYkVW1zBafUvWgwHULRre0tUTRH3x3z9/eu+jbaZqJ5RiY7Q5vCAeaqXs7X4biEvgQA7MlfTxkkFqMVGQH1wv/TrC7W/zv1xzkTlAZDmfqCxodjlhNxA3bSBHh6YduUO1Cz3/g277gNISzGQfvUYpbU073URlGgERu3trTKm0xvZfDqmRDppFaF5Ld3vTa3VeyQNzdL0sCWtrRTEEN3rdmKejlNe0t81iZhJdXVL89HKkVfnl0x3Gzs7a1tCSZT2r0/Wxh//KMXTz/Zf3/67u56qdXqkdx3lc7Z36nqM0wUF+GK8wvMUwAMVi4TzrIHkaURQqJ6dFJopnyl6pVBK6S0ADfjjGhLhlSdTNA34X3IurzgsFyhYiJ5QHzkHScQgwsR4EYxr2IQUF0Dw0gtNkcASbEEnMJoCDo8RQH5I6BNkNXBsNM4o2CrA4/AC5Kpg1HdqEpx/LBDx9xvYhzKwXSIFFdQCn9COQvyEWHY/54RMdBcYXv8fyCpAhpBLw2dl5CoYHbcY878qnN2qsDx1evO0T72oTLa16/OLOr3O/J7W998+aqxWfs3v/6Ujq4xrxjg7rCn1A8oXdf65rpy3pOLNRSOuRjYD+/KvKwlPBUvzMaCM/FgtNj6ut7yFAOK+nRjr4FdXF5e1jfv+UJZWIaioSS7VUYCVOxStqWw0FAib51RoXC2G+/EU2wnTmsfWGY2qDi165/8dPmnP3+I/6CG7X79oj0+f82M1WudL+5IcAevQsb07bnqM++pItrpnC3VJs+3ak8+/fjsox0W19/+9vXtrNoXII/j8zobCTpC5vTk8X/8cKHXsqrEnUVdLPgEW2IFysFhbElGur3WDg2hpDTBAqmUwo0IFQgFY5IEVQTT8Yq/gv6M+ssrs93t+0ePFW6dqilNdJauRY4RlAwitHuYRIqNCM7uQEGzpTEsgINQ5jnZnhNou5/LOQVb40/YQF7MKUAINmth4Cdg6bsAxyV2kXJlTu7LN3LZ7b5K1i3M4cP78riM6jO//MkLx2KfCDzERD0kJEJrhioY4ezs7Is//VlBDLIT1U9P1bu3R6eJTxqItUD+6pP2RBTK9vrm49WNVxfvhU9QPI/evrmvNqaX4/PxYOvxlopqw9PRzu2Dyz+2b7dHqjs+/fUn+59vjC8VKat2dfJsST0B3mgcBikCTiidgjkpweYMwZONaDR046mBA7JM57w/ObklWq1XGv03ihKqi8CotKpuP3wXH9LPOYrFqgvA6/EIjSZi38nbqTJ+JyiTWFARkYmZ8tUBOB0eeMn0nFSXD7wgCgralCpFqylOSicAI8XqYut8id6mM0pINuNxio3dLFxet/7QG+3D9trGWiPpWcMbTVoFnXCwKuWxvnm4c9jg3RfLbkPvRohFKmwiR7V0OycGOtMIfeXUnVyOvZyUg8pPDitXcqrz99ASscgwmtMwJw6lRkeCZCfhDdhMTLaJK3IptmWJ4rqxtdmrykqL1xpupzqz8pery+JDLi+6otZhThLWY6DUY++eCsEsLphKksvd0XgXgOjgN62cXit1vnjPVMCIJBN8+/bw2U69uay37FApT41RY2PXjUsNFHaDCoV9PB6yGqxtLuzs1WtbO/fDq+n9eJeY8WDvv/8/vxOEubf9hHZ8+HB/9/DRbgpkCncjsA6vNFG4Xdh//JjIg1DEXBtrC0BBCKPFJAt+kiIlukOTy1Wac1Hq+NySgvj7OGbWNFVLh3OSOGIcb3wSJ21wKLmRCr1mn3NrTiHKIbas8Aa7vzRVJoJ0s9HgPghjFsVWC/U8h+M/ijNykt+YRVLZJVenUZehXPMMWXkFwhF5q/C4hGxlWmU2S85U/1Ok3TfsFFmbxjNJuKfUZE4EzIAILhRbRUJ5fu1e77Lz7g/f/v73X/x3rLjZWJ8MZzrRU3CZsjSxI02oh3Q1njX/fLm9t6LN0bvzREoJYdx6tCcAmwFwBVxXN1YWt8WUdi6H5+8v7KTl4Yx+Jx7G9iDOKtscNuMzq8f5OJhcHzzdU/379PTE8uXtyaPGrHm8gBuSl4oH2FGh74FnVh7klzVQFScxEXQD3GVheVr1+Jutg4Vnz1c//vjR4TbuXv/+7fiLP7SG143JgKy5ylaHZSu9xJR2t6ICQRrhcvMN+ldaGj58sDY9u2p+sjfbePjuvHP1ujfuVGcDQTXJrY01X1mNUdx7sXWakni/mup45F0oy8gjukWgA1psmrYc/UELVWnQhGvZ2jknidm6pkrW1W4E0jD+CCNJ41g590urelELhWBh2txqSAUVVto6Qp7qyh8piAmuonwiF1Towv+MX5hOaHiR3J1/bgtxDoIHGOGmewqRLxewgSB+KH2ml3/l7tyab1tOGWMOytnt3OB3PvM6X8jr8rWM6GW0iDKel0b2wICt/KaNvUPFrOqS2JF+5tDkYEyiyeGmfM06X9dEFGgMyni1WuVMZXHRgmxRh4wvvvlOreqlh2JLBNOpT7Kwutu4vVhSTWnjoSybycXryU3rurNdOXix+t3vW5SwrZXNjZWlqdgvzQzEO2oCwlei9Hpqz8vAS2EwpkXzI9RYDXNjR6ScmHQWJXVtBfJw0MSrea37n3r64AztRhykPrLiKoKvRB8nrr3W2W0ZJFisk9CGoBpTgAIJpOfYHST4FJGLyZQoAfcn7Ak8OunxJN0/iUIRW8pOewTkt8MgHe8QZ2CK6ukK0e9O77d3tsxCDBfSG8sDDSLRPUyF6i0POm1VWOQmDxVKAp+0kFWtLFdqQwcBXGKoyHlELZuf3fzUvXU1H5QT9LzYfsgS4rQ4qJmDCPFE5MU7PSXUhdKHTN/YtQ0h6Y1GbUs7jP3GeMB5ejvslQYf6Zmj6p6Cx/Q+oVPIHUWYuYjUGSdJrI+l711adwh4F9O4tNA/FTxU2TxA0CTjMKtN2Ah2DpuLu5ONreIbH6303qnqyotF6JnWb9Z0x7jlzE00A4P40t7OGmfypEYPM/dqY3Or1Wr9y79+82DnMw3/NvcScSlVfjC7H+gI0L+SGsyO11jfXt3Zd15sM5RoeMCUH+fJQm3QExowgtjrm00bLqZYxKq5z/o8+LJ7IAcJJ93aBHFKi/UAWxmBHcrj+3HOE/RVGTLJqA6538dwjnqHnNWoHUx9MDKHTkUDA/5iJgEkO2WIHJnTKUdTvs1O4EFpufmhiXqkNuyEHwOVATuFeRBRcTF0Sk1klytOzTCsQVr/QYfldQE8KBA9DMW8wosckLSo8ah3dnny/vT9yenrL7/+8vt3r5LFhtlOhcNVdbs9UH9H7wwmpE3ZJ9Xd/crhQSk/cDe8OO7yBkc6vo8Ziv6jADFKvVxdVTP8AnoI5uIBQ6qRSGFsK4vN3dXDnfqjj9b0GuASvqTYD+/ev2qbm5hqRaU7KkmsBurGMpjIhFFJYQdjeol+uxURtuh5Uds4wxJutQQr1Kzb3B18+nnj0x89aWrfNr09v7x986pz/rZ//haPuFEXjumJ+FqXdK2nvDqNk9j67LfjQFUXKhv6xf/ht+e9SfW4T8iYtd6SXJz0plB1x4WUM6zEG1OcNJsUn5VlXuuhAjNRrOPmkZdBQoqxy1nbfqRx+U7nDzFBbA4VpVSI7hBkoOLtGOCMVN9TE2ME8uvx2xjghhSlEXwMUN+9Pn/77c2svTwb4isJHBNWBAYAmzsDU+Q0FCiwEvPinDt6aohy/uV3QXEvop18uA5kQxHCS3NLATV/AVV553eAPK8L4JZ7yp3zuzPoh3EzYh7j3vnYAXioBIa1vkLuyE+Xlxe9DnYXQuROUguE4W9IlhqOh89T4WRA0y3SLmfpZkBP66jmvLj75GHjUWW22f3815/98X+81C5xeWVz7+nO45/WWTwmvTPlxxu15uzdXecVOXuyuCG/XgYPk1PqbrChYgBEop2tVDQedbsoKXzBpcKyaE28jqD8JkQiGprqG7rpybeQjk2WEI9Z5irOIM1FEOGFsSIyC0wWzhb8Tll+sm+kq6XmUt/KG4I6WI3i/4lnQKMK/Tq5pmOhz6589qPnmh/+7v/66s9fHGkVk33DKsGWzSEzsnKahJklAEQQoWhjkgIjoi7lSA9+GaMCmB23hW6PuuhrbakllFrJ9Ioc4SrKczm+oHw4yvijiuHOiDlIx51jzzu//kr4vc8lTwVS4Zv5IV5lJuZVgIL6prbZxbmeKsM0WNxgu6twoPX0B1UpdGmZMkOlwVaJrKImyLqIAIs21OWGNQtEnBgJQmEL24hyX9VrVmmC2Dr1kFioOpcJcGuJOG/sInh9AgQuqO7J6iLtbTRJoozURu40tpvVZaw5GMM+K0scIR9pLNZD3i95EnADYvrpweHTYbf98us/0BjTMKA3UCeHDre9s95rv1dyR6TT9ta22HOTxAEB62DQYS/Z3t0ixKPkaf6Fo99XWudtD4PG6aG6KpdLIz69THlygiKhyxH0TYhZPvW3TA7Vy04Gp7KprMMJvkEcCARsyH5YjvOhMesVdhtGjEiNhjRaeAAukh/enCBrsAzPwz7c4x0ei9T4OIyEMUqrP7FAVs75WZIJGKGuOq337486nW5ze/Ph6uHa1rpoBnUA2q2LK9HHUmWHbQFUJ+cn561L9S3kDSzqzbRe541Xnl6Nu8eHsxeP10DpRXfW7oSZ42H90fXx+0HrcnKneNJgcD+CQuIUQ0+TukDP40MjIZmT8hJcMOKhxQ7U7h4+aLz4dP/pkyYn7es3J62ziXY7ePDVcIDwyZINjVXzCv+BcAHBrBRoJZ4kewEkw1ShgN3V8XB5h8Iz+sH+wsOPmg/2t7Y2ljQ8vHh7/dt/Yf9b61yQ7mtCifBCaXSMSXCfybcn/A+BMxzhjcvO6ELtNJi/v//+Xed9V7VX4QNLam+po+FIi14WcW2uci3Uyf5RlU2TqAdy4CUYmCQqYiRmrKZutlDyBO1xfqQyllIXQnLooGyYDj6p8rNbCqRpUNLYkDF0eINo4Jdso/2zyncvu2++G0/PRF8om8ZGCEGwIRgapAQlobhe2RDalYUEDoBxeR9gge9F9Ch35BcwzK9yQyECbsrP/Hd5Ob8B9S/vfPTXF/8fxfjwpSgRfsJJ8lmu5oWXyIh34FMLlii+WH95duacdiz8wcm7UpNU45laWJ4IpMjLVW2iHar67bbuk2ef9e6/ETv+5BfPLwbHGyu3Q1VE1mbNjZ3z497hwf5PfnL4x/532u2Mr26vuxS7VcZlRuFxPE/hwYKdZRhqF77T1JRZRyJF+5GNiOawmnYPAkQIU9wUTor6T6ac708CK1mD0UTNunQVky6ARKvBG6+bABkWcWRIqLgQARHaa3u0E3bP6PlyjfmylEoWzid8V0QXyABnYnBX1nRMTP+UzcPdHYVcWYKGjOw5pSK36b8oE5wUoTZAjS/wJuYGPj4+UJo7JA+NRgTsojzSmGuYH4k/o0G0g5pQP0ZschRtlRUg1mjzwEUydUcTkd5B5KD++lPgJO+wRGzPjYXz26JYh8Clw0O5JCejbfAQS8dj2u0Bsb97paY/0LO4mGjxAIL/BP8VDhF5JBUNPTBUQKygEFGCPL7iTsRVjJ00/zV15jaG2hIzDg9Vrr1ePajtPG7Iln/ztvXN4CV8S/Ox6pJ2p8xvOlaytsQotb4hqk+Hr3sZTiup6UOwZlr719//y4ZWNMtrPVXMvj6r3P8UM+10BGm0YI6T7Cmv87o7On+9tbM/mS7v7z9d/9GasI7RUPuyqFPcTDzYdze0m2t1ftBp/Y1ZQShnwte4iNc1LCbZrAkMtfngJT7h7JW12Wu2u6rOvT517BQXgmwMMyHZibAmLgvTt5PQOFm7tkK2sgOlNURFKCETBZ2cQFhLKHtMRiVtIGblXA47wB4SeIrOLNFMqKLiOBISWl1K5c4pWjntdI+UMv7iy9+dHh1/+oPn/euPd3e3AKU03Dev3spwVoRbypseA20xnj0ycmKJ1MIArztry58/3Hj6qL6/cd3cvFd34EqPoOvFwWThi5cdxlLNultteuI2218fnRW+oPYFf9tKlaamhkh3OOTOSb5P2BmGViU3PH+y/+jhgapeJ297785uJWFNOrdM3bwQIeuWxnTiP1AYYmd3IWVgH9u39I3dteZGLc2/xreVldnPfnn49Ef7jfpYpeyb+p6Ezj/9WZbnxag9G7ZB9BhKxNjFzqSaZbIojR+12MZGMY3Ml/3kswGoeqrH+SIu4ULxX+7Ye8112QvyVceYQ075dOeoEfTWjq6FTGWI9kwT0sKR0YnFlZWtOFzqVeV26A58y16TJKlH3GDIndhq67QbbKGwSSiwdTPXBj9R+UQq10ftuz/+36d8i9d95mdAoEmZUjCAJagK0YKftiNvAELEauhmLXN0dp8Fzom9P2DT3fRLd4cO//+pgPeFOBegS4hAPvb13Dx/Qp7pqq+Xx5c/bsqzym15rgm5x8PCDih78X8k6r04ftxJ6Ik4S2+LgButNhuNGctmVYZLaKYzZn3l0JFPyxi3unx7cvpH5aobH9XfHlX//O3lwUb14MHh7HTh+OtLDf5eLbV/8r88rR2ufP92sHWwtdl40L3qVtYXd3b2rvoerzLf9agVCzzmOsLz+/0yQ0ahLAbNkl0Eznb2ttZqNVo/VoeH2AHbhe4475AMwFNDyCjLkEO8CKMQ//FUkmxlrT6r306ad2sHG5Xl/uXgdEI9GMzIYCsryvdtd64ux8Ia7wb4uTBpuYHSSX73X/+4KHC6svz8463OYEkhoOu+0nWeTXMIeBF5Ev0RGxpcDgrgoMiFVdAKZOqOblkCSIJ6dFTI2lWpmKH2ktriH7DzSEV46SIDaFLh7onOfn84TXvwl7MsR1UO10Vn6d8cRDzzLycdlo2GUXzD7GXO4TOiJKOowtgKIz8wnNFCUDQ8TB0EAn/s6JylE6IgnQfzuke2AQniJtoyDMl37vXyFeRXUWTvpHfuIBo7WwqD3ysGrjyINAy5H5t7U5aX2nh3c31184Feet23aXy6s9EkfbfevRVFqVa2zSbj6V3R0efi7GJrfXlza4tt//7o/uri4oeff5zSyv0riQuY0OnF6cnx6cs//eEHP/3l049/vrErTnhV0WI9yNrtrqUJxFQidDBMZM7p2RGpXSZZbVnRh+293b39/X2ibiStHE9R1uIUQ8rpimx34l+F3Lhuu60JyqYmQyCubDuJzDcJsSv1FVsKIRBGmFsIZNCOLAgFYVEIE/AT3JI2lxlDOTW3hdH4kn2NXCq78FYlHYxT5ZFESFBw2XcoWBIpZqPL9tvv3vz5q1e/O39/Wmt0FpbVg9+YDqf6KLw/uWJzW1/zzTbfCnUiuX7IE7sWTKSfL99+/Kz5NIWsqeILnXety4tx63SR1qHAzkzX2VthnfxNK/yoKRSIhEEROWMrC0JypSPp8UQ6wO2ADu4or0CfKRlAfPp/+P3b49MO/Y90EwaW2E2rn5Oi6FKB/GxxgnFX11dZj3rCjMbT9b3a1rMV2VBbd7qENj772e62DsnThd991XlzxGwQZ10cDaXiFYtpVG+g7Sc+0/xxdjaTzkcWpCq55LTwK4cp3EP2QIx7lg/VdZIk5ZWDdH4OksFHrr7zbuwq0L7+zdHXUvtlkjhUyV/MTLpeM3lK3mHO0ThpuVFr7G3KG5E/QRhgINWtlIYy7LHIEdZpxAkh0WeDUKyYCqs0TGN/VgNCIma6wkTl4H7x/GJ5LDQ3iIqPmRgeZgGhuiHcVldAspDh+Z1ZcTY2RoVsbxknH+ViBvnADvJRGMr8P1/xBvwWupBfcy5h48pX7Fn5YobLOHmGMefP9QeIl9GoVeHjeUrIcBhE5sMqMAf4pZ0nK9pLjgcjzbKImrwpcXdVF+X3sqdN70YrT1XKxySqClgrX1RB/Wzc3XB1b5cjVUecFz/+UeX2j7WbxQe7zVvpJteDzca67Z/dcGx5WA5XpN30coiWx8hbY1g3Ebk3wjXF7ogi1wXBoXFOpip32obc68WzzBZO2afNl8C/mGl3H+wReC7TX/B240BJTq0/JkvN2sFHu72TwUygIHxYqDFRqF5HB9E8Vr9XfFtx9cXG0k3vtt0Z6v2x0wQF073G+vWE44qABwysW2WY9HuW9G/S05I+XiIbWMX0mKrNRuQpmBEzbzAkPn9yt21H8nW2UTOYPYpfelmMgJPKCTkKA+cAI9mHuufAclCFHgGDv/7k8DJvHCcSQs41AFHO3kdUI5YNUn/1GtWu6mjKkoEfGBINF5jIiGYXbzjO0ZI097ohthk9o+B4JKjZraJw2n/RXu4rfRKicCe2UBWxdre2Vei+XwG+C9ibZri2qK7c3kaTkK5WuUz45bt1diUWmq6k0+ng4c5+c2v5s4dPt/aqndntuMM1pxPl3dqqkCgGFfXG1J7svLv4fmd3SSX2i+5pt6tSkAx7XoypitedyezznYP9Z0/om/o+fv/ya5ZnSxfb2e/10Fn2Go4A/XoOdh8cPHqmRXDEtTX0LrtS5JXsIsxLWL0aGEA8O4t0U4ooteTO/MDyoCZApOBzZVCP3Lio3qpzRnrEFDEjMEVzadpH1u6IJ7bG2XFEo0+0WhsZnIJYcYl6FBtSX1HqtuLaRyeyHGUxi0Az0npzBWDUG7TFaat7dnJ0Ohhdsiaenr7t9N6Zx+3kftAfyLbaUj5omZ1WQHSDK0YXkSR6yOnDmIW9VG46rYFsD0ETfPxfv1t4f7GGv8eCfV0RZLDWYHJMtGWZFscWmYvqPmtuqoe1QupY27AuRbLj+XDoXJqrzeY3r9uXV0oYDKfjbOGytuBM6mXFwA2nyU4R2LNjQCuX5PCQnxZWRaNdf/qzyt/8ACmhlt0Jzbw8ufz+pZ6hN++/u+21xur2UKZK9KW8xchMBrGBoWZeAnyE0q8kU9ok6BNjuh8bD1BBPYRJFAX6L7aK30edx4hAsFR/Rta8WHtWN9bgw8UFDrqoDqmq7Fh5cdIs1hqoFV/8WL+6x4+2BGsojNXU7f7mRrU5EYOmoyLcDEsFAgIVAybSmFmT7bmulIYHX3hAMQeWOZstbITCBXPNxi0FyMwWsAQy/BdyzUcRjLPA+e5Zj0VHqsvFmI28QgjKp9mZQgesOZfd52Nbbo4Z0XdyPYzFhkXB8xupCfCjQrn5L88qA5avzJ9Q+MN8713Ng+Y303mjB8+f5LG8rFui2Wbqhl98O9xaXd9SkPGuejEYUqEru/c/+8fPVp9Xvr54pc3sJ589ffpx43f/4+S6Xm0cKE7SlEpCYdCvWIaJgo2t+3fLzZX20dJXX5zzn8tPuZskRiJeebkrGsZUb8UFawXfPkuv5rra7Sv1SD5jVh1iChZ1qyWP+UUsI9zq0y7BIn3WwpNsIxsy98HTZ9sHL/a0O3r13Zv9J6tX3c74vHvbra7cNJV/RaSm4l7uRmv1pY0twW58jBXRRrzdgxgJpMYiPnoLMnGOm7trz+q1968uBm0pkjBq/eDxfuey02m1SD5DwyDxi2n0AzjT1t0xEBIosCrg8ImD2rA4If9Ja4pxJaYm1CNWGWBQai4xDOTIfZRD9WOFjt4LH+RF+Pz8eqTOvA4IlWF8ShyzHYhRgd1UYzQ86nQvsyea6XX8flT73f2t4XD86rsjRlHYU3zIoCXjgR42caiFBDQ319LqXKlIdWYkbQt7WKw92TkYzkaLq/ddNunJ3dJBfbg4qm3HKmQItmj+ukpvOL5amg6owtUr3K9yu/9o9+GDjcpSt6XoooafwxhtJSnZD/lErC0xu94Op5VxZ1w57nRO3veUgeCBleGWmurrtSFrwcnLbnvh+O2bTuuCSYpDY9zXhfpcnMbBwcOnjz7+5JPPHz58BjaxdouJMRNFLATDyrxFSlKXK9J+hJ2YGtJnWqoBuhenSPhoUeMoUmAsWrGMY/tePP+oT2L2+ZqvZ9y89epasZahIuRYdb2UZWZeMDofAdXzZpq0DHyw1+mfHx9/3x1enBwdTUSOTDip+xhPc7xGp1jqmWKFUUvVyXpjnY+0p0Mek7f6kwMZUsjafW3luic2URBO924i/zXNfq4FTQ+cudhTcUxLM1V2X9WZOhfPWhqs40Vsjhx2kYdM0PKhDlQuAgPZ5G59vba90xQjsGqVs9v+VZqfC0ugG0Gwy6uOSioaOWlNb7NiksvS+F/ntnUvE71O5QmBjr3zJm2CV++aD5Z3HtcePFt+/KzSPFSn4+74ZPrm5ezy7dK1HE2m4eSASiYI6TL5kKtAeUiZowl4B6yTOhCd6/amwbmxtNS+bJtzRBQH5oupmYFzEBTG9wqBSgxYrA3ouwuzgwNuXIu92dtYV50TF7w8Swk50hsbHgsPaabe5CBa0vxMQsAyvTItS+/O9Um46Dx9oCZkXadoSWlqsqVUBMFP59RYv8kQwmGKPIr8FlyFmGGrBTX9BXNeFspui3CJgr7zhc0x2dLcV1b5AZ3naByBISgYimZrgvEffpXhsl0ZYH5tvlm+QQoCfIRI9No5zL/nN4T/y0Dz0TJ8HpstznPKH+/Ds3C7aH5FF/OwQkCQgrIKB5EnL/3in58ry3n5ZjJtDdTHSe2UBUV+JEQJMh81H3Q++fFB8+rhf/4/Xim3Nr687WqotFo52F55/e0rOlrnipmhutCr3gzuJXKrrIi/r8ujEx0+uuUbsggqNNrq1D/56fNHn268/OrVTVvy6c3G7nZjs7HYn3IB3ShoH6BPtVkbibBBvIAPlocJUDqCz+rZQ9URn76KoTpKK6vSWF3rXw6Hp8rLTZdvV2TG6vAeWyURfqBcoY1MmJes2tl0eXTfx1u6l1ejfuejF03KzGV3QB2J7Be9J04ClcgP9j4+OVoRrBJyg46iSu32hAUtsoEmAVurjDqstwh7oiNCqnFWLmOqQaHUpp+pExRouJYQcfID9OSoclJzyAoszCFifjGf0hTKmRcYy2WPyT05+AIKSFhgwlOVkxKPM51oYlNf1fBAsIzS0TOVdXRDZOU2GdwiVc+WBKLEM9Fud3hlxJZIDSUz31On9X/bXeMNODo93lloCH9dbSiWmR6va7WVzvcn6W+41xQ6l82RibGx0rdVipsvztqTzut3JFmdScQNbGIWWsFJJhbRxf7K9cCprPB0a9BdmNy2lPzTaqM6kSDC+lpbmrW7SzuXm6+qPRaq1sWFFlvy6S/OT7vt9lJ9/e//4Yd//5v/6emzF/t7j1aJI0ofkNDV+RBEw0PAVmO3GY7RPhBLXY+EFe5rgwWEEiaFHWuzxmUfwy4+ARYYvCLRMpcloJNG5X1ioUiDNQgqT5wZnaOblcFwInGTQ74ga8Se399r0XilE8r52fnZSVv/lsFZf3wyvevMtGWnOiuatFnZ2Fplh2uf9So9UmxdJMWwLexk2S2qjPASKcaqpOvdLDSrcyH3tyuAsgwvkYr0mkfx1CdmZWHxhKh0xiaW5AO5BKzQkUPqGHNi+ATLRlw2e4hf/jnbpUWVzORbySUWtYwWk0/UsbB84bzjm5YqQgFYpnACTfArXtkYLsoIdlEcVqAaReEaUfFFWLxsya3dRd7j5ka127r+/s30/Gx28X5xcK5yJHdsUbdARaqthW5lwGwsyP3wEx7jcqFf7Er7jw+YnVF/hBSzCY6U+fteyjgntO2G28Vx39U2HPntwvjR0+QBWde4O7JwpVVVFJmM+nR5h9ibdh882WkcrvWvtB5inq1OEYDbWh9uM3WqWL5Zlxen5PJsiDEjNdAdaeSDjKc0GGvKBatCboNo9qMQ9KwiCGtrzLG8thYQky+URc65wXyl+VrwtdzqUlmXLxtgvhv5Y4+cgRGDx3k/Hzc8JoOG9yRC0kbl08iUeZ2z+stIRUI0raI8ZLRMLMP4oDzHH+8L08rRZiasVT4y9/LIkCibP7iNEfv3//rd7VW9UVmZDEaru2rkL28+WdeO6uj98cGD2R//2/nNe1ULl3tOmoHvvtL8uLm8Mhy2hX0LTG7V9UhSTYKrEiG0KoE0rHAaspfpeCjqSiY4Pro4aR0xB+slqlOVK0xvozbuwRkHqddE+jouk47Ala5sID/5JrHAFvAKnN9WuycKP55QgkTaDCezjbtm71zuCwOIyusUeH3dZxFspjHla8y3cr88OFe4XgcfpcO32TD6suZPuMHv2z0RyFUV4HVoogTiiLZaxV1Z5ucXbWo42pAow0oFqSTWrW1qLK9gOif6XJsqpB4+zaHHwVlzOWoTCOdihXAyzjlnUM7Hn3JGLtiZ8itfMA2HlPNxsRxYGaZcyoakpgRNKvacKIXOMqqhe8TCkLq14Rrc3sq1MDo7AKLmTs9HN+yJ15y3ErCGI2m86CCQMgwbaCoa3S7O3rTftaoDpv/GTvIEWr2rj57uj/uqsfeVC2wuH7R776NIqU+8zjpwu9KQZtSryRypNlt9YV5bN2MxRVq8JUJ/fK8drZnomKIV/Hqr1T69PEbo9I2pr7Ex2BUt82QwdY6Ovuz1BH7UBAILz7g8R1db+Pqv/u6f/uP/9r//4JMfyLoluhAf2LfgZWjWDTP9XEBWB0M6QC7gaK3zKzx4fYNb2OKZtmmVaqOSstnUV9FTe2W9hJK4u0nyDNDCYQW0JglL3Ytr8UkU0366fCniKHAyPmuUwodsPRTLnjj9yzMu23POiv7wZkGB/iHPpchjAfVrDf5HOcX4WP+q1ammnuEaA4YMDAaDEtvGtqEYIhgWauL0U0IAxCNAIlhUp6NPMkY4fguMXZGbSxPBSIN0z0CaKAEKKJMow3jkCgAAQconUB9fYyMU3Xj8WtMxBaU1HWGUEgpVBwkpYBTnRci6fbAb1FQXAGqiDwJifxE2FxdGzKk4SZPBnB01XW2hNQB498309Oz67JgVa3VRwzUW3BJnCWkBZgHLADUUMOsQoLDRQncAcnAjly2Fb4xiRiiRy1vsQ3DED3pa4tgUMlmsN7aZDWqXorA3l1SDOfhkb7E2uTjqX73pMrAxvclIVbR596CuNNZM3/S1uhTGpcpMxdeegvNVGRECOm6am7cvPn1YX668OZMvXRWnjj7EJ1eQFm4hNPEFxHpjwn5Hj5zjaLDZJod+5m/5cSX3FHSds83yYUHwIPWH2z/cHbHCf3Nsz43lexnLjeXHNuVVcDnvy2vTyLnnwMpdTl5QH7aGQJhhRvMypNKLPLEMkTmXt3lgGdsgXodm+CmzyHf/QktdWvr6y3f014MH29Pp6qQ1OMc1u4O1J0uf/e3Tduf6eHT25ZHAQ0ofkq2F05SmNZIi25s0G83rqzEfFHNkbUnn0iXOq5gtgVnhYOASlBH8gYXFijLpEvm2K88PHi1XhdQq9Sx2aDS5GsStSarB83IklJayoMBNiJyTCdjiCLwK/FHqB8QUzfxSSej9+q1cISlJEgPkHwrBcTpKqUV4uREPSqBghNDhHfguSixQyClJ/PTKKyXJNbZWUBDfkhkonEfQZOXd9yfknLkYaGeNg2IhoOyZomsIksqGqGjQ6VxJe6WfZm+jgLMxRlQ3JpmdBJyzSOWS+OJ9WpaS48pB5Hjyvb+cvGPK9XL4H8DH53nlui8BBcieL+bHlSCwL0ckEPzHDaA4O0XKJNyDWXJgsHZXeFB4GIPk2cWELQneUVCTk0VpXsxVnoXiwmiW6IvF3aWa1McXW0Q8W6Ydx/m78ei68vjxOrtE76rDENLc3/m+dTa4n2zu7nEW7+0IRW9sPHr2h//y+k5LzQSICvIcaQvDpcNI3ZCmvNYQVK4n2JKU7+ZiY52rgupYX6pvcsj1e62T12+GI8Fd96XIV+3Hf/Orf/r7//Dzv/3nTz954RzZO1hgsmQngOCo+JNOqdkNON9rt/rTaX/Yn1Vvri5bogvEz9gEIvt4MNPzSfrxzv5hc2thQ7+cFTC2JKYIINnT8YwKIoi2K+kgfWBlUss0mU6EzalAjmAWETyhR0M2qas2z4T2xTo4jqWfFM1DncpUJCImTK4XBN4gOqrl4WODce8i9YnqyzO1RpbYLzjRtJNzLx+HknH8mbFAoCOp/Seeh0Qp9wNBB4HGND0TcNaOOaHv5bhz4naA0ZouE6ISmm0fQjkJXLHtkuiXrtozkktN7UKxDNGGBap5Cusk1UfZN89ynZzFxAQMgVZS3gwOSEJRzKByI7Raff4HDxryYKg/ah213o17Z4qjV4Z9hefoh3cKIOYYKDLx8s7lfZOawzUYLHALgjPHAu9hOCWC/v4Om0cY8N2gQL4U5k7t4P8lCDBWNfeWDw5W8UrlGqQMv/j4UB5A6/vL1vGwtMeQyj5cbNabT7cefdaoHN8iIsvrU87g5a2t8+MRJvP4492jN51K9ebBA1E/q70zASkJr9X3hREv8yIqZh/iKAozLYTSvJEs7DYLiNMuS8z0ix5gpm4LDhaEytus0uchq/lTXsyvlw+zsvlbv8tNfntWhsiVgt+5Yb4NnlKGyKHYUVNE8xMRLi4+ewjl8x5FKkNEUclMDVDmmVGNmbmEYJTByqzKXPIpQuT1/KnO3ylvb35+cNhQ/mV8e4JaPdZgblVW12jlslPrbH78uHV6+vDJqk7d33+femQPfvJoadb/4pvWwmBpNljZXVnRflDVfqbRsW6DlGYatxxC8SdcuAItrMeEkFoV3SpLn/3iE8FuV5dtpeGpubPRTX1pnSUO/EIvwAoGiQYB6RgonQkUCEPOtpjvNBoG8dYF7gdfhD6dFuNtMcXE3hWrQFR+x0iyRQQpNtldoUFcXbe91JegXYQmJhlItgFSpZKPqRt5qXo9mp6+OydY4TWio51V1HPkXxYto+zs7vT9pYotCg9wHRatICL+3CNj471yJrbYaLDL7Od7HgCKwFbOeX5k5VByVrnzw5+cqK+5lKM1Rl76sRrgkE8DqBndlCAPvb74J+NuY0dInJzdu1+0HuqipprYKg8/ERgTM0gZAENl1kEscGGhEGw20+3nOxoLyqS+OD7dWl951Hx0+mY8uqxsK3m+s/XufUvyh8BaTfFW9vR7Wr2tizuqL+40359fsVSr7bWqvAfCqtfn4c7Bo0P5gxvLSw+fbE/7V+qVvfjkEdFu8W4ol1bmLvna8Vwjpd2+9uQMytoo8b786te//od//o8//zd/xzeVIP7VOLExKlAuYjdu7JtZ4sfV2Z9O2tIau+2rblv9qTaRvNdSf1rBEhxfCqBNwKUezh6Jk32uEgobd81FtG+md2O7dXV69v7d23eXrcv2xYW42WSy6pem6ek1J/XYO3az8FiweA+4udwVpEuQN9IZgQFHUqENMxQtP0amYWY/AUcSVKRY3K0xzOTLqKdmPzouJvAq3yO9OFajhuCFrDgXmiLHRMlLdtMcHKzZ4ftHjnDecUw77/wLRIQOBAAKJQmA+zSRcsCVSHu/yOLkBk8J2MQu4wsJBPDA4L36H8o7iObI4/Ljt0mYcApkVO8fPXm4vrEmQMCsWh1yOr0jwpgyIRYacRkose0mG8zIVAfSTzEbmQvSE6jPE40b2lr+eusnZoyl6lWni9qTliAzzDINd4a4AWBKnyqfyxVeFlVidneA5Xj5bumb355qSiopp7q0JYFseW/x81/uDerDVq3SX5y9+OGnjf0xv9j51YIMz09+ffDkZ4+Ozlu7C6vaJV2JSj2WpKxKigKWaggTfRJuGmYqFQA0hihn2qaB7NrYDzj44WooZsFHNxXM9i4b91cqm4MKgQqS+yhfLz/5m8XNN8Mo87fza+4qEFBGxyczhBsQfUAi4pF05W06BrrMDp45+s9tGcicTcngeZj/89T8ASIemOfkXU57/tbxupx1ZI1eZgV63VzvHWy9+e7VbKDA7nR3d/2zv3uxvjn91z98+V5Vzsnxri59en2tthc/k+vTPFhePDvmNa/MeqLMBlXdXKaEvqm4mWiZyv56XAATIRSoEI+VJACHrpP7tDc9ffUu1jezJDSoo5y6fwwUqUJWNimwE6AF8SxfALKsoawPj3BLjCpMK1kC05Aps9tOAEW+J6u4yMYMkVBKmPvd2tbq888OFffQc3t4OcA0gnk4vLsjSIHl+FpyKfNNNhNnKVr6y1/98Js/L757c6JcYuA+EykAQMMZDbaf7C2KGh8a0CGQ19Ap6AwAMvsIB8byLvTWZkQJcCU83EP8ZOdzZF59OLVyLN75JJfL0z6cs4HCBwN2rpTzDriGNsmvk24mI3p6J2Jye2tzNlbOUAC1gDka/AIKS20MmxQ9Hjf2ItI2GEj7kCSVjFAkj420tna/tZHAJwH0ogl7kx6DXqU3XavekJs7rVMJfFy2lDw6nI62upJc3/W0WVMKgrjdf99mOF/QarFy22iuNvfW7+87iwvdvY2d6eji9rb/5MGmxCQJa1ftYXrTCuNRAXR4hVbdiX3RJWl959lHP/lP/+k//Lt//+/qK4puNFSULJUSUpCK3olFMS2lCOvCXX+kzc30/dv3pydvLy9OtfdWY0RkEd9xv3e9//iwvq6WeBJhrxTN/lbozVr7/eHW1rY0OlvW7fUuzi+wjZP3J2enpwMdujpd8Ei2hlNEY2Q5x+gg0fIYgeQQIpeJLeTtYq5k3wynzTXgqAbCfS1kMUDgezaZc4VhOzo8W42Ls3uMI+IDsinIp9CIcs7lGYpJ4NnAED3CkyMGGykAmStgNLJxpuT/nCzUMAHgCmOARMwmAY7yMThO1CfBiYYRHAFSodjgJxhiFG/xUZc5YE3QBfOKeJF0uThKRH+KhLYLV91R76pFAZIjhkSKsnQzaakgd4HcyMeZV6Zubeacd9741FQ90OID1C77fH7Za5MXyoUjMsNFl82G53PfpFCxatGtT48HK+tLDxUkWqszPbx6qc/ErZxEW8O3z6Xy6Pni/uGl4l5fvToZnVZ+84tnCte8evW+d9V9uL/42YumDuv6F9ubzoVorWllcF+n6jDpcQ7dXK806iq7ZD3maePpWzY53CpbYi0+Mv3ImlmgYzR9P3MJPPflUnhdll4W59P5gnNv1uynfMf1vMjN+VN+Z8s8zm7lis/9nz3Mj+MgXzLoxSBuO1S6ifhgqgWGMokM5Zcb8rACCWWcXC4MLJw+U86Zl7/WAh5ifvVRoMUTTWJp+H6001ig1nVfjSrr1fXuzX1LVY7p5sLak1/yhV4e//l04aD+6YtqU9XU6srpF++6fUU5Vpa3JjsPRGtpEl6tdJIdKA5Ac1qAqwKuMyUsU/DUIfIRRGFhJaANB7qCoE6aztFxVJ7NfOlhkfIiWZAoLD9TDsGb/5BXsl0FjuabCicL+RPVoOYgj15QyIMJeEU7Skf1u4ryMJtSAFlRCTXLDRGeIhtkERdRhaiqUF2UaSCSZyU7Lr44c29fdF5+9Z2y6YEXJCilcQUXhSas1+usBWqUIjCr62vuSVxmDlUEZmChIJxVzXd4voZCq7OWkG8ryfK8cku5kQ3W983BOUb6MlpMXxkjW1BAKXRhzlcKLs1HyGPtWxzRKEil1xvTn1AGbID3TNqz1WnIkgUCboKqQChh1EKedd7D6pR44pDBoRuL49bNdUvVsNROIKg39Exl55dhl5J5C4dbu/LLLi6VwqqqUE2tAEjhK8ppXV3fDe/X62sVDpkVHle21gXxoKu1Rm90fzW7Y7KrJtuSBO6lCGAt4pYShBPb9bLefs+ff/p3v/nHX/3m3z599ry2vmaHVKlqNOSNF9M+F5V41dGIO7ff7Z73rs5bLTH033/33cuXX120zoUiO39VRnX6WhHhtL0srVju3uXZ+eXZxaQn3G/x96XSJ83Z+cozSOa0TGFJ8PS+AnBld+05RcEWBu2z+7ArIaZOzPZDNhVABBhhecEquJi/+JRvFRwsKqQTTYQ1z4rNJBSxsia633GH/5cjDVr+BZ7BVAS7UPNiKS2KZoA5+F4IakCoCP6gIrBQNAfPDsz4FkjIDSAr3KGg95wSM7lm3oERuOK1F/7Nab0vYnmA7cOMULhwGUzct+IXffvqPVc5tDVtvmwTLizFUEkTdkvBxkwgqyrkaA6smUuelPmDcOtwp0FyIRJonui6GBD38dUH+eYry+5E0GGmKqTN0Sy2LvWNUuR/yt9HoecI0l1k7WHtweHqpz9e2TuodhTprDa+/PqtzvWzXdn/KXNLfZEp+e54VLvf7LfG3Z46VhsckrKgZTXQ5568eCCCun3aEwhXGF8U4jJzGO+vnQ2fy6tI2X4KhXAlL9yRRcc16xPrsqYIZPmC6fsoJ5N3VptfOaDsuPvyLhedTP7m/5z+h53KbYXF2JSwo07ryjiCoT3FcSRswSbm0eWhUF24TAQK0h6oc84gNhwstL5stY9yoqZc/no6ajk/lkAF+ebw4CkgPXiwc6PFyOX1yfH1xf/5jZK0z358IKRykV+32nj9ZrS5s9Ptjy6PT++61dHibmV96cGT2eFDqvX1YW3nZe3V6OzmxQ9+dHx02/7zKcmCtJX8j+t7WDZod1bX17f2N0X/nba64u1Eny7SFRQGT0B1sfXbiUw9+2QV4QaZcnyZuRja61pYVkCpwEzkF0BmoVHV3cNtJ2ThVlIHn7F9WalL/5623l2e97QraOivtFVfi1k+HsQ81APC/Al6gdUkWRnOnlRn1aPvToWEuglXYqmUZM5uQXhgIHJETmJjc2UoDaHHfcSo6iMoH9Ce770zASMO0YEUgI+E5WAsJAvwBZd9NMePOZw4I1/Jv7IRgRJ3GiOnl/UF3nwnGqJHzQf0PihkUJum0BiBjRmGjBTbYYhEIhpLoRXvl8XuCuZJdKDOw8pxaeEjcJ1e4F5jMhbd9ZXxI8E+qDUbjSIn9/RNXdpc5Rsa9Hnt1PdUjG/9dsYhpLDXZHKlTCLGLahe25eZYv3rdVJzoze5O5EsurwiJJdgrgMYF8Kop5aKR+l2qfnMxt7us89/9PPf/P0//uhvPpcCQlKmtmkMK9FM1U47lCpAbL2TsfoI8sjOjl5/+fb1y6OjQf982JU9wvbTt/OKQaBnC8wGK4u81pwKvLhjhgAhfoEpXcPECGU7GcZsrn0PZLEBIN6a8qHPdtiNOaMQ3yIY2LqCREyKkZnAHOKXnY62QMQvKAXB5qpkPomhiUEfgtJoc9aoSOiLgRgXQzTZ8xEaz3Iw0TvLUx1TQKMARk7YZDwkZ17OPUBl8BgAc5w5qsKoyspyT36MCJg8ueBCbgnApPKNH6CeQQN7Hp/YsPgLoF/hbL4ZQQddDIEOQcL5RFkVg46DKEOEOwHWPMhv6FhemkjZiwwPSrMZebTP/KNM2CVQYQDvshW+nMnYdzq1ueU/c47AnfdFCtTBWwtQ0cRrw/G01e8KwFDZCOl2Kkqeb+5U9vbGu89Xd3brL7//evX5J4q5baw1v/rm1V59fXKnpkDzvrL53fftVqd+d343aS2PxvWKQkq1az3f0+0BC2k2rs76ej+UyAL1ZqISmaOpl10sS3YpVwumZgGmnn9lB7IWc/bWgvORf2Xd2aes9cPV7Gf5N9fb5kP62A9y5oECV0KDPCYcJ+TARtpKhkr7xytp27OndjjE/XY1DYyWBSLaNU3WWSxhs6r3ILY8KTsfQuSPcZF7QFmeZt0F6JE62+0JuYVgsdQ9vVOGhCz3P//7f2I8/dOXX7RuhysP9pQyefXtOYForFfsm7vLSbW5/eD2/P1CUzaoAI6L28XNSmWzUd8ajmSdbG8tMt8LmKk+/OHD0XlvOppu7KzWZY9Mpqtak9QX1QFT6IPZISHH6K9Nj8YJI2WpcE/aosyMyYJhCJEKABa6nFNx9NHNc1NWB0WhpRWkEm9dHpM1kjjMViI+ilNcZSDaDaI/lmVFIoqjGzGISsWtix9k2eTHIyQBP7V9EEc9dYGgzEY7qdCMVIJUQC1Vn+QxlGRx5EMg2YQndTy+Xezq4h2Y0YrP/czpjjAYXcQ5IG7yMC2yDzxDDP5K+gukzeEqtD1ST+BsDkL5U5Aq0FDww/EbLdTfbkSUKzLgnByUkxTAkG8E5oSQzPh5LYv9h4eEMg0eomjTb6ZTm3Mjxp/Qv8peHxeKoxCQu8CFqYiFG6WSaom+05zVql2ZvQzT05teVwLclagtVa/RFP6SptblmpN1Rp0LTdtuN/Rn73VWNiuyOoh0i6vrYrv0pmIiU/Nlc2/LfCb2V3yLPlzd673Dg4cHn/zib//xH/7t//rJD3+s/uK12g9cvasaBA0VHU3Eqvq7N+m3JeL+5PTs7fuTl1//6eL9m6Ozk/OLy+Vlqf/3jZVac30TjSfXpw7MwkL75MoLXYaEkwokWaXI5ET4mhTtCDQADG9hV7RQsBRHa4R9gMTYAmNQc0fhDN0GJkkiBmBOjCQCVuwwsu1IclrBMIeBmnkZaA1KxWiTV4WgxrHqPrd5Bk0g+kXQ0hBFdcd/PC6GHuMZ2ueAoYAKT36mSgouXy6wbvj5MSMY9jRg5dX8ao7fPvhdqKthcfT8Z8BMOKJSZgJTzDc+4cQmxN5coIvlRzxw4DCk5kZme12AFIKUCdEaQuwy9fKwqA6+m4e5lo0pXCtSMyyw5PIzR9UIKCHw2YEMZ86+nG3Jrnpv4wQmYcKZDU4Lce4p1tEbdWeXzKhRz1RN9NR72NlfP9xZe3zQ1Bnj5GKsNsrhmhDt4e5H9fHw4v5+V9Ghxlbz9dvz06vObLK0cr2soxHb5aTXkaIkEEuk1NrixlJ1QxEhSRjcJtAH42bOK2vLiizTxmUrzBQCp2ZlWVHBsuxQdjVL9iU3ZSf88ZO35UrW8oGee59vz2WMguw5y9zvyANd840sA/iVjfU7TIHZHMeCksr1q2m4WOFt/fQHnz188ujZ84+ERpwcH797+/bbr77lQZPvZ1hyNXAHGXl+eUJAMSCQww/Zz+SNHJu2d6wd/y8c1etXWEHY1AAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# This is an example.\n", + "example_image = Image.open(\"./a_purple_qwe_backpack.png\")\n", + "example_image" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "llama", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hra_dreambooth/requirements.txt b/examples/hra_dreambooth/requirements.txt new file mode 100644 index 0000000000..3cc487940f --- /dev/null +++ b/examples/hra_dreambooth/requirements.txt @@ -0,0 +1,13 @@ +transformers==4.36.2 +accelerate==0.25.0 +evaluate +tqdm +datasets==2.16.1 +diffusers==0.17.1 +Pillow +huggingface_hub +safetensors +nb_conda_kernels +ipykernel +ipywidgets +wandb==0.16.1 \ No newline at end of file diff --git a/examples/hra_dreambooth/train_dreambooth.py b/examples/hra_dreambooth/train_dreambooth.py new file mode 100644 index 0000000000..fdf15b9d92 --- /dev/null +++ b/examples/hra_dreambooth/train_dreambooth.py @@ -0,0 +1,609 @@ +#!/usr/bin/env python +# Copyright 2024-present the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# The implementation is based on "Bridging The Gap between Low-rank and Orthogonal +# Adaptation via Householder Reflection Adaptation" (https://arxiv.org/abs/2405.17484). + +import hashlib +import itertools +import logging +import math +import os +from contextlib import nullcontext +from pathlib import Path + +import datasets +import diffusers +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +import transformers +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import ProjectConfiguration, set_seed +from diffusers import ( + AutoencoderKL, + DDIMScheduler, + DiffusionPipeline, + DPMSolverMultistepScheduler, + UNet2DConditionModel, +) +from diffusers.optimization import get_scheduler +from diffusers.utils import check_min_version +from diffusers.utils.import_utils import is_xformers_available +from huggingface_hub import Repository +from tqdm.auto import tqdm +from transformers import AutoTokenizer +from utils.args_loader import ( + get_full_repo_name, + import_model_class_from_model_name_or_path, + parse_args, +) +from utils.dataset import DreamBoothDataset, PromptDataset, collate_fn +from utils.tracemalloc import TorchTracemalloc, b2mb + +from peft import HRAConfig, get_peft_model + + +# Will error if the minimal version of diffusers is not installed. Remove at your own risks. +check_min_version("0.16.0.dev0") + +logger = get_logger(__name__) + +UNET_TARGET_MODULES = ["to_q", "to_v", "to_k", "query", "value", "key", "to_out.0", "add_k_proj", "add_v_proj"] +TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] + + +def save_adaptor(accelerator, step, unet, text_encoder, args): + unwarpped_unet = accelerator.unwrap_model(unet) + unwarpped_unet.save_pretrained( + os.path.join(args.output_dir, f"unet/{step}"), state_dict=accelerator.get_state_dict(unet) + ) + if args.train_text_encoder: + unwarpped_text_encoder = accelerator.unwrap_model(text_encoder) + unwarpped_text_encoder.save_pretrained( + os.path.join(args.output_dir, f"text_encoder/{step}"), + state_dict=accelerator.get_state_dict(text_encoder), + ) + + +def main(args): + validation_prompts = list(filter(None, args.validation_prompt[0].split("."))) + + logging_dir = Path(args.output_dir, args.logging_dir) + accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) + + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with=args.report_to if args.report_to != "none" else None, + project_dir=accelerator_project_config, + ) + if args.report_to == "wandb": + import wandb + + args.wandb_project_name = args.project_name + args.wandb_run_name = args.run_name + wandb_init = { + "wandb": { + "name": args.wandb_run_name, + "mode": "online", + } + } + + # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate + # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. + # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. + if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: + raise ValueError( + "Gradient accumulation is not supported when training the text encoder in distributed training. " + "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." + ) + + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + logger.info(accelerator.state, main_process_only=False) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_warning() + diffusers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + diffusers.utils.logging.set_verbosity_error() + + # If passed along, set the training seed now. + global_seed = hash(args.run_name) % (2**32) + set_seed(global_seed) + + # Generate class images if prior preservation is enabled. + if args.with_prior_preservation: + class_images_dir = Path(args.class_data_dir) + if not class_images_dir.exists(): + class_images_dir.mkdir(parents=True) + cur_class_images = len(list(class_images_dir.iterdir())) + + if cur_class_images < args.num_class_images: + torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 + if args.prior_generation_precision == "fp32": + torch_dtype = torch.float32 + elif args.prior_generation_precision == "fp16": + torch_dtype = torch.float16 + elif args.prior_generation_precision == "bf16": + torch_dtype = torch.bfloat16 + pipeline = DiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + torch_dtype=torch_dtype, + safety_checker=None, + revision=args.revision, + ) + pipeline.set_progress_bar_config(disable=True) + + num_new_images = args.num_class_images - cur_class_images + logger.info(f"Number of class images to sample: {num_new_images}.") + + sample_dataset = PromptDataset(args.class_prompt, num_new_images) + sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) + + sample_dataloader = accelerator.prepare(sample_dataloader) + pipeline.to(accelerator.device) + + for example in tqdm( + sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process + ): + images = pipeline(example["prompt"]).images + + for i, image in enumerate(images): + hash_image = hashlib.sha1(image.tobytes()).hexdigest() + image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" + image.save(image_filename) + + del pipeline + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + # Handle the repository creation + if accelerator.is_main_process: + if args.push_to_hub: + if args.hub_model_id is None: + repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) + else: + repo_name = args.hub_model_id + repo = Repository(args.output_dir, clone_from=repo_name) # noqa: F841 + + with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: + if "step_*" not in gitignore: + gitignore.write("step_*\n") + if "epoch_*" not in gitignore: + gitignore.write("epoch_*\n") + elif args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + # Load the tokenizer + if args.tokenizer_name: + tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) + elif args.pretrained_model_name_or_path: + tokenizer = AutoTokenizer.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="tokenizer", + revision=args.revision, + use_fast=False, + ) + + # import correct text encoder class + text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) + + # Load scheduler and models + noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + + text_encoder = text_encoder_cls.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision + ) + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) + unet = UNet2DConditionModel.from_pretrained( + args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision + ) + + if args.use_hra: + config = HRAConfig( + r=args.hra_r, + apply_GS=args.hra_apply_GS, + target_modules=UNET_TARGET_MODULES, + bias=args.hra_bias, + ) + unet = get_peft_model(unet, config, adapter_name=args.run_name) + unet.print_trainable_parameters() + + vae.requires_grad_(False) + unet.train() + + if args.train_text_encoder and args.use_hra: + config = HRAConfig( + r=args.hra_r, + apply_GS=args.hra_apply_GS, + target_modules=UNET_TARGET_MODULES, + bias=args.hra_bias, + ) + text_encoder = get_peft_model(text_encoder, config, adapter_name=args.run_name) + text_encoder.print_trainable_parameters() + text_encoder.train() + else: + text_encoder.requires_grad_(False) + + # For mixed precision training we cast the text_encoder and vae weights to half-precision + # as these models are only used for inference, keeping weights in full precision is not required. + weight_dtype = torch.float32 + if accelerator.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif accelerator.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # Move unet, vae and text_encoder to device and cast to weight_dtype + unet.to(accelerator.device, dtype=weight_dtype) + vae.to(accelerator.device, dtype=weight_dtype) + text_encoder.to(accelerator.device, dtype=weight_dtype) + + if args.enable_xformers_memory_efficient_attention: + if is_xformers_available(): + unet.enable_xformers_memory_efficient_attention() + else: + raise ValueError("xformers is not available. Make sure it is installed correctly") + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + # below fails when using hra so commenting it out + if args.train_text_encoder and not args.use_hra: + text_encoder.gradient_checkpointing_enable() + + # Enable TF32 for faster training on Ampere GPUs, + # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices + if args.allow_tf32: + torch.backends.cuda.matmul.allow_tf32 = True + + if args.scale_lr: + args.learning_rate = ( + args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes + ) + + # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError( + "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." + ) + + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + # Optimizer creation + params_to_optimize = [param for param in unet.parameters() if param.requires_grad] + + if args.train_text_encoder: + params_to_optimize += [param for param in text_encoder.parameters() if param.requires_grad] + + optimizer = optimizer_class( + params_to_optimize, + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + # Download the official dreambooth dataset from the official repository: https://github.com/google/dreambooth.git + data_path = os.path.join(os.getcwd(), "data", "dreambooth") + if not os.path.exists(data_path): + os.makedirs(os.path.join(os.getcwd(), "data"), exist_ok=True) + os.system(f"git clone https://github.com/google/dreambooth.git '{data_path}'") + + # Dataset and DataLoaders creation: + train_dataset = DreamBoothDataset( + instance_data_root=args.instance_data_dir, + instance_prompt=args.instance_prompt, + class_data_root=args.class_data_dir if args.with_prior_preservation else None, + class_prompt=args.class_prompt, + tokenizer=tokenizer, + size=args.resolution, + center_crop=args.center_crop, + ) + + train_dataloader = torch.utils.data.DataLoader( + train_dataset, + batch_size=args.train_batch_size, + shuffle=True, + collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), + num_workers=args.num_dataloader_workers, + ) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, + num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, + num_cycles=args.lr_num_cycles, + power=args.lr_power, + ) + + # Prepare everything with our `accelerator`. + if args.train_text_encoder: + unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, text_encoder, optimizer, train_dataloader, lr_scheduler + ) + else: + unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, optimizer, train_dataloader, lr_scheduler + ) + + # For mixed precision training we cast the text_encoder and vae weights to half-precision + # as these models are only used for inference, keeping weights in full precision is not required. + weight_dtype = torch.float32 + if accelerator.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif accelerator.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # Move vae and text_encoder to device and cast to weight_dtype + vae.to(accelerator.device, dtype=weight_dtype) + if not args.train_text_encoder: + text_encoder.to(accelerator.device, dtype=weight_dtype) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterwards we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # We need to initialize the trackers we use, and also store our configuration. + # The trackers initializes automatically on the main process. + if accelerator.is_main_process: + if args.report_to == "wandb": + accelerator.init_trackers(args.wandb_project_name, config=vars(args), init_kwargs=wandb_init) + else: + accelerator.init_trackers(args.project_name, config=vars(args)) + + # Train! + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(train_dataset)}") + logger.info(f" Num batches each epoch = {len(train_dataloader)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") + logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") + logger.info(f" Total optimization steps = {args.max_train_steps}") + global_step = 0 + first_epoch = 0 + + # Potentially load in the weights and states from a previous save + if args.resume_from_checkpoint: + if args.resume_from_checkpoint != "latest": + path = os.path.basename(args.resume_from_checkpoint) + else: + # Get the most recent checkpoint + dirs = os.listdir(args.output_dir) + dirs = [d for d in dirs if d.startswith("checkpoint")] + dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) + path = dirs[-1] if len(dirs) > 0 else None + accelerator.print(f"Resuming from checkpoint {path}") + accelerator.load_state(os.path.join(args.output_dir, path)) + global_step = int(path.split("-")[1]) + + resume_global_step = global_step * args.gradient_accumulation_steps + first_epoch = resume_global_step // num_update_steps_per_epoch + resume_step = resume_global_step % num_update_steps_per_epoch + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) + progress_bar.set_description("Steps") + + if args.train_text_encoder: + text_encoder.train() + + for epoch in range(first_epoch, args.num_train_epochs): + unet.train() + + with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc: + for step, batch in enumerate(train_dataloader): + # Skip steps until we reach the resumed step + if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: + if step % args.gradient_accumulation_steps == 0: + progress_bar.update(1) + if args.report_to == "wandb": + accelerator.print(progress_bar) + continue + + with accelerator.accumulate(unet): + # Convert images to latent space + latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * vae.config.scaling_factor + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents) + bsz = latents.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint( + 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device + ) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Get the text embedding for conditioning + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + + # Predict the noise residual + model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + if args.with_prior_preservation: + # Chunk the noise and model_pred into two parts and compute the loss on each part separately. + model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) + target, target_prior = torch.chunk(target, 2, dim=0) + + # Compute instance loss + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + + # Compute prior loss + prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") + + # Add the prior loss to the instance loss. + loss = loss + args.prior_loss_weight * prior_loss + else: + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + + accelerator.backward(loss) + + if accelerator.sync_gradients: + params_to_clip = ( + itertools.chain(unet.parameters(), text_encoder.parameters()) + if args.train_text_encoder + else unet.parameters() + ) + accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + if args.report_to == "wandb": + accelerator.print(progress_bar) + global_step += 1 + + if global_step % args.checkpointing_steps == 0 and global_step != 0: + if accelerator.is_main_process: + save_adaptor(accelerator, global_step, unet, text_encoder, args) + + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + accelerator.log(logs, step=global_step) + + if ( + args.validation_prompt is not None + and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0 + and global_step > 10 + ): + unet.eval() + + logger.info( + f"Running validation... \n Generating {len(validation_prompts)} images with prompt:" + f" {validation_prompts[0]}, ......" + ) + # create pipeline + pipeline = DiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + safety_checker=None, + revision=args.revision, + ) + # set `keep_fp32_wrapper` to True because we do not want to remove + # mixed precision hooks while we are still training + pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) + pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) + pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) + pipeline = pipeline.to(accelerator.device) + pipeline.set_progress_bar_config(disable=True) + + # run inference + if args.seed is not None: + generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) + else: + generator = None + + images = [] + val_img_dir = os.path.join( + args.output_dir, + f"validation/{global_step}", + args.run_name, + ) + os.makedirs(val_img_dir, exist_ok=True) + + for val_promot in validation_prompts: + image = pipeline(val_promot, num_inference_steps=50, generator=generator).images[0] + image.save(os.path.join(val_img_dir, f"{'_'.join(val_promot.split(' '))}.png"[1:])) + images.append(image) + + for tracker in accelerator.trackers: + if tracker.name == "tensorboard": + np_images = np.stack([np.asarray(img) for img in images]) + tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") + if tracker.name == "wandb": + import wandb + + tracker.log( + { + "validation": [ + wandb.Image(image, caption=f"{i}: {validation_prompts[i]}") + for i, image in enumerate(images) + ] + } + ) + + del pipeline + torch.cuda.empty_cache() + + if global_step >= args.max_train_steps: + break + + # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage + if not args.no_tracemalloc: + accelerator.print(f"GPU Memory before entering the train : {b2mb(tracemalloc.begin)}") + accelerator.print(f"GPU Memory consumed at the end of the train (end-begin): {tracemalloc.used}") + accelerator.print(f"GPU Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}") + accelerator.print( + f"GPU Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" + ) + + accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}") + accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}") + accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}") + accelerator.print( + f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" + ) + + if args.push_to_hub: + repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) + accelerator.end_training() + + +if __name__ == "__main__": + args = parse_args() + main(args) diff --git a/examples/hra_dreambooth/train_dreambooth.sh b/examples/hra_dreambooth/train_dreambooth.sh new file mode 100644 index 0000000000..c45915b403 --- /dev/null +++ b/examples/hra_dreambooth/train_dreambooth.sh @@ -0,0 +1,185 @@ + +CLASS_IDX=$1 + +# Define the UNIQUE_TOKEN, CLASS_TOKENs, and SUBJECT_NAMES +UNIQUE_TOKEN="qwe" + +SUBJECT_NAMES=( + "backpack" "backpack_dog" "bear_plushie" "berry_bowl" "can" + "candle" "cat" "cat2" "clock" "colorful_sneaker" + "dog" "dog2" "dog3" "dog5" "dog6" + "dog7" "dog8" "duck_toy" "fancy_boot" "grey_sloth_plushie" + "monster_toy" "pink_sunglasses" "poop_emoji" "rc_car" "red_cartoon" + "robot_toy" "shiny_sneaker" "teapot" "vase" "wolf_plushie" +) + +CLASS_TOKENs=( + "backpack" "backpack" "stuffed animal" "bowl" "can" + "candle" "cat" "cat" "clock" "sneaker" + "dog" "dog" "dog" "dog" "dog" + "dog" "dog" "toy" "boot" "stuffed animal" + "toy" "glasses" "toy" "toy" "cartoon" + "toy" "sneaker" "teapot" "vase" "stuffed animal" +) + +CLASS_TOKEN=${CLASS_TOKENs[$CLASS_IDX]} +SELECTED_SUBJECT=${SUBJECT_NAMES[$CLASS_IDX]} + +if [[ $CLASS_IDX =~ ^(0|1|2|3|4|5|8|9|17|18|19|20|21|22|23|24|25|26|27|28|29)$ ]]; then + PROMPT_LIST=( + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the jungle." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the snow." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on the beach." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on a cobblestone street." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of pink fabric." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a wooden floor." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a city in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a mountain in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a blue house in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a purple rug in a forest." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a wheat field in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a tree and autumn leaves in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with the Eiffel Tower in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} floating on top of water." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} floating in an ocean of milk." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of green grass with sunflowers around it." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a mirror." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of the sidewalk in a crowded street." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a dirt road." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a white rug." + "a red ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a purple ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a shiny ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a wet ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a cube shaped ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + ) + + prompt_test_list=( + "a ${CLASS_TOKEN} in the jungle" + "a ${CLASS_TOKEN} in the snow" + "a ${CLASS_TOKEN} on the beach" + "a ${CLASS_TOKEN} on a cobblestone street" + "a ${CLASS_TOKEN} on top of pink fabric" + "a ${CLASS_TOKEN} on top of a wooden floor" + "a ${CLASS_TOKEN} with a city in the background" + "a ${CLASS_TOKEN} with a mountain in the background" + "a ${CLASS_TOKEN} with a blue house in the background" + "a ${CLASS_TOKEN} on top of a purple rug in a forest" + "a ${CLASS_TOKEN} with a wheat field in the background" + "a ${CLASS_TOKEN} with a tree and autumn leaves in the background" + "a ${CLASS_TOKEN} with the Eiffel Tower in the background" + "a ${CLASS_TOKEN} floating on top of water" + "a ${CLASS_TOKEN} floating in an ocean of milk" + "a ${CLASS_TOKEN} on top of green grass with sunflowers around it" + "a ${CLASS_TOKEN} on top of a mirror" + "a ${CLASS_TOKEN} on top of the sidewalk in a crowded street" + "a ${CLASS_TOKEN} on top of a dirt road" + "a ${CLASS_TOKEN} on top of a white rug" + "a red ${CLASS_TOKEN}" + "a purple ${CLASS_TOKEN}" + "a shiny ${CLASS_TOKEN}" + "a wet ${CLASS_TOKEN}" + "a cube shaped ${CLASS_TOKEN}" + ) + +else + PROMPT_LIST=( + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the jungle." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the snow." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on the beach." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on a cobblestone street." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of pink fabric." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a wooden floor." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a city in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a mountain in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a blue house in the background." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a purple rug in a forest." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a red hat." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a santa hat." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a rainbow scarf." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a black top hat and a monocle." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a chef outfit." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a firefighter outfit." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a police outfit." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing pink glasses." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a yellow shirt." + "a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a purple wizard outfit." + "a red ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a purple ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a shiny ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a wet ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + "a cube shaped ${UNIQUE_TOKEN} ${CLASS_TOKEN}." + ) + + prompt_test_list=( + "a ${CLASS_TOKEN} in the jungle" + "a ${CLASS_TOKEN} in the snow" + "a ${CLASS_TOKEN} on the beach" + "a ${CLASS_TOKEN} on a cobblestone street" + "a ${CLASS_TOKEN} on top of pink fabric" + "a ${CLASS_TOKEN} on top of a wooden floor" + "a ${CLASS_TOKEN} with a city in the background" + "a ${CLASS_TOKEN} with a mountain in the background" + "a ${CLASS_TOKEN} with a blue house in the background" + "a ${CLASS_TOKEN} on top of a purple rug in a forest" + "a ${CLASS_TOKEN} wearing a red hat" + "a ${CLASS_TOKEN} wearing a santa hat" + "a ${CLASS_TOKEN} wearing a rainbow scarf" + "a ${CLASS_TOKEN} wearing a black top hat and a monocle" + "a ${CLASS_TOKEN} in a chef outfit" + "a ${CLASS_TOKEN} in a firefighter outfit" + "a ${CLASS_TOKEN} in a police outfit" + "a ${CLASS_TOKEN} wearing pink glasses" + "a ${CLASS_TOKEN} wearing a yellow shirt" + "a ${CLASS_TOKEN} in a purple wizard outfit" + "a red ${CLASS_TOKEN}" + "a purple ${CLASS_TOKEN}" + "a shiny ${CLASS_TOKEN}" + "a wet ${CLASS_TOKEN}" + "a cube shaped ${CLASS_TOKEN}" + ) +fi + +VALIDATION_PROMPT=${PROMPT_LIST[@]} +INSTANCE_PROMPT="a photo of ${UNIQUE_TOKEN} ${CLASS_TOKEN}" +CLASS_PROMPT="a photo of ${CLASS_TOKEN}" + +export MODEL_NAME="stabilityai/stable-diffusion-2-1" + +PEFT_TYPE="hra" +HRA_R=8 + +export PROJECT_NAME="dreambooth_${PEFT_TYPE}" +export RUN_NAME="${SELECTED_SUBJECT}_${PEFT_TYPE}_${HRA_R}" +export INSTANCE_DIR="./data/dreambooth/dataset/${SELECTED_SUBJECT}" +export CLASS_DIR="./data/class_data/${CLASS_TOKEN}" +export OUTPUT_DIR="./data/output/${PEFT_TYPE}" + + +accelerate launch train_dreambooth.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --instance_data_dir=$INSTANCE_DIR \ + --class_data_dir="$CLASS_DIR" \ + --output_dir=$OUTPUT_DIR \ + --project_name=$PROJECT_NAME \ + --run_name=$RUN_NAME \ + --with_prior_preservation \ + --prior_loss_weight=1.0 \ + --instance_prompt="$INSTANCE_PROMPT" \ + --validation_prompt="$VALIDATION_PROMPT" \ + --class_prompt="$CLASS_PROMPT" \ + --resolution=512 \ + --train_batch_size=1 \ + --num_dataloader_workers=2 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --num_class_images=200 \ + --use_hra \ + --hra_r=$HRA_R \ + --hra_bias="hra_only" \ + --learning_rate=5e-3 \ + --max_train_steps=510 \ + --checkpointing_steps=200 \ + --validation_steps=200 \ + --enable_xformers_memory_efficient_attention \ + --report_to="none" \ \ No newline at end of file diff --git a/examples/hra_dreambooth/utils/__init__.py b/examples/hra_dreambooth/utils/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/examples/hra_dreambooth/utils/args_loader.py b/examples/hra_dreambooth/utils/args_loader.py new file mode 100644 index 0000000000..83d03d68e3 --- /dev/null +++ b/examples/hra_dreambooth/utils/args_loader.py @@ -0,0 +1,377 @@ +# adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth) + +import argparse +import os +import warnings +from typing import Optional + +from huggingface_hub import HfFolder, whoami +from transformers import PretrainedConfig + + +def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): + text_encoder_config = PretrainedConfig.from_pretrained( + pretrained_model_name_or_path, + subfolder="text_encoder", + revision=revision, + ) + model_class = text_encoder_config.architectures[0] + + if model_class == "CLIPTextModel": + from transformers import CLIPTextModel + + return CLIPTextModel + elif model_class == "RobertaSeriesModelWithTransformation": + from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation + + return RobertaSeriesModelWithTransformation + else: + raise ValueError(f"{model_class} is not supported.") + + +def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): + if token is None: + token = HfFolder.get_token() + if organization is None: + username = whoami(token)["name"] + return f"{username}/{model_id}" + else: + return f"{organization}/{model_id}" + + +def parse_args(input_args=None): + parser = argparse.ArgumentParser(description="Simple example of a Dreambooth training script.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default=None, + required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--revision", + type=str, + default=None, + required=False, + help="Revision of pretrained model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--tokenizer_name", + type=str, + default=None, + help="Pretrained tokenizer name or path if not the same as model_name", + ) + parser.add_argument( + "--instance_data_dir", + type=str, + default=None, + required=True, + help="A folder containing the training data of instance images.", + ) + parser.add_argument( + "--class_data_dir", + type=str, + default=None, + required=False, + help="A folder containing the training data of class images.", + ) + parser.add_argument( + "--instance_prompt", + type=str, + default=None, + required=True, + help="The prompt with identifier specifying the instance", + ) + parser.add_argument( + "--class_prompt", + type=str, + default=None, + help="The prompt to specify images in the same class as provided instance images.", + ) + parser.add_argument( + "--with_prior_preservation", + default=False, + action="store_true", + help="Flag to add prior preservation loss.", + ) + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") + parser.add_argument( + "--num_class_images", + type=int, + default=100, + help=( + "Minimal class images for prior preservation loss. If there are not enough images already present in" + " class_data_dir, additional images will be sampled with class_prompt." + ), + ) + parser.add_argument( + "--validation_prompt", + nargs="+", + help="A prompt that is used during validation to verify that the model is learning.", + ) + parser.add_argument( + "--num_validation_images", + type=int, + default=4, + help="Number of images that should be generated during validation with `validation_prompt`.", + ) + parser.add_argument( + "--validation_steps", + type=int, + default=500, + help=( + "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" + " `args.validation_prompt` multiple times: `args.num_validation_images`." + ), + ) + parser.add_argument( + "--output_dir", + type=str, + default="text-inversion-model", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=512, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" + ) + parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") + + parser.add_argument( + "--set_grads_to_none", + action="store_true", + help=( + "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" + " behaviors, so disable this argument if it causes any problems. More info:" + " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" + ), + ) + + # hra args + parser.add_argument("--use_hra", action="store_true", help="Whether to use HRA for parameter efficient tuning.") + parser.add_argument("--hra_r", type=int, default=8, help="The rank of HRA across different layers.") + parser.add_argument( + "--hra_apply_GS", default=False, action="store_true", help="Whether to apply Gram-Schmidt orthogonalization." + ) + parser.add_argument( + "--hra_bias", + type=str, + default="none", + help="Bias type for HRA. Can be 'none', 'all' or 'hra_only', only used if use_hra is True.", + ) + parser.add_argument( + "--num_dataloader_workers", type=int, default=1, help="Num of workers for the training dataloader." + ) + parser.add_argument( + "--no_tracemalloc", + default=False, + action="store_true", + help="Flag to stop memory allocation tracing during training. This could speed up training on Windows.", + ) + + parser.add_argument( + "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." + ) + parser.add_argument( + "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." + ) + parser.add_argument("--num_train_epochs", type=int, default=1) + parser.add_argument( + "--max_train_steps", + type=int, + default=None, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument( + "--checkpointing_steps", + type=int, + default=500, + help=( + "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" + " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" + " training using `--resume_from_checkpoint`." + ), + ) + parser.add_argument( + "--resume_from_checkpoint", + type=str, + default=None, + help=( + "Whether training should be resumed from a previous checkpoint. Use a path saved by" + ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' + ), + ) + parser.add_argument( + "--gradient_accumulation_steps", + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.", + ) + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + parser.add_argument( + "--learning_rate", + type=float, + default=5e-6, + help="Initial learning rate (after the potential warmup period) to use.", + ) + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--lr_num_cycles", + type=int, + default=1, + help="Number of hard resets of the lr in cosine_with_restarts scheduler.", + ) + parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") + parser.add_argument( + "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." + ) + parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") + parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") + parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") + parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") + parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") + parser.add_argument( + "--hub_model_id", + type=str, + default=None, + help="The name of the repository to keep in sync with the local `output_dir`.", + ) + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + parser.add_argument( + "--allow_tf32", + action="store_true", + help=( + "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" + " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" + ), + ) + parser.add_argument( + "--project_name", + type=str, + default=None, + help=("The project name for log tracking"), + ) + parser.add_argument( + "--run_name", + type=str, + default=None, + help=("The run name for log tracking"), + ) + parser.add_argument( + "--report_to", + type=str, + default="wandb", + help=( + 'The integration to report the results and logs to. Supported platforms are `"wandb"`' + ' (default), `"tensorboard"` and `"comet_ml"`. Use `"all"` to report to all integrations.' + ), + ) + parser.add_argument( + "--wandb_key", + type=str, + default=None, + help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), + ) + parser.add_argument( + "--wandb_project_name", + type=str, + default=None, + help=("If report to option is set to wandb, project name in wandb for log tracking "), + ) + parser.add_argument( + "--wandb_run_name", + type=str, + default=None, + help=("If report to option is set to wandb, project name in wandb for log tracking "), + ) + parser.add_argument( + "--mixed_precision", + type=str, + default=None, + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" + " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" + " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." + ), + ) + parser.add_argument( + "--prior_generation_precision", + type=str, + default=None, + choices=["no", "fp32", "fp16", "bf16"], + help=( + "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" + " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." + ), + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + parser.add_argument( + "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." + ) + + if input_args is not None: + args = parser.parse_args(input_args) + else: + args = parser.parse_args() + + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + # Sanity checks + # if args.dataset_name is None and args.train_data_dir is None: + # raise ValueError("Need either a dataset name or a training folder.") + + if args.with_prior_preservation: + if args.class_data_dir is None: + raise ValueError("You must specify a data directory for class images.") + if args.class_prompt is None: + raise ValueError("You must specify prompt for class images.") + else: + # logger is not available yet + if args.class_data_dir is not None: + warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") + if args.class_prompt is not None: + warnings.warn("You need not use --class_prompt without --with_prior_preservation.") + + return args diff --git a/examples/hra_dreambooth/utils/dataset.py b/examples/hra_dreambooth/utils/dataset.py new file mode 100644 index 0000000000..8adb0976ff --- /dev/null +++ b/examples/hra_dreambooth/utils/dataset.py @@ -0,0 +1,128 @@ +# adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth) + +from pathlib import Path + +import torch +from PIL import Image +from torch.utils.data import Dataset +from torchvision import transforms + + +class DreamBoothDataset(Dataset): + """ + A dataset to prepare the instance and class images with the prompts for fine-tuning the model. + It pre-processes the images and the tokenizes prompts. + """ + + def __init__( + self, + instance_data_root, + instance_prompt, + tokenizer, + class_data_root=None, + class_prompt=None, + size=512, + center_crop=False, + ): + self.size = size + self.center_crop = center_crop + self.tokenizer = tokenizer + + self.instance_data_root = Path(instance_data_root) + if not self.instance_data_root.exists(): + raise ValueError("Instance images root doesn't exists.") + + self.instance_images_path = list(Path(instance_data_root).iterdir()) + self.num_instance_images = len(self.instance_images_path) + self.instance_prompt = instance_prompt + self._length = self.num_instance_images + + if class_data_root is not None: + self.class_data_root = Path(class_data_root) + self.class_data_root.mkdir(parents=True, exist_ok=True) + self.class_images_path = list(self.class_data_root.iterdir()) + self.num_class_images = len(self.class_images_path) + self._length = max(self.num_class_images, self.num_instance_images) + self.class_prompt = class_prompt + else: + self.class_data_root = None + + self.image_transforms = transforms.Compose( + [ + transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def __len__(self): + return self._length + + def __getitem__(self, index): + example = {} + instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) + if not instance_image.mode == "RGB": + instance_image = instance_image.convert("RGB") + example["instance_images"] = self.image_transforms(instance_image) + example["instance_prompt_ids"] = self.tokenizer( + self.instance_prompt, + truncation=True, + padding="max_length", + max_length=self.tokenizer.model_max_length, + return_tensors="pt", + ).input_ids + + if self.class_data_root: + class_image = Image.open(self.class_images_path[index % self.num_class_images]) + if not class_image.mode == "RGB": + class_image = class_image.convert("RGB") + example["class_images"] = self.image_transforms(class_image) + example["class_prompt_ids"] = self.tokenizer( + self.class_prompt, + truncation=True, + padding="max_length", + max_length=self.tokenizer.model_max_length, + return_tensors="pt", + ).input_ids + + return example + + +def collate_fn(examples, with_prior_preservation=False): + input_ids = [example["instance_prompt_ids"] for example in examples] + pixel_values = [example["instance_images"] for example in examples] + + # Concat class and instance examples for prior preservation. + # We do this to avoid doing two forward passes. + if with_prior_preservation: + input_ids += [example["class_prompt_ids"] for example in examples] + pixel_values += [example["class_images"] for example in examples] + + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + + input_ids = torch.cat(input_ids, dim=0) + + batch = { + "input_ids": input_ids, + "pixel_values": pixel_values, + } + return batch + + +class PromptDataset(Dataset): + "A simple dataset to prepare the prompts to generate class images on multiple GPUs." + + def __init__(self, prompt, num_samples): + self.prompt = prompt + self.num_samples = num_samples + + def __len__(self): + return self.num_samples + + def __getitem__(self, index): + example = {} + example["prompt"] = self.prompt + example["index"] = index + return example diff --git a/examples/hra_dreambooth/utils/tracemalloc.py b/examples/hra_dreambooth/utils/tracemalloc.py new file mode 100644 index 0000000000..8cef2cf5c4 --- /dev/null +++ b/examples/hra_dreambooth/utils/tracemalloc.py @@ -0,0 +1,60 @@ +# adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth) + +import gc +import threading + +import psutil +import torch + + +# Converting Bytes to Megabytes +def b2mb(x): + return int(x / 2**20) + + +# This context manager is used to track the peak memory usage of the process +class TorchTracemalloc: + def __enter__(self): + gc.collect() + torch.cuda.empty_cache() + torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero + self.begin = torch.cuda.memory_allocated() + self.process = psutil.Process() + + self.cpu_begin = self.cpu_mem_used() + self.peak_monitoring = True + peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) + peak_monitor_thread.daemon = True + peak_monitor_thread.start() + return self + + def cpu_mem_used(self): + """get resident set size memory for the current process""" + return self.process.memory_info().rss + + def peak_monitor_func(self): + self.cpu_peak = -1 + + while True: + self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak) + + # can't sleep or will not catch the peak right (this comment is here on purpose) + # time.sleep(0.001) # 1msec + + if not self.peak_monitoring: + break + + def __exit__(self, *exc): + self.peak_monitoring = False + + gc.collect() + torch.cuda.empty_cache() + self.end = torch.cuda.memory_allocated() + self.peak = torch.cuda.max_memory_allocated() + self.used = b2mb(self.end - self.begin) + self.peaked = b2mb(self.peak - self.begin) + + self.cpu_end = self.cpu_mem_used() + self.cpu_used = b2mb(self.cpu_end - self.cpu_begin) + self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin) + # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") diff --git a/src/peft/__init__.py b/src/peft/__init__.py index 017ecd3c1c..a500e98949 100644 --- a/src/peft/__init__.py +++ b/src/peft/__init__.py @@ -86,6 +86,8 @@ FourierFTModel, XLoraConfig, XLoraModel, + HRAConfig, + HRAModel, ) from .utils import ( TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, diff --git a/src/peft/mapping.py b/src/peft/mapping.py index 6c7caa554f..59a2f10217 100644 --- a/src/peft/mapping.py +++ b/src/peft/mapping.py @@ -40,6 +40,8 @@ BOFTModel, FourierFTConfig, FourierFTModel, + HRAConfig, + HRAModel, IA3Config, IA3Model, LNTuningConfig, @@ -97,6 +99,7 @@ "VERA": VeraConfig, "FOURIERFT": FourierFTConfig, "XLORA": XLoraConfig, + "HRA": HRAConfig, } PEFT_TYPE_TO_TUNER_MAPPING: dict[str, type[_BaseTuner]] = { @@ -112,6 +115,7 @@ "VERA": VeraModel, "FOURIERFT": FourierFTModel, "XLORA": XLoraModel, + "HRA": HRAModel, } diff --git a/src/peft/peft_model.py b/src/peft/peft_model.py index 9782ba2411..22216577b4 100644 --- a/src/peft/peft_model.py +++ b/src/peft/peft_model.py @@ -44,6 +44,7 @@ AdaptionPromptModel, BOFTModel, FourierFTModel, + HRAModel, IA3Model, LNTuningModel, LoHaModel, @@ -96,6 +97,7 @@ PeftType.VERA: VeraModel, PeftType.FOURIERFT: FourierFTModel, PeftType.XLORA: XLoraModel, + PeftType.HRA: HRAModel, } diff --git a/src/peft/tuners/__init__.py b/src/peft/tuners/__init__.py index b82bd57ea5..ad6c838651 100644 --- a/src/peft/tuners/__init__.py +++ b/src/peft/tuners/__init__.py @@ -35,3 +35,4 @@ from .vera import VeraConfig, VeraModel from .fourierft import FourierFTConfig, FourierFTModel from .xlora import XLoraConfig, XLoraModel +from .hra import HRAConfig, HRAModel diff --git a/src/peft/tuners/hra/__init__.py b/src/peft/tuners/hra/__init__.py new file mode 100644 index 0000000000..08e57cc57d --- /dev/null +++ b/src/peft/tuners/hra/__init__.py @@ -0,0 +1,20 @@ +# Copyright 2024-present the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .config import HRAConfig +from .layer import HRAConv2d, HRALayer, HRALinear +from .model import HRAModel + + +__all__ = ["HRAConfig", "HRAModel", "HRAConv2d", "HRALinear", "HRALayer"] diff --git a/src/peft/tuners/hra/config.py b/src/peft/tuners/hra/config.py new file mode 100644 index 0000000000..1b5457d9af --- /dev/null +++ b/src/peft/tuners/hra/config.py @@ -0,0 +1,116 @@ +# Copyright 2024-present the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from dataclasses import dataclass, field +from typing import List, Optional, Union + +from peft.config import PeftConfig +from peft.utils import PeftType + + +@dataclass +class HRAConfig(PeftConfig): + """ + This is the configuration class to store the configuration of a [`HRAModel`]. + + Args: + r (`int`): + The rank of HRA across different layers. It is best to set 'r' to an even number; otherwise, the default + initialization method will not work. + apply_GS (`bool`): + Whether to apply Gram-Schmidt orthogonalization. + target_modules (`Optional[Union[List[str], str]]`): + The names of the modules to apply the adapter to. If this is specified, only the modules with the specified + names will be replaced. When passing a string, a regex match will be performed. When passing a list of + strings, either an exact match will be performed or it is checked if the name of the module ends with any + of the passed strings. If this is specified as 'all-linear', then all linear modules are chosen, excluding + the output layer. If this is not specified, modules will be chosen according to the model architecture. If + the architecture is not known, an error will be raised -- in this case, you should specify the target + modules manually. + init_weights (`bool`): + Whether to perform initialization of HRA weights. + layers_to_transform (`Union[List[int], int]`): + The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices + that are specified in this list. If a single integer is passed, it will apply the transformations on the + layer at this index. + layers_pattern (`str`): + The layer pattern name, used only if `layers_to_transform` is different from `None`. + rank_pattern (`dict`): + The mapping from layer names or regexp expression to ranks which are different from the default rank + specified by `r`. + modules_to_save (`List[str]`): + List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint. + """ + + r: int = field( + default=8, + metadata={ + "help": "The rank of HRA across different layers.", + "note": "It is best to set 'r' to an even number; otherwise, the default initialization method will not work.", + }, + ) + apply_GS: bool = field( + default=False, + metadata={"help": "Whether to apply Gram-Schmidt orthogonalization or not."}, + ) + target_modules: Optional[Union[List[str], str]] = field( + default=None, + metadata={ + "help": "List of module names or regex expression of the module names to replace with HRA.", + "example": "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' ", + }, + ) + init_weights: bool = field( + default=True, + metadata={ + "help": ( + "Whether to initialize the weights of the HRA layers with their default initialization. Don't change " + "this setting, except if you know exactly what you're doing." + ), + }, + ) + layers_to_transform: Optional[Union[List[int], int]] = field( + default=None, + metadata={ + "help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index." + }, + ) + layers_pattern: Optional[str] = field( + default=None, + metadata={ + "help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern." + }, + ) + bias: str = field(default="none", metadata={"help": "Bias type for HRA. Can be 'none', 'all' or 'hra_only'"}) + modules_to_save: Optional[List[str]] = field( + default=None, + metadata={ + "help": "List of modules apart from HRA layers to be set as trainable and saved in the final checkpoint. " + "For example, in Sequence Classification or Token Classification tasks, " + "the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved." + }, + ) + + def __post_init__(self): + self.peft_type = PeftType.HRA + self.target_modules = ( + set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules + ) + # if target_modules is a regex expression, then layers_to_transform should be None + if isinstance(self.target_modules, str) and self.layers_to_transform is not None: + raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.") + + # if target_modules is a regex expression, then layers_pattern should be None + if isinstance(self.target_modules, str) and self.layers_pattern is not None: + raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.") diff --git a/src/peft/tuners/hra/layer.py b/src/peft/tuners/hra/layer.py new file mode 100644 index 0000000000..f4fd553532 --- /dev/null +++ b/src/peft/tuners/hra/layer.py @@ -0,0 +1,435 @@ +# Copyright 2024-present the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import warnings +from typing import Any, List, Optional, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge + + +class HRALayer(BaseTunerLayer): + # All names of layers that may contain (trainable) adapter weights + adapter_layer_names = ("hra_u",) + # All names of other parameters that may contain adapter-related parameters + other_param_names = ("hra_r", "hra_apply_GS") + + def __init__(self, base_layer: nn.Module, **kwargs) -> None: + self.base_layer = base_layer + self.hra_r = {} + self.hra_apply_GS = {} + self.hra_u = nn.ParameterDict({}) + # Mark the weight as unmerged + self._disable_adapters = False + self.merged_adapters = [] + self.kwargs = kwargs + + base_layer = self.get_base_layer() + if isinstance(base_layer, nn.Linear): + self.in_features, self.out_features = base_layer.in_features, base_layer.out_features + elif isinstance(base_layer, nn.Conv2d): + self.in_features, self.out_features = base_layer.in_channels, base_layer.out_channels + else: + raise ValueError(f"Unsupported layer type {type(base_layer)}") + + def update_layer( + self, + adapter_name: str, + r: int, + apply_GS: bool, + init_weights: bool, + **kwargs, + ) -> None: + """Internal function to create hra adapter + + Args: + adapter_name (`str`): Name for the adapter to add. + r (`int`): Rank for the added adapter. + init_weights (`bool`): Whether to initialize weights. + apply_GS (`bool`): Whether to apply Gram-Schmidt orthogonalization or not. + """ + if r <= 0: + raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") + + self.hra_r[adapter_name] = r + self.hra_apply_GS[adapter_name] = apply_GS + + # Determine shape of HRA weights + base_layer = self.get_base_layer() + if isinstance(base_layer, nn.Linear): + self.hra_u[adapter_name] = nn.Parameter(torch.empty(self.in_features, r), requires_grad=True) + elif isinstance(base_layer, nn.Conv2d): + self.hra_u[adapter_name] = nn.Parameter( + torch.empty(self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], r), + requires_grad=True, + ) + else: + raise TypeError(f"HRA is not implemented for base layers of type {type(base_layer).__name__}") + + # Initialize weights + if init_weights: + self.reset_hra_parameters(adapter_name) + else: + self.reset_hra_parameters_random(adapter_name) + + # Move new weights to device + self._move_adapter_to_device_of_base_layer(adapter_name) + self.set_adapter(self.active_adapters) + + def reset_hra_parameters(self, adapter_name: str): + if self.hra_r[adapter_name] % 2 != 0: + warnings.warn("The symmetric initialization can NOT be performed when r is odd!") + nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5)) + else: + shape = self.hra_u[adapter_name].shape + half_u = torch.zeros(shape[0], shape[1] // 2) + nn.init.kaiming_uniform_(half_u, a=math.sqrt(5)) + self.hra_u[adapter_name] = nn.Parameter(torch.repeat_interleave(half_u, 2, dim=1)) + + def reset_hra_parameters_random(self, adapter_name: str): + nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5)) + + def scale_layer(self, scale: float) -> None: + if scale == 1: + return + + for active_adapter in self.active_adapters: + if active_adapter not in self.hra_u.keys(): + continue + + warnings.warn("Scaling operation for HRA not supported! Automatically set scale to 1.") + + def unscale_layer(self, scale=None) -> None: + for active_adapter in self.active_adapters: + if active_adapter not in self.hra_u.keys(): + continue + + warnings.warn("Unscaling operation for HRA not supported! Keeping scale at 1.") + + +class HRALinear(nn.Module, HRALayer): + """ + HRA implemented in a dense layer. + """ + + def __init__( + self, + base_layer, + adapter_name: str, + r: int = 0, + apply_GS: bool = False, + init_weights: Union[bool, str] = True, + **kwargs, + ) -> None: + super().__init__() + HRALayer.__init__(self, base_layer, **kwargs) + self._active_adapter = adapter_name + self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs) + + def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: + """ + Merge the active adapter weights into the base weights + + Args: + safe_merge (`bool`, *optional*): + If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs + before merging the weights. This is useful if you want to check if the merge operation will produce + NaNs. Defaults to `False`. + adapter_names (`List[str]`, *optional*): + The list of adapter names that should be merged. If `None`, all active adapters will be merged. + Defaults to `None`. + """ + adapter_names = check_adapters_to_merge(self, adapter_names) + if not adapter_names: + # no adapter to merge + return + + for active_adapter in adapter_names: + if active_adapter in self.hra_u.keys(): + base_layer = self.get_base_layer() + if safe_merge: + # Note that safe_merge will be slower than the normal merge + # because of the copy operation. + orig_weight = base_layer.weight.data.clone() + delta_weight = self.get_delta_weight(active_adapter) + orig_weight = torch.mm(orig_weight, delta_weight) + + if not torch.isfinite(orig_weight).all(): + raise ValueError( + f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" + ) + + self.base_layer.weight.data = orig_weight + else: + delta_weight = self.get_delta_weight(active_adapter) + self.base_layer.weight.data = torch.mm(self.base_layer.weight.data, delta_weight) + self.merged_adapters.append(active_adapter) + + def unmerge(self) -> None: + """ + This method unmerges all merged adapter layers from the base weights. + """ + if not self.merged: + warnings.warn("Already unmerged. Nothing to do.") + return + while len(self.merged_adapters) > 0: + active_adapter = self.merged_adapters.pop() + if active_adapter in self.hra_u.keys(): + orig_weight = self.get_base_layer().weight.data.clone() + delta_weight = self.get_delta_weight(active_adapter, reverse=True) + self.get_base_layer().weight.data = torch.mm(orig_weight, delta_weight) + + def get_delta_weight(self, adapter_name: str, reverse: bool = False) -> torch.Tensor: + rank = self.hra_r[adapter_name] + apply_GS = self.hra_apply_GS[adapter_name] + opt_u = self.hra_u[adapter_name] + shape = opt_u.shape + + if apply_GS: + weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)] + for i in range(1, rank): + ui = opt_u[:, i].view(-1, 1) + for j in range(i): + ui = ui - (weight[j].t() @ ui) * weight[j] + weight.append((ui / ui.norm()).view(-1, 1)) + weight = torch.cat(weight, dim=1) + weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t() + + else: + opt_u = opt_u / opt_u.norm(dim=0) + weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) + if reverse: + indices = range(rank - 1, -1, -1) + else: + indices = range(rank) + + for i in indices: + ui = opt_u[:, i].view(-1, 1) + weight = weight @ (torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * ui @ ui.t()) + + return weight + + def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: + previous_dtype = x.dtype + + if self.disable_adapters: + if self.merged: + self.unmerge() + result = self.base_layer(x, *args, **kwargs) + elif self.merged: + result = self.base_layer(x, *args, **kwargs) + else: + new_weight = torch.eye(self.in_features, device=x.device) + + for active_adapter in self.active_adapters: + if active_adapter not in self.hra_u.keys(): + continue + delta_weight = self.get_delta_weight(active_adapter) + new_weight = torch.mm(new_weight, delta_weight) + + x = x.to(self.get_base_layer().weight.data.dtype) + orig_weight = self.get_base_layer().weight.data + new_weight = torch.mm(orig_weight, new_weight) + + result = F.linear(input=x, weight=new_weight, bias=self.base_layer.bias) + + result = result.to(previous_dtype) + return result + + def __repr__(self) -> str: + rep = super().__repr__() + return "hra." + rep + + +class HRAConv2d(nn.Module, HRALayer): + """HRA implemented in Conv2d layer""" + + def __init__( + self, + base_layer, + adapter_name: str, + r: int = 0, + apply_GS: bool = False, + init_weights: Union[bool, str] = True, + **kwargs, + ): + super().__init__() + HRALayer.__init__(self, base_layer) + self._active_adapter = adapter_name + self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs) + + def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: + """ + Merge the active adapter weights into the base weights + + Args: + safe_merge (`bool`, *optional*): + If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs + before merging the weights. This is useful if you want to check if the merge operation will produce + NaNs. Defaults to `False`. + adapter_names (`List[str]`, *optional*): + The list of adapter names that should be merged. If `None`, all active adapters will be merged. + Defaults to `None`. + """ + adapter_names = check_adapters_to_merge(self, adapter_names) + if not adapter_names: + # no adapter to merge + return + + for active_adapter in adapter_names: + if active_adapter in self.hra_u.keys(): + base_layer = self.get_base_layer() + if safe_merge: + # Note that safe_merge will be slower than the normal merge + # because of the copy operation. + orig_weight = base_layer.weight.data.clone() + orig_weight = orig_weight.view( + self.out_features, + self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], + ) + delta_weight = self.get_delta_weight(active_adapter) + orig_weight = torch.mm(orig_weight, delta_weight) + orig_weight = orig_weight.view( + self.out_features, + self.in_features, + self.base_layer.kernel_size[0], + self.base_layer.kernel_size[0], + ) + + if not torch.isfinite(orig_weight).all(): + raise ValueError( + f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" + ) + + self.base_layer.weight.data = orig_weight + else: + orig_weight = base_layer.weight.data + orig_weight = orig_weight.view( + self.out_features, + self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], + ) + delta_weight = self.get_delta_weight(active_adapter) + orig_weight = torch.mm(orig_weight, delta_weight) + orig_weight = orig_weight.view( + self.out_features, + self.in_features, + self.base_layer.kernel_size[0], + self.base_layer.kernel_size[0], + ) + + self.base_layer.weight.data = orig_weight + self.merged_adapters.append(active_adapter) + + def unmerge(self) -> None: + """ + This method unmerges all merged adapter layers from the base weights. + """ + if not self.merged: + warnings.warn("Already unmerged. Nothing to do.") + return + while len(self.merged_adapters) > 0: + active_adapter = self.merged_adapters.pop() + if active_adapter in self.hra_u.keys(): + orig_weight = self.get_base_layer().weight.data.clone() + orig_weight = orig_weight.view( + self.out_features, + self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], + ) + delta_weight = self.get_delta_weight(active_adapter, reverse=True) + orig_weight = torch.mm(orig_weight, delta_weight) + orig_weight = orig_weight.view( + self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0] + ) + + self.get_base_layer().weight.data = orig_weight + + def get_delta_weight(self, adapter_name: str, reverse: bool = False) -> torch.Tensor: + rank = self.hra_r[adapter_name] + apply_GS = self.hra_apply_GS[adapter_name] + opt_u = self.hra_u[adapter_name] + shape = opt_u.shape + + if apply_GS: + weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)] + for i in range(1, rank): + ui = opt_u[:, i].view(-1, 1) + for j in range(i): + ui = ui - (weight[j].t() @ ui) * weight[j] + weight.append((ui / ui.norm()).view(-1, 1)) + weight = torch.cat(weight, dim=1) + weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t() + + else: + opt_u = opt_u / opt_u.norm(dim=0) + weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) + if reverse: + indices = range(rank - 1, -1, -1) + else: + indices = range(rank) + + for i in indices: + ui = opt_u[:, i].view(-1, 1) + weight = weight @ (torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * ui @ ui.t()) + + return weight + + def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: + previous_dtype = x.dtype + + if self.disable_adapters: + if self.merged: + self.unmerge() + result = self.base_layer(x, *args, **kwargs) + elif self.merged: + result = self.base_layer(x, *args, **kwargs) + else: + new_weight = torch.eye( + self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], device=x.device + ) + for active_adapter in self.active_adapters: + if active_adapter not in self.hra_u.keys(): + continue + delta_weight = self.get_delta_weight(active_adapter) + new_weight = torch.mm(new_weight, delta_weight) + + x = x.to(self.base_layer.weight.data.dtype) + + orig_weight = self.base_layer.weight.data + orig_weight = orig_weight.view( + self.out_features, + self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], + ) + new_weight = torch.mm(orig_weight, new_weight) + new_weight = new_weight.view( + self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0] + ) + + result = F.conv2d( + input=x, + weight=new_weight, + bias=self.base_layer.bias, + padding=self.base_layer.padding[0], + stride=self.base_layer.stride[0], + ) + + result = result.to(previous_dtype) + return result + + def __repr__(self) -> str: + rep = super().__repr__() + return "hra." + rep diff --git a/src/peft/tuners/hra/model.py b/src/peft/tuners/hra/model.py new file mode 100644 index 0000000000..64ad71d074 --- /dev/null +++ b/src/peft/tuners/hra/model.py @@ -0,0 +1,337 @@ +# Copyright 2024-present the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import warnings +from dataclasses import asdict +from enum import Enum +from typing import List, Optional + +import torch +from torch import nn +from tqdm import tqdm + +from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists +from peft.utils import ( + TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, + ModulesToSaveWrapper, + _get_submodules, +) + +from .config import HRAConfig +from .layer import HRAConv2d, HRALayer, HRALinear + + +class HRAModel(BaseTuner): + """ + Creates Householder reflection adaptation (HRA) model from a pretrained model. The method is described in + https://arxiv.org/abs/2405.17484 + + Args: + model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached. + config ([`HRAConfig`]): The configuration of the HRA model. + adapter_name (`str`): The name of the adapter, defaults to `"default"`. + + Returns: + `torch.nn.Module`: The HRA model. + + Example: + ```py + >>> from diffusers import StableDiffusionPipeline + >>> from peft import HRAModel, HRAConfig + + >>> config_te = HRAConfig( + ... r=8, + ... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], + ... init_weights=True, + ... ) + >>> config_unet = HRAConfig( + ... r=8, + ... target_modules=[ + ... "proj_in", + ... "proj_out", + ... "to_k", + ... "to_q", + ... "to_v", + ... "to_out.0", + ... "ff.net.0.proj", + ... "ff.net.2", + ... ], + ... init_weights=True, + ... ) + + >>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> model.text_encoder = HRAModel(model.text_encoder, config_te, "default") + >>> model.unet = HRAModel(model.unet, config_unet, "default") + ``` + + **Attributes**: + - **model** ([`~torch.nn.Module`]) -- The model to be adapted. + - **peft_config** ([`HRAConfig`]): The configuration of the HRA model. + """ + + prefix: str = "hra_" + + def _check_new_adapter_config(self, config: HRAConfig) -> None: + """ + A helper method to check the config when a new adapter is being added. + + Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. + + """ + # TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check + # does not fully correspond to the error message. + if (len(self.peft_config) > 1) and (config.bias != "none"): + raise ValueError( + f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " + "set bias to 'none' for all adapters." + ) + + @staticmethod + def _check_target_module_exists(hra_config, key): + return check_target_module_exists(hra_config, key) + + def _create_and_replace( + self, + hra_config, + adapter_name, + target, + target_name, + parent, + current_key, + **optional_kwargs, + ): + if current_key is None: + raise ValueError("Current Key shouldn't be `None`") + + bias = hasattr(target, "bias") and target.bias is not None + kwargs = { + "r": hra_config.r, + "apply_GS": hra_config.apply_GS, + "init_weights": hra_config.init_weights, + } + kwargs["bias"] = bias + + # If it is not a HRALayer, create a new module, else update it with new adapters + if not isinstance(target, HRALayer): + new_module = self._create_new_module(hra_config, adapter_name, target, **kwargs) + if adapter_name not in self.active_adapters: + # adding an additional adapter: it is not automatically trainable + new_module.requires_grad_(False) + self._replace_module(parent, target_name, new_module, target) + else: + target.update_layer( + adapter_name, + r=hra_config.r, + apply_GS=hra_config.apply_GS, + init_weights=hra_config.init_weights, + ) + + def _replace_module(self, parent, child_name, new_module, child): + setattr(parent, child_name, new_module) + # It's not necessary to set requires_grad here, as that is handled by + # _mark_only_adapters_as_trainable + + # child layer wraps the original module, unpack it + if hasattr(child, "base_layer"): + child = child.base_layer + + if not hasattr(new_module, "base_layer"): + new_module.weight = child.weight + if hasattr(child, "bias"): + new_module.bias = child.bias + + if getattr(child, "state", None) is not None: + if hasattr(new_module, "base_layer"): + new_module.base_layer.state = child.state + else: + new_module.state = child.state + new_module.to(child.weight.device) + + # dispatch to correct device + for name, module in new_module.named_modules(): + if self.prefix in name: + module.to(child.weight.device) + + def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: + for n, p in model.named_parameters(): + if self.prefix not in n: + p.requires_grad = False + + for active_adapter in self.active_adapters: + bias = self.peft_config[active_adapter].bias + if bias == "none": + continue + + if bias == "all": + for n, p in model.named_parameters(): + if "bias" in n: + p.requires_grad = True + elif bias == "hra_only": + for name, m in model.named_modules(): + if isinstance(m, HRALayer) and hasattr(m, "bias") and m.bias is not None: + m.bias.requires_grad = True + else: + raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") + + @staticmethod + def _create_new_module(hra_config, adapter_name, target, **kwargs): + if isinstance(target, BaseTunerLayer): + target_base_layer = target.get_base_layer() + else: + target_base_layer = target + + if isinstance(target_base_layer, torch.nn.Linear): + new_module = HRALinear(target, adapter_name, **kwargs) + elif isinstance(target_base_layer, torch.nn.Conv2d): + new_module = HRAConv2d(target, adapter_name, **kwargs) + else: + raise ValueError( + f"Target module {target} is not supported. " + "Currently, only `torch.nn.Linear` and `torch.nn.Conv2d` are supported." + ) + + return new_module + + def __getattr__(self, name: str): + """Forward missing attributes to the wrapped module.""" + try: + return super().__getattr__(name) # defer to nn.Module's logic + except AttributeError: + if name == "base_model": + raise + return getattr(self.model, name) + + def get_peft_config_as_dict(self, inference: bool = False): + config_dict = {} + for key, value in self.peft_config.items(): + config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} + if inference: + config["inference_mode"] = True + config_dict[key] = config + return config + + def _set_adapter_layers(self, enabled=True): + for module in self.model.modules(): + if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): + module.enable_adapters(enabled) + + def enable_adapter_layers(self): + self._set_adapter_layers(enabled=True) + + def disable_adapter_layers(self): + for active_adapter in self.active_adapters: + val = self.peft_config[active_adapter].bias + if val != "none": + msg = ( + f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " + "output as the the base model would without adaption." + ) + warnings.warn(msg) + self._set_adapter_layers(enabled=False) + + def set_adapter(self, adapter_name): + for module in self.model.modules(): + if isinstance(module, HRALayer): + if module.merged: + warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") + module.unmerge() + module.set_adapter(adapter_name) + self.active_adapter = adapter_name + + @staticmethod + def _prepare_adapter_config(peft_config, model_config): + if peft_config.target_modules is None: + if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: + raise ValueError("Please specify `target_modules` in `peft_config`") + peft_config.target_modules = set( + TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]] + ) + return peft_config + + def _unload_and_optionally_merge( + self, + merge=True, + progressbar: bool = False, + safe_merge: bool = False, + adapter_names: Optional[List[str]] = None, + ): + self._unloading_checks(adapter_names) + key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] + desc = "Unloading " + ("and merging " if merge else "") + "model" + for key in tqdm(key_list, disable=not progressbar, desc=desc): + try: + parent, target, target_name = _get_submodules(self.model, key) + except AttributeError: + continue + + if hasattr(target, "base_layer"): + if merge: + target.merge(safe_merge=safe_merge, adapter_names=adapter_names) + self._replace_module(parent, target_name, target.get_base_layer(), target) + elif isinstance(target, ModulesToSaveWrapper): + # save any additional trainable modules part of `modules_to_save` + setattr(parent, target_name, target.modules_to_save[target.active_adapter]) + + return self.model + + def delete_adapter(self, adapter_name: str) -> None: + """ + Deletes an existing adapter. + + Args: + adapter_name (str): Name of the adapter to be deleted. + """ + if adapter_name not in list(self.peft_config.keys()): + raise ValueError(f"Adapter {adapter_name} does not exist") + del self.peft_config[adapter_name] + + key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] + new_adapter = None + for key in key_list: + _, target, _ = _get_submodules(self.model, key) + if isinstance(target, HRALayer): + target.delete_adapter(adapter_name) + if new_adapter is None: + new_adapter = target.active_adapters[:] + + self.active_adapter = new_adapter or [] + + def merge_and_unload( + self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[List[str]] = None + ) -> torch.nn.Module: + r""" + This method merges the HRA layers into the base model. This is needed if someone wants to use the base model as + a standalone model. + + Args: + progressbar (`bool`): + whether to show a progressbar indicating the unload and merge process + safe_merge (`bool`): + whether to activate the safe merging check to check if there is any potential Nan in the adapter + weights + adapter_names (`List[str]`, *optional*): + The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults + to `None`. + + """ + return self._unload_and_optionally_merge( + progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names + ) + + def unload(self) -> torch.nn.Module: + """ + Gets back the base model by removing all the hra modules without merging. This gives back the original base + model. + """ + return self._unload_and_optionally_merge(merge=False) diff --git a/src/peft/utils/peft_types.py b/src/peft/utils/peft_types.py index c678b0b80e..ed82c1d724 100644 --- a/src/peft/utils/peft_types.py +++ b/src/peft/utils/peft_types.py @@ -41,6 +41,7 @@ class PeftType(str, enum.Enum): - LN_TUNING - VERA - FOURIERFT + - HRA """ PROMPT_TUNING = "PROMPT_TUNING" @@ -60,6 +61,7 @@ class PeftType(str, enum.Enum): VERA = "VERA" FOURIERFT = "FOURIERFT" XLORA = "XLORA" + HRA = "HRA" class TaskType(str, enum.Enum): diff --git a/src/peft/utils/save_and_load.py b/src/peft/utils/save_and_load.py index 292c036bad..cd64c9a06e 100644 --- a/src/peft/utils/save_and_load.py +++ b/src/peft/utils/save_and_load.py @@ -176,12 +176,12 @@ def renamed_dora_weights(k): ) to_return["base_model.vera_A." + adapter_name] = state_dict["base_model.vera_A." + adapter_name] to_return["base_model.vera_B." + adapter_name] = state_dict["base_model.vera_B." + adapter_name] - elif config.peft_type == PeftType.FOURIERFT: to_return = {k: state_dict[k] for k in state_dict if "fourierft_" in k} - elif config.peft_type == PeftType.XLORA: to_return = {k: state_dict[k] for k in state_dict if "internal_xlora_classifier" in k} + elif config.peft_type == PeftType.HRA: + to_return = {k: state_dict[k] for k in state_dict if "hra_" in k} else: raise ValueError(f"Unknown PEFT type passed: {config.peft_type}") @@ -320,6 +320,7 @@ def set_peft_model_state_dict( PeftType.BOFT, PeftType.VERA, PeftType.FOURIERFT, + PeftType.HRA, ): peft_model_state_dict = {} parameter_prefix = { @@ -334,6 +335,7 @@ def set_peft_model_state_dict( PeftType.LN_TUNING: "ln_tuning_", PeftType.VERA: "vera_lambda_", PeftType.FOURIERFT: "fourierft_", + PeftType.HRA: "hra_", }[config.peft_type] for k, v in state_dict.items(): if parameter_prefix in k: diff --git a/tests/test_common_gpu.py b/tests/test_common_gpu.py index 6039d7d850..1d9193b126 100644 --- a/tests/test_common_gpu.py +++ b/tests/test_common_gpu.py @@ -18,10 +18,13 @@ import pytest import torch import torch.nn.functional as F +from datasets import load_dataset from parameterized import parameterized from torch import nn from transformers import ( + AutoImageProcessor, AutoModelForCausalLM, + AutoModelForImageClassification, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, @@ -36,6 +39,7 @@ AdaLoraConfig, AdaptionPromptConfig, BOFTConfig, + HRAConfig, IA3Config, LNTuningConfig, LoHaConfig, @@ -1088,6 +1092,7 @@ def test_8bit_dora_merging(self): @pytest.mark.single_gpu_tests def test_dora_ephemeral_gpu_offload(self): torch.manual_seed(0) + model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, @@ -1140,6 +1145,7 @@ def test_dora_ephemeral_gpu_offload(self): @pytest.mark.multi_gpu_tests def test_dora_ephemeral_gpu_offload_multigpu(self): torch.manual_seed(0) + model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", torch_dtype=torch.float32, @@ -1164,6 +1170,79 @@ def test_dora_ephemeral_gpu_offload_multigpu(self): layer.lora_A, layer.lora_B = la, lb layer.dora_init(layer.active_adapter[0]) # should not raise an error + def test_apply_GS_hra_inference(self): + # check for different result with and without apply_GS + model = AutoModelForCausalLM.from_pretrained( + "facebook/opt-125m", + torch_dtype=torch.float32, + ).eval() + + torch.manual_seed(0) + config_hra = HRAConfig(r=8, init_weights=True, apply_GS=False) + model = get_peft_model(model, config_hra).eval() + + random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) + logits_hra = model(random_input).logits + + model = AutoModelForCausalLM.from_pretrained( + "facebook/opt-125m", + torch_dtype=torch.float32, + ) + torch.manual_seed(0) + config_hra_GS = HRAConfig(r=8, init_weights=True, apply_GS=True) + model = get_peft_model(model, config_hra_GS) + + logits_hra_GS = model(random_input).logits + + assert not torch.allclose(logits_hra, logits_hra_GS) + + @require_torch_gpu + @pytest.mark.single_gpu_tests + def test_apply_GS_hra_conv2d_inference(self): + # check for different result with and without apply_GS + model_id = "microsoft/resnet-18" + image_processor = AutoImageProcessor.from_pretrained(model_id) + dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) + image = dataset["test"]["image"][0] + data = image_processor(image, return_tensors="pt") + + model = AutoModelForImageClassification.from_pretrained(model_id).eval() + torch.manual_seed(0) + config_hra = HRAConfig(r=8, init_weights=True, target_modules=["convolution"], apply_GS=False) + model = get_peft_model(model, config_hra).eval() + + logits_hra = model(**data).logits + + model = AutoModelForImageClassification.from_pretrained(model_id).eval() + torch.manual_seed(0) + config_hra_GS = HRAConfig(r=8, init_weights=True, target_modules=["convolution"], apply_GS=True) + model = get_peft_model(model, config_hra_GS) + + logits_hra_GS = model(**data).logits + + assert not torch.allclose(logits_hra, logits_hra_GS) + + @require_torch_gpu + @pytest.mark.single_gpu_tests + def test_r_odd_hra_inference(self): + # check that an untrained HRA adapter can't be initialized as an identity tranformation + # when r is an odd number + model = AutoModelForCausalLM.from_pretrained( + "facebook/opt-125m", + torch_dtype=torch.float32, + ).eval() + + random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) + + torch.manual_seed(0) + logits = model(random_input).logits + + config_hra = HRAConfig(r=7, init_weights=True, apply_GS=False) + model = get_peft_model(model, config_hra).eval() + logits_hra = model(random_input).logits + + assert not torch.allclose(logits, logits_hra) + @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires a CUDA GPU") @pytest.mark.single_gpu_tests @@ -1488,3 +1567,21 @@ def test_vera_add_new_adapter_does_not_change_device(self, mlp): assert model.lin0.base_layer.weight.device.type == "cuda" assert model.lin0.vera_A.other.device.type == "cuda" assert model.lin0.vera_lambda_d.other.device.type == "cuda" + + def test_hra_add_new_adapter_does_not_change_device(self, mlp): + # same as first test, but using HRA + config = HRAConfig(target_modules=["lin0"]) + model = get_peft_model(mlp, config) + model = model.cuda() + model.lin0.hra_u.cpu() + + # check that the adapter is indeed on CPU and the base model on GPU + assert model.lin0.hra_u.default.device.type == "cpu" + assert model.lin0.base_layer.weight.device.type == "cuda" + + model.add_adapter("other", config) + # check that after adding a new adapter, the old adapter is still on CPU + assert model.lin0.hra_u.default.device.type == "cpu" + # the rest should be on GPU + assert model.lin0.base_layer.weight.device.type == "cuda" + assert model.lin0.hra_u.other.device.type == "cuda" diff --git a/tests/test_config.py b/tests/test_config.py index b8c5e03608..9dabade766 100644 --- a/tests/test_config.py +++ b/tests/test_config.py @@ -27,6 +27,7 @@ AdaptionPromptConfig, BOFTConfig, FourierFTConfig, + HRAConfig, IA3Config, LoHaConfig, LoraConfig, @@ -60,6 +61,7 @@ BOFTConfig, VeraConfig, FourierFTConfig, + HRAConfig, ) @@ -234,7 +236,7 @@ def test_prompt_encoder_warning_num_layers(self): expected_msg = "for MLP, the argument `encoder_num_layers` is ignored. Exactly 2 MLP layers are used." assert str(record.list[0].message) == expected_msg - @parameterized.expand([LoHaConfig, LoraConfig, IA3Config, OFTConfig, BOFTConfig]) + @parameterized.expand([LoHaConfig, LoraConfig, IA3Config, OFTConfig, BOFTConfig, HRAConfig]) def test_save_pretrained_with_target_modules(self, config_class): # See #1041, #1045 config = config_class(target_modules=["a", "list"]) diff --git a/tests/test_custom_models.py b/tests/test_custom_models.py index a6ccc903ca..d1339eab35 100644 --- a/tests/test_custom_models.py +++ b/tests/test_custom_models.py @@ -36,6 +36,7 @@ AdaLoraConfig, BOFTConfig, FourierFTConfig, + HRAConfig, IA3Config, LNTuningConfig, LoHaConfig, @@ -246,6 +247,14 @@ ("Conv2d 3 OFT", "Conv2d", OFTConfig, {"target_modules": ["conv2d"], "coft": True}), ("Conv2d 4 OFT", "Conv2d", OFTConfig, {"target_modules": ["conv2d"], "block_share": True}), ("Conv2d 5 OFT", "Conv2d", OFTConfig, {"target_modules": ["conv2d"], "coft": True, "block_share": True}), + ######## + # HRA # + ######## + ("Vanilla MLP 1 HRA", "MLP", HRAConfig, {"target_modules": "lin0"}), + ("Vanilla MLP 2 HRA", "MLP", HRAConfig, {"target_modules": ["lin0"]}), + ("Vanilla MLP 3 HRA", "MLP", HRAConfig, {"target_modules": ["lin0", "lin1"]}), + ("Vanilla MLP 5 HRA", "MLP", HRAConfig, {"target_modules": ["lin0"], "modules_to_save": ["lin1"]}), + ("Conv2d 1 HRA", "Conv2d", HRAConfig, {"target_modules": ["conv2d"]}), ############# # LN Tuning # ############# @@ -455,6 +464,20 @@ {"n_frequency": 10, "target_modules": ["lin0"]}, {"n_frequency": 10, "target_modules": ["lin1"]}, ), + ( + "HRA Same", + "hra", + HRAConfig, + {"target_modules": ["lin0"], "init_weights": False}, + {"target_modules": ["lin0"], "init_weights": False}, + ), + ( + "HRA Different", + "hra", + HRAConfig, + {"target_modules": ["lin0"], "init_weights": False}, + {"target_modules": ["lin1"], "init_weights": False}, + ), ] PREFIXES = { IA3Config: "ia3_", @@ -466,6 +489,7 @@ LNTuningConfig: "ln_tuning_", VeraConfig: "vera_lambda_", FourierFTConfig: "fourierft_", + HRAConfig: "hra_", } @@ -1203,7 +1227,7 @@ def test_multiple_adapters_automatic_modules_to_save(self): assert "default" in model.base_model.classifier.modules_to_save assert "other" in model.base_model.classifier.modules_to_save - @parameterized.expand([IA3Config, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig]) + @parameterized.expand([IA3Config, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig, HRAConfig]) def test_multiple_adapters_mixed_modules_to_save(self, config_cls): # See issue 1574 # Check that we can have a model where one adapter has modules_to_save and the other doesn't. It should be @@ -1228,7 +1252,7 @@ def test_multiple_adapters_mixed_modules_to_save(self, config_cls): model.set_adapter("other") model(**inputs) - @parameterized.expand([IA3Config, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig]) + @parameterized.expand([IA3Config, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig, HRAConfig]) def test_multiple_adapters_mixed_modules_to_save_order_switched(self, config_cls): # See issue 1574 # Same test as test_multiple_adapters_mixed_modules_to_save, but this time the 2nd adapter has modules_to_save. @@ -1433,6 +1457,7 @@ def test_load_resized_embedding_ignore_mismatched_sizes(self): IA3Config(target_modules=["lin0"], feedforward_modules=["lin0"], init_ia3_weights=False), OFTConfig(target_modules=["lin0"], init_weights=False), BOFTConfig(target_modules=["lin0"], init_weights=False, boft_block_size=2), + HRAConfig(target_modules=["lin0"], init_weights=False), ] ) def test_adapter_name_makes_no_difference(self, config0): @@ -2607,6 +2632,83 @@ def test_requires_grad_oft_same_targets(self): "base_model.model.lin0.oft_r.adapter1", ) + def test_requires_grad_hra_different_targets(self): + # test two different HRA adapters that target different modules + config0 = HRAConfig(target_modules=["lin0"]) + peft_model = get_peft_model(MLP(), config0) + + config1 = HRAConfig(target_modules=["lin1"], inference_mode=True) + peft_model.add_adapter("adapter1", config1) + + # active adapter is still "default" + self.check_requires_grad( + peft_model, + "base_model.model.lin0.hra_u.default", + ) + + # set config0 as active, should not change anything + peft_model.set_adapter("default") + self.check_requires_grad( + peft_model, + "base_model.model.lin0.hra_u.default", + ) + + # change activate pter to pter1 + peft_model.set_adapter("adapter1") + self.check_requires_grad( + peft_model, + "base_model.model.lin1.hra_u.adapter1", + ) + + # disable all pters + with peft_model.disable_adapter(): + self.check_requires_grad(peft_model) + + # after context is exited, return to the previous state + self.check_requires_grad( + peft_model, + "base_model.model.lin1.hra_u.adapter1", + ) + + def test_requires_grad_hra_same_targets(self): + # same as previous test, except that HRA adapters target the same layer + config0 = HRAConfig(target_modules=["lin0"]) + peft_model = get_peft_model(MLP(), config0) + + config1 = HRAConfig(target_modules=["lin0"], inference_mode=True) + peft_model.add_adapter("adapter1", config1) + + # active adapter is still "default" + self.check_requires_grad( + peft_model, + "base_model.model.lin0.hra_u.default", + ) + + # set config0 as active, should not change anything + peft_model.set_adapter("default") + self.check_requires_grad( + peft_model, + "base_model.model.lin0.hra_u.default", + ) + + # change activate adapter to adapter1 + peft_model.set_adapter("adapter1") + self.check_requires_grad( + peft_model, + "base_model.model.lin0.hra_u.adapter1", + ) + + # disable all adapters + with peft_model.disable_adapter(): + self.check_requires_grad(peft_model) + + # after context is exited, return to the previous state + peft_model.set_adapter("adapter1") + self.check_requires_grad( + peft_model, + "base_model.model.lin0.hra_u.adapter1", + ) + def test_requires_grad_boft_different_targets(self): # test two different OFT adapters that target different modules config0 = BOFTConfig(target_modules=["lin0"], boft_block_size=2) diff --git a/tests/test_decoder_models.py b/tests/test_decoder_models.py index 5df37e9c75..601863e0f4 100644 --- a/tests/test_decoder_models.py +++ b/tests/test_decoder_models.py @@ -19,7 +19,7 @@ from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer -from peft import AdaLoraConfig, BOFTConfig, LoraConfig, PromptTuningConfig, PromptTuningInit, get_peft_model +from peft import AdaLoraConfig, BOFTConfig, HRAConfig, LoraConfig, PromptTuningConfig, PromptTuningInit, get_peft_model from .testing_common import PeftCommonTester, PeftTestConfigManager @@ -45,15 +45,22 @@ def skip_adalora_and_gpt2(test_list): return [test for test in test_list if not (("GPT2LMHeadModel" in test[1]) and (test[2] == AdaLoraConfig))] -def skip_boft_and_gpt2(test_list): - return [test for test in test_list if not (("GPT2LMHeadModel" in test[1]) and (test[2] == BOFTConfig))] +def skip_boft_or_hra_and_gpt2(test_list): + return [ + test + for test in test_list + if not (("GPT2LMHeadModel" in test[1]) and ((test[2] == BOFTConfig) or (test[2] == HRAConfig))) + ] -def skip_adalora_or_boft_and_gpt2(test_list): +def skip_adalora_or_boft_or_hra_and_gpt2(test_list): return [ test for test in test_list - if not (("GPT2LMHeadModel" in test[1]) and ((test[2] == AdaLoraConfig) or (test[2] == BOFTConfig))) + if not ( + ("GPT2LMHeadModel" in test[1]) + and ((test[2] == AdaLoraConfig) or (test[2] == BOFTConfig) or (test[2] == HRAConfig)) + ) ] @@ -78,15 +85,21 @@ def prepare_inputs_for_testing(self): return input_dict - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @@ -144,23 +157,33 @@ def test_prompt_tuning_config_invalid_args(self): tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"}, ) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @@ -174,6 +197,7 @@ def test_from_pretrained_config_construction(self, test_name, model_id, config_c "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "fourierft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "CAUSAL_LM", }, ) @@ -190,9 +214,10 @@ def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "fourierft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "CAUSAL_LM", }, - filter_params_func=skip_boft_and_gpt2, + filter_params_func=skip_boft_or_hra_and_gpt2, ) ) def test_merge_layers_multi(self, test_name, model_id, config_cls, config_kwargs): @@ -224,11 +249,15 @@ def test_merge_layers_nan(self, test_name, model_id, config_cls, config_kwargs): def test_mixed_adapter_batches(self, test_name, model_id, config_cls, config_kwargs): self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_generate(self, test_name, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs): # positional args are supported for PeftModelForCausalLM self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=False) @@ -245,7 +274,9 @@ def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs): self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_training_decoders(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @@ -253,11 +284,15 @@ def test_training_decoders(self, test_name, model_id, config_cls, config_kwargs) def test_training_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_training_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @@ -265,15 +300,21 @@ def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwa def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs): self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs) @@ -287,9 +328,10 @@ def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, co "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "fourierft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "CAUSAL_LM", }, - filter_params_func=skip_adalora_or_boft_and_gpt2, + filter_params_func=skip_adalora_or_boft_or_hra_and_gpt2, ) ) def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): @@ -323,9 +365,10 @@ def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, c "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "fourierft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "CAUSAL_LM", }, - filter_params_func=skip_boft_and_gpt2, + filter_params_func=skip_boft_or_hra_and_gpt2, ) ) def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): @@ -341,7 +384,9 @@ def test_generate_adalora_no_dropout(self): } self._test_generate(model_id, AdaLoraConfig, config_kwargs) - @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) + @parameterized.expand( + PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_or_hra_and_gpt2) + ) def test_passing_input_embeds_works(self, test_name, model_id, config_cls, config_kwargs): self._test_passing_input_embeds_works(test_name, model_id, config_cls, config_kwargs) diff --git a/tests/test_encoder_decoder_models.py b/tests/test_encoder_decoder_models.py index f4fe0b7934..bf4e7fe91c 100644 --- a/tests/test_encoder_decoder_models.py +++ b/tests/test_encoder_decoder_models.py @@ -94,6 +94,7 @@ def test_from_pretrained_config_construction(self, test_name, model_id, config_c "adalora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) @@ -173,6 +174,7 @@ def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, co "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) @@ -206,6 +208,7 @@ def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, c "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) diff --git a/tests/test_feature_extraction_models.py b/tests/test_feature_extraction_models.py index e684d68c37..5521c1125d 100644 --- a/tests/test_feature_extraction_models.py +++ b/tests/test_feature_extraction_models.py @@ -47,7 +47,7 @@ def skip_deberta_lora_tests(test_list): Skip tests that are checkpointing with lora/ia3/boft/vera/fourierft for Deberta models (couldn't find much info on the error) """ - to_skip = ["lora", "ia3", "boft", "vera", "fourierft"] + to_skip = ["lora", "ia3", "boft", "vera", "fourierft", "hra"] return [test for test in test_list if not (any(k in test[0] for k in to_skip) and "Deberta" in test[0])] @@ -112,6 +112,7 @@ def test_from_pretrained_config_construction(self, test_name, model_id, config_c "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "FEATURE_EXTRACTION", }, ) @@ -164,6 +165,7 @@ def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_k "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "FEATURE_EXTRACTION", }, ) @@ -178,6 +180,7 @@ def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, "task_type": "FEATURE_EXTRACTION", }, ) diff --git a/tests/test_stablediffusion.py b/tests/test_stablediffusion.py index b8cc2e203a..b0d4d7773e 100644 --- a/tests/test_stablediffusion.py +++ b/tests/test_stablediffusion.py @@ -19,7 +19,7 @@ from diffusers import StableDiffusionPipeline from parameterized import parameterized -from peft import BOFTConfig, LoHaConfig, LoraConfig, OFTConfig, get_peft_model +from peft import BOFTConfig, HRAConfig, LoHaConfig, LoraConfig, OFTConfig, get_peft_model from .testing_common import ClassInstantier, PeftCommonTester from .testing_utils import temp_seed @@ -85,6 +85,16 @@ "boft_dropout": 0.0, }, }, + { + "text_encoder": { + "r": 8, + "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], + }, + "unet": { + "r": 8, + "target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"], + }, + }, ) CLASSES_MAPPING = { "lora": (LoraConfig, CONFIG_TESTING_KWARGS[0]), @@ -92,6 +102,7 @@ "lokr": (LoHaConfig, CONFIG_TESTING_KWARGS[1]), "oft": (OFTConfig, CONFIG_TESTING_KWARGS[2]), "boft": (BOFTConfig, CONFIG_TESTING_KWARGS[3]), + "hra": (HRAConfig, CONFIG_TESTING_KWARGS[4]), } @@ -145,6 +156,7 @@ def prepare_inputs_for_testing(self): "loha_kwargs": {"init_weights": [False]}, "oft_kwargs": {"init_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, }, ) ) @@ -158,7 +170,7 @@ def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32) # Merge adapter and model - if config_cls not in [LoHaConfig, OFTConfig]: + if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]: # TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1 model.text_encoder = model.text_encoder.merge_and_unload() model.unet = model.unet.merge_and_unload() @@ -178,6 +190,7 @@ def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): "loha_kwargs": {"init_weights": [False]}, "oft_kwargs": {"init_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, }, ) ) @@ -191,7 +204,7 @@ def test_merge_layers_safe_merge(self, test_name, model_id, config_cls, config_k peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32) # Merge adapter and model - if config_cls not in [LoHaConfig, OFTConfig]: + if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]: # TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1 model.text_encoder = model.text_encoder.merge_and_unload(safe_merge=True) model.unet = model.unet.merge_and_unload(safe_merge=True) @@ -209,7 +222,9 @@ def test_merge_layers_safe_merge(self, test_name, model_id, config_cls, config_k "model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, }, - filter_params_func=lambda tests: [x for x in tests if all(s not in x[0] for s in ["loha", "lokr", "oft"])], + filter_params_func=lambda tests: [ + x for x in tests if all(s not in x[0] for s in ["loha", "lokr", "oft", "hra"]) + ], ) ) def test_add_weighted_adapter_base_unchanged(self, test_name, model_id, config_cls, config_kwargs): @@ -239,6 +254,7 @@ def test_add_weighted_adapter_base_unchanged(self, test_name, model_id, config_c "lokr_kwargs": {"init_weights": [False]}, "oft_kwargs": {"init_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, + "hra_kwargs": {"init_weights": [False]}, }, ) ) diff --git a/tests/test_torch_compile.py b/tests/test_torch_compile.py index 818dcc1c43..ea987036cb 100644 --- a/tests/test_torch_compile.py +++ b/tests/test_torch_compile.py @@ -37,6 +37,7 @@ from peft import ( AdaLoraConfig, BOFTConfig, + HRAConfig, IA3Config, LNTuningConfig, LoHaConfig, @@ -77,6 +78,7 @@ "lora-with-modules-to-save": (LoraConfig(task_type=TaskType.CAUSAL_LM, modules_to_save=["embed_tokens"]), {}), "oft": (OFTConfig(task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "v_proj"]), {}), "vera": (VeraConfig(task_type=TaskType.CAUSAL_LM), {}), + "hra": (HRAConfig(task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "v_proj"]), {}), } diff --git a/tests/test_vision_models.py b/tests/test_vision_models.py index 8cb913707d..e706846f7b 100644 --- a/tests/test_vision_models.py +++ b/tests/test_vision_models.py @@ -22,7 +22,7 @@ from safetensors.torch import load_file from transformers import AutoImageProcessor, AutoModelForImageClassification -from peft import LoHaConfig, LoKrConfig, LoraConfig, OFTConfig, PeftModel, get_peft_model +from peft import HRAConfig, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig, PeftModel, get_peft_model CONFIGS = { @@ -30,6 +30,7 @@ "loha": LoHaConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), "lokr": LoKrConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), "oft": OFTConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), + "hra": HRAConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), # TODO: cannot use BOFT because some convolutional kernel dimensions are even (64) and others odd (147). There is no # common denominator for the boft_block_size except 1, but using 1 results in an error in the fbd_cuda kernel: # > Error in forward_fast_block_diag_cuda_kernel: an illegal memory access was encountered diff --git a/tests/testing_common.py b/tests/testing_common.py index db238905a5..83566e3aa3 100644 --- a/tests/testing_common.py +++ b/tests/testing_common.py @@ -30,6 +30,7 @@ AdaLoraConfig, BOFTConfig, FourierFTConfig, + HRAConfig, IA3Config, LNTuningConfig, LoHaConfig, @@ -102,6 +103,10 @@ "n_frequency": 10, "target_modules": None, }, + # HRA + { + "target_modules": None, + }, ) CLASSES_MAPPING = { @@ -112,8 +117,9 @@ "prompt_tuning": (PromptTuningConfig, CONFIG_TESTING_KWARGS[4]), "adalora": (AdaLoraConfig, CONFIG_TESTING_KWARGS[5]), "boft": (BOFTConfig, CONFIG_TESTING_KWARGS[6]), - "vera": (VeraConfig, CONFIG_TESTING_KWARGS[6]), + "vera": (VeraConfig, CONFIG_TESTING_KWARGS[7]), "fourierft": (FourierFTConfig, CONFIG_TESTING_KWARGS[8]), + "hra": (HRAConfig, CONFIG_TESTING_KWARGS[9]), } @@ -626,7 +632,15 @@ def _test_merge_layers(self, model_id, config_cls, config_kwargs): assert torch.allclose(logits_merged, logits_merged_from_pretrained, atol=atol, rtol=rtol) def _test_merge_layers_multi(self, model_id, config_cls, config_kwargs): - supported_peft_types = [PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.IA3, PeftType.OFT, PeftType.BOFT] + supported_peft_types = [ + PeftType.LORA, + PeftType.LOHA, + PeftType.LOKR, + PeftType.IA3, + PeftType.OFT, + PeftType.BOFT, + PeftType.HRA, + ] if ("gpt2" in model_id.lower()) and (config_cls == IA3Config): self.skipTest("Merging GPT2 adapters not supported for IA³ (yet)") @@ -1080,6 +1094,7 @@ def _test_delete_adapter(self, model_id, config_cls, config_kwargs): PeftType.BOFT, PeftType.VERA, PeftType.FOURIERFT, + PeftType.HRA, ] # IA3 does not support deleting adapters yet, but it just needs to be added # AdaLora does not support multiple adapters @@ -1126,6 +1141,7 @@ def _test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs): PeftType.OFT, PeftType.BOFT, PeftType.FOURIERFT, + PeftType.HRA, ] # IA3 does not support deleting adapters yet, but it just needs to be added # AdaLora does not support multiple adapters @@ -1171,7 +1187,7 @@ def _test_unload_adapter(self, model_id, config_cls, config_kwargs): model = get_peft_model(model, config) model = model.to(self.torch_device) - if config.peft_type not in ("LORA", "ADALORA", "IA3", "BOFT", "VERA", "FOURIERFT"): + if config.peft_type not in ("LORA", "ADALORA", "IA3", "BOFT", "VERA", "FOURIERFT", "HRA"): with pytest.raises(AttributeError): model = model.unload() else: