-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel-draft.lyx
3292 lines (2444 loc) · 59.3 KB
/
model-draft.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\begin_modules
theorems-ams-bytype
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "times" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip medskip
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
To show how income and substitution effects can lead to our results, we
write down a simple model of fertility choices.
\begin_inset Formula $h$
\end_inset
is an individual's level of human capital, which (for now) we identify
with his or her wage
\begin_inset Formula $W$
\end_inset
.
Raising a child takes time
\begin_inset Formula $b$
\end_inset
.
People maximize utility from the number of children
\begin_inset Formula $N$
\end_inset
, and income
\begin_inset Formula $Y\equiv(1-bN)W$
\end_inset
.
An individual's payoff is
\begin_inset Formula
\[
U(N)=u(Y)+aN.
\]
\end_inset
Here
\begin_inset Formula $a$
\end_inset
captures the strength of preference for children.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
The basic relationship is robust to arbitrary functional forms for preference
for children.
\end_layout
\begin_layout Plain Layout
If
\begin_inset Formula
\[
U(N)=\frac{(W(1-bN))^{1-\sigma}-1}{1-\sigma}+af(N)
\]
\end_inset
where
\begin_inset Formula $f$
\end_inset
is concave and guarantees an interior equilibrium; then you will again
get that
\begin_inset Formula $dN^{*}/dW$
\end_inset
is signed by
\begin_inset Formula $\sigma-1$
\end_inset
; and that for
\begin_inset Formula $\sigma<1$
\end_inset
the relationship will be concave.
\end_layout
\end_inset
\begin_inset Formula $u(\cdot)$
\end_inset
is concave and increasing.
We treat
\begin_inset Formula $N$
\end_inset
as continuous, in line with the literature: this can be thought of as the
expected number of children among similar people.
The marginal benefit of an extra child is
\begin_inset Formula $\frac{dU}{dN}=-bWu'(Y)+a$
\end_inset
.
The effect of an increase in wages (or human capital) on this marginal
benefit is
\begin_inset Formula
\[
\frac{d^{2}U}{dNdh}=\underbrace{-bu'(Y)}_{\textrm{Substitution effect}}\underbrace{-bYu''(Y)}_{\textrm{Income effect}}.
\]
\end_inset
The
\emph on
substitution effect
\emph default
is negative and reflects that when wages increase, time devoted to childcare
costs more in foregone income.
The positive
\emph on
income effect
\emph default
reflects that when wage income is higher, the marginal loss of wages from
children is less painful.
Letting
\begin_inset Formula $u(\cdot)$
\end_inset
take the constant relative risk aversion (CRRA) form
\begin_inset Formula $u(y)=\frac{y^{1-\sigma}-1}{1-\sigma}$
\end_inset
, where
\begin_inset Formula $\sigma>0$
\end_inset
captures risk aversion in income, we solve for optimal fertility
\begin_inset Formula $N^{*}$
\end_inset
, and examine the
\emph on
fertility-human capital relationship
\emph default
,
\begin_inset Formula $\frac{dN^{*}}{dh}$
\end_inset
.
For moderate levels of risk aversion (
\begin_inset Formula $0.5<\sigma<1$
\end_inset
):
\end_layout
\begin_layout Enumerate
The fertility-human capital relationship is negative:
\begin_inset Formula $\frac{dN^{*}}{dh}<0$
\end_inset
.
\end_layout
\begin_layout Enumerate
The relationship is weaker (closer to zero) at higher wages and/or levels
of human capital.
\end_layout
\begin_layout Enumerate
The relationship is more negative when the time burden of children,
\begin_inset Formula $b$
\end_inset
, is larger.
\end_layout
\begin_layout Standard
To examine education and fertility timing, we extend the model to two periods.
For convenience we ignore time discounting; we also assume that credit
markets are imperfect so that agents cannot borrow.
Write
\begin_inset Formula
\begin{equation}
U(N_{1},N_{2})=u(Y_{1})+u(Y_{2})+a(N_{1}+N_{2})\label{eq:U}
\end{equation}
\end_inset
Instead of identifying human capital
\begin_inset Formula $h$
\end_inset
with wages, we now allow individuals to choose a level of education
\begin_inset Formula $s\in[0,1]$
\end_inset
, which has a time cost in period 1.
Education increases period 2 wages, and is complementary to human capital
\begin_inset Formula $h>0$
\end_inset
.
For period 2 wages we assume the simple functional form
\begin_inset Formula $w(s,h)=sh$
\end_inset
.
We normalize period 1 wages to 1.
Maintaining the assumption of CRRA utility, we examine total fertility
\begin_inset Formula $N^{*}\equiv N_{1}^{*}+N_{2}^{*}$
\end_inset
.
For
\begin_inset Formula $0.5<\sigma<1$
\end_inset
, facts 1-3 continue to hold (fact 2 in a neighborhood of
\begin_inset Formula $\sigma=1$
\end_inset
).
In addition, for
\begin_inset Formula $\sigma$
\end_inset
in a neighborhood of 1:
\end_layout
\begin_layout Enumerate
\begin_inset ERT
status open
\begin_layout Plain Layout
[4.]
\backslash
setcounter{enumi}{4}
\end_layout
\end_inset
The fertility-human capital relationship is weaker at higher levels of education
\begin_inset Formula $s$
\end_inset
.
\end_layout
\begin_layout Enumerate
The relationship is weaker among those who start fertility in period 2 (
\begin_inset Formula $N_{1}^{*}=0$
\end_inset
) than among those who start fertility in period 1 (
\begin_inset Formula $N_{1}^{*}>0$
\end_inset
).
\end_layout
\begin_layout Standard
Facts 1-5 match our empirical results.
In this model, polygenic scores which correlate with human capital would
have a negative correlation with fertility at low income and education
levels, and a weaker or zero correlation at higher levels.
For scores which are highly correlated with human capital, the correlation
would also be weaker at higher levels of the score itself.
The correlation would be more negative when the time burden of children
\begin_inset Formula $b$
\end_inset
is high, e.g.
for single parents.
Lastly, the correlation would be weaker among those starting fertility
later.
\end_layout
\begin_layout Standard
An alternative theory is that polygenic scores correlate with the motivation
to have children (parameter
\begin_inset Formula $a$
\end_inset
in the model).
But this would not explain the pattern of our results across income and
education.
Indeed, in the one-period model, while
\begin_inset Formula $\frac{dN^{*}}{da}>0$
\end_inset
, this relationship actually becomes stronger at higher wages.
\end_layout
\begin_layout Standard
The above does not provide a complete theory of fertility.
Rather, it shows that a relatively simple economic model can explain many
of our results.
In the appendix, we discuss other models of fertility from the economic
literature, as well as causal evidence for the relationship between human
capital, income and fertility.
\end_layout
\begin_layout Section*
Appendix
\end_layout
\begin_layout Section*
Solution for the one-period model
\end_layout
\begin_layout Standard
Differentiating and setting
\begin_inset Formula $\frac{dU}{dN}=0$
\end_inset
gives the first order condition for an optimal choice of children
\begin_inset Formula $N^{*}>0$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\frac{bW}{(W(1-bN^{*}))^{\sigma}}\ge a\textrm{, with equality if }N^{*}>0.
\]
\end_inset
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
Q\equiv\left(\frac{b}{a}W\right)^{1/\sigma} & =(W-bNW)\\
N^{*} & =\frac{W-Q}{bW}\\
& =\frac{1}{b}-\frac{Q}{bW}\\
& =\frac{1}{b}-\frac{b^{(1-\sigma)/\sigma}}{a^{1/\sigma}}W^{(1-\sigma)/\sigma}
\end{align*}
\end_inset
\end_layout
\end_inset
Rearranging gives
\begin_inset Formula
\begin{equation}
N^{*}=\max\left\{ \frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/\sigma}W^{(1-\sigma)/\sigma}\right),0\right\} .\label{eq:N-one-period}
\end{equation}
\end_inset
Note that when
\begin_inset Formula $\sigma<1$
\end_inset
, for high enough
\begin_inset Formula $W$
\end_inset
,
\begin_inset Formula $N^{*}=0$
\end_inset
.
Differentiating gives the effect of wages on fertility for
\begin_inset Formula $N^{*}>0$
\end_inset
.
This is also the fertility-human capital relationship:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{dN^{*}}{dh}=\frac{dN^{*}}{dW}=-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}W^{(1-2\sigma)/\sigma}.\label{eq:DNdW-one-period}
\end{equation}
\end_inset
This is negative if
\begin_inset Formula $\sigma<1$
\end_inset
.
Also,
\begin_inset Formula
\[
\frac{d^{2}N^{*}}{dW^{2}}=-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}\frac{1-2\sigma}{\sigma}W^{(1-3\sigma)/\sigma}
\]
\end_inset
For
\begin_inset Formula $0.5<\sigma<1$
\end_inset
, this is positive, so the effect of fertility on wages shrinks towards
zero as wages increase (and becomes 0 when
\begin_inset Formula $N^{*}=0$
\end_inset
).
Next, we consider the time cost of children
\begin_inset Formula $b$
\end_inset
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
\frac{dN^{*}}{dW} & =-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}W^{(1-2\sigma)/\sigma}\\
& =-b^{(1-\sigma)/\sigma}\left(\frac{1}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}W^{(1-2\sigma)/\sigma}
\end{align*}
\end_inset
\end_layout
\begin_layout Plain Layout
hence
\begin_inset Formula
\[
\frac{d^{2}N^{*}}{dbdW}=-\left(\frac{1}{a}\right)^{1/\sigma}\left(\frac{1-\sigma}{\sigma}\right)^{2}W^{(1-2\sigma)/\sigma}b^{(1-2\sigma)/\sigma}
\]
\end_inset
\end_layout
\end_inset
:
\begin_inset Formula
\[
\frac{d^{2}N^{*}}{dWdb}=-\left(\frac{1}{a}\right)^{1/\sigma}\left(\frac{1-\sigma}{\sigma}\right)^{2}(Wb)^{(1-2\sigma)/\sigma}<0.
\]
\end_inset
\end_layout
\begin_layout Standard
Lastly we consider the effect of
\begin_inset Formula $a$
\end_inset
.
From (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N-one-period"
\end_inset
),
\begin_inset Formula $N^{*}$
\end_inset
is increasing in
\begin_inset Formula $a$
\end_inset
.
Differentiating (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:DNdW-one-period"
\end_inset
) by
\begin_inset Formula $a$
\end_inset
gives
\begin_inset Formula
\[
\frac{d^{2}N^{*}}{dadW}=b^{1/\sigma-1}\frac{1-\sigma}{\sigma^{2}}W^{(1-2\sigma)/\sigma}a^{-1/\sigma-1}
\]
\end_inset
which is positive for
\begin_inset Formula $\sigma<1$
\end_inset
.
\end_layout
\begin_layout Section*
Solution for the two-period model
\end_layout
\begin_layout Standard
Period 1 and period 2 income are:
\begin_inset Formula
\begin{align}
Y_{1} & =1-s-bN_{1}\label{eq:Y1}\\
Y_{2} & =w(s,h)(1-bN_{2})\label{eq:Y2}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
Write the Lagrangian of utility
\begin_inset Formula $U$
\end_inset
(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:U"
plural "false"
caps "false"
noprefix "false"
\end_inset
) as
\begin_inset Formula
\[
\mathcal{L}(N_{1},N_{2},s)=u(Y_{1})+u(Y_{2})+a(N_{1}+N_{2})+\lambda_{1}N_{1}+\lambda_{2}N_{2}+\lambda_{3}(\frac{1}{b}-N_{2})+\mu s
\]
\end_inset
\end_layout
\begin_layout Standard
Lemma
\begin_inset CommandInset ref
LatexCommand ref
reference "lemma-concavity"
\end_inset
below shows that if
\begin_inset Formula $\sigma>0.5$
\end_inset
, this problem is globally concave, guaranteeing that the first order conditions
identify a unique solution.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
indeed if
\begin_inset Formula $\sigma<0.5$
\end_inset
it's not concave, see the file convex.png, produced by
\end_layout
\begin_layout Plain Layout
plot(0:0.1:1.9, 0:0.1:0.49, (x, y) -> U(1, x, y, h = 1.2, a = 0.1, b = 0.3,
\begin_inset Formula $\sigma$
\end_inset
=0.2))
\end_layout
\end_inset
We assume
\begin_inset Formula $\sigma>0.5$
\end_inset
from here on.
\end_layout
\begin_layout Standard
Plugging (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Y1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) and (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Y2"
\end_inset
) into the above, we can derive the Karush-Kuhn-Tucker conditions for an
optimum
\begin_inset Formula $(N_{1}^{*},N_{2}^{*},s^{*})$
\end_inset
as:
\begin_inset Formula
\begin{align}
\frac{d\mathcal{L}}{dN_{1}}=-bY_{1}^{-\sigma}+a+\lambda_{1} & =0\textrm{, with }\lambda_{1}=0\textrm{ if }N_{1}^{*}>0;\label{eq:kkt1}\\
\frac{d\mathcal{L}}{dN_{2}}=-bs^{*}hY_{2}^{-\sigma}+a+\lambda_{2} & -\lambda_{3}=0\textrm{, with }\lambda_{2}=0\textrm{ if }N_{2}^{*}>0,\lambda_{3}=0\textrm{ if }N_{2}^{*}<\frac{1}{b};\label{eq:kkt2}\\
\frac{d\mathcal{L}}{ds}=-Y_{1}^{-\sigma}+h(1-bN_{2}^{*})Y_{2}^{-\sigma}+\mu & =0;\label{eq:kkt3}\\
N_{1}^{*},N_{2}^{*},s^{*},\lambda_{1},\lambda_{2},\lambda_{3},\mu & \ge0;N_{2}^{*}\le\frac{1}{b}.
\end{align}
\end_inset
Note that the Inada condition (
\begin_inset Formula $\lim_{x\rightarrow0}u'(x)=\infty$
\end_inset
) for period 1 rules out
\begin_inset Formula $s^{*}=1$
\end_inset
and
\begin_inset Formula $N_{1}=1/b$
\end_inset
, so we need not impose these constraints explicitly.
Also, so long as
\begin_inset Formula $N_{2}^{*}<1/b$
\end_inset
, the same condition rules out
\begin_inset Formula $s^{*}=0$
\end_inset
.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
For
\begin_inset Formula $s=0$
\end_inset
, intuitively, the relevant part of utility is:
\begin_inset Formula
\[
\frac{(1-s)^{1-\sigma}}{1-\sigma}+\frac{(sh(1-bN_{2}))^{1-\sigma}}{1-\sigma}
\]
\end_inset
\end_layout
\begin_layout Plain Layout
Differentiate to get
\begin_inset Formula
\[
-(1-s)^{-\sigma}+h(sh(1-bN_{2}))^{-\sigma}
\]
\end_inset
\end_layout
\begin_layout Plain Layout
and note that the second part goes to infinity as
\begin_inset Formula $s\rightarrow0$
\end_inset
...
so long as
\begin_inset Formula $bN_{2}<1$
\end_inset
?
\end_layout
\end_inset
We consider four cases, of which only three can occur.
\end_layout
\begin_layout Subsection*
Case 1:
\begin_inset Formula $N_{1}^{*}>0,N_{2}^{*}>0$
\end_inset
\end_layout
\begin_layout Standard
Rearranging (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:kkt1"
plural "false"
caps "false"
noprefix "false"
\end_inset
), (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:kkt2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) and (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:kkt3"
plural "false"
caps "false"
noprefix "false"
\end_inset
) gives:
\begin_inset Formula
\begin{align}
N_{1}^{*} & =\frac{1}{b}\left(1-s^{*}-\left(\frac{b}{a}\right)^{1/\sigma}\right);\label{eq:N11}\\
N_{2}^{*} & =\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/\sigma}(s^{*}h)^{(1-\sigma)/\sigma}\right);\label{eq:N21}\\
s^{*} & =\frac{1-bN_{1}^{*}}{1+\left((1-bN_{2}^{*})h\right)^{1-1/\sigma}}.
\end{align}
\end_inset
Plugging the expressions for
\begin_inset Formula $N_{1}^{*}$
\end_inset
and
\begin_inset Formula $N_{2}^{*}$
\end_inset
into
\begin_inset Formula $s^{*}$
\end_inset
gives
\begin_inset Formula
\[
s^{*}=\frac{s^{*}+\left(\frac{b}{a}\right)^{1/\sigma}}{1+\left(\left(\frac{b}{a}\right)^{1/\sigma}s^{*(1-\sigma)/\sigma}h{}^{1/\sigma}\right)^{1-1/\sigma}}
\]
\end_inset
which simplifies to
\begin_inset Formula
\begin{equation}
s^{*}=\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{(1-\sigma)/(2\sigma-1)}.\label{eq:s1}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Plugging the above into (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N11"
plural "false"
caps "false"
noprefix "false"
\end_inset
) and (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N21"
\end_inset
) gives:
\begin_inset Formula
\begin{align*}
N_{1}^{*} & =\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{(1-\sigma)/(2\sigma-1)}-\left(\frac{b}{a}\right)^{1/\sigma}\right);\\
N_{2}^{*} & =\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{(1-\sigma)/(2\sigma-1)}\right).
\end{align*}
\end_inset
Note that that
\begin_inset Formula $N_{1}^{*}<N_{2}^{*}$
\end_inset
.
For these both to be positive requires low values of
\begin_inset Formula $h$
\end_inset
if
\begin_inset Formula $\sigma<1$
\end_inset
and high values of
\begin_inset Formula $h$
\end_inset
if
\begin_inset Formula $\sigma>1$
\end_inset
.
Also:
\begin_inset Formula
\[
w(s^{*},h)\equiv s^{*}h=\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{\sigma/(2\sigma-1)}.
\]
\end_inset
\end_layout
\begin_layout Standard
Observe that
\begin_inset Formula $w(s^{*},h)$
\end_inset
is increasing in
\begin_inset Formula $h$
\end_inset
for
\begin_inset Formula $\sigma>0.5$
\end_inset
, and convex iff
\begin_inset Formula $0.5<\sigma<1$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
for
\begin_inset Formula $\sigma=0.5$
\end_inset
, there's a problem
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
....
Indeed, if we use the first form,
\begin_inset Formula $s$
\end_inset
cancels out
\begin_inset Formula
\begin{align*}
s^{*} & =\frac{s^{*}+\left(\frac{b}{a}\right)^{2}}{1+\left(\left(\frac{b}{a}\right)^{2}s^{*}h{}^{2}\right)^{-1}};\\
h^{-1} & =\left(\frac{b}{a}\right)^{2}
\end{align*}
\end_inset
which is obv wrong....
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
While
\begin_inset Formula $N_{1}^{*}$
\end_inset
and
\begin_inset Formula $N_{2}^{*}$
\end_inset
are positive, they have the same derivative with respect to
\begin_inset Formula $h$
\end_inset
:
\begin_inset Formula
\begin{equation}
\frac{dN_{t}^{*}}{dh}=-\frac{1}{b}\left(\frac{b}{a}\right)^{1/(2\sigma-1)}\frac{1-\sigma}{2\sigma-1}h^{(1-\sigma)/(2\sigma-1)-1}\label{eq:dNdh1}
\end{equation}
\end_inset
Examining this and expression (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:s1"
\end_inset