-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
312 lines (225 loc) · 9.58 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch.utils.data as data
import os.path
import numpy as np
import torch
from skimage import transform
from skimage import io
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
def default_loader(path):
return io.imread(path)
def default_flist_reader(flist):
"""
flist format: impath label\nimpath label\n ...(same to caffe's filelist)
"""
imlist = []
with open(flist, 'r') as rf:
for line in rf.readlines():
impath = line.strip()
imlist.append(impath)
return imlist
class ImageFilelist(data.Dataset):
def __init__(self, root, flist, transform=None,
flist_reader=default_flist_reader, loader=default_loader):
self.root = root
self.imlist = flist_reader(flist)
self.transform = transform
self.loader = loader
def __getitem__(self, index):
impath = self.imlist[index]
img = self.loader(os.path.join(self.root, impath))
if self.transform is not None:
img = self.transform(img)
return img
def __len__(self):
return len(self.imlist)
class ImageLabelFilelist(data.Dataset):
def __init__(self, root, flist, transform=None,
flist_reader=default_flist_reader, loader=default_loader):
self.root = root
self.imlist = flist_reader(os.path.join(self.root, flist))
self.transform = transform
self.loader = loader
self.classes = sorted(list(set([path.split('/')[0] for path in self.imlist])))
self.class_to_idx = {self.classes[i]: i for i in range(len(self.classes))}
self.imgs = [(impath, self.class_to_idx[impath.split('/')[0]]) for impath in self.imlist]
def __getitem__(self, index):
impath, label = self.imgs[index]
img = self.loader(os.path.join(self.root, impath))
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
###############################################################################
# Code from
# https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py
# Modified the original code so that it also loads images from the current
# directory as well as the subdirectories
###############################################################################
import torch.utils.data as data
import os
import os.path
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dir, fold, dataset_letter):
items = []
img_dir = os.path.join(dir, fold + dataset_letter)
msk_dir = os.path.join(dir, 'label_' + fold + dataset_letter)
assert os.path.isdir(img_dir), '%s is not a valid directory' % dir
assert os.path.isdir(msk_dir), '%s is not a valid directory' % dir
files = [f for f in os.listdir(img_dir) if os.path.isfile(os.path.join(img_dir, f))]
for f in files:
img_path = os.path.join(img_dir, f)
msk_path = os.path.join(msk_dir, f)
items.append({'img': img_path, 'msk': msk_path, 'file': f})
return items
def norm(img):
img = img.astype(np.float32)
mn = img.min()
mx = img.max()
return (img - mn) / (mx - mn)
class ImageFolder(data.Dataset):
def __init__(self, root, sample, fold='train', dataset_letter='A', loader=default_loader, trim_bool=0, return_path=False, random_transform=False, channels=1):
imgs = sorted(make_dataset(root, fold, dataset_letter))
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in: " + root + "\n"
"Supported image extensions are: " +
",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.loader = loader
self.sample = sample
self.trim_bool = trim_bool
self.return_path = return_path
self.random_transform = random_transform
self.channels = channels
np.random.seed(12345)
perm = np.random.permutation(len(imgs))
self.has_label = np.zeros((len(imgs)), np.int)
self.has_label[perm[0:int(self.sample * len(imgs))]] = 1
print('Sample limits for ' + fold + dataset_letter + ': [0:' + str(int(self.sample * len(imgs))) + ']')
print(self.sample)
print('Sample images...')
for i in range(int(self.sample * len(imgs))):
print(self.imgs[perm[i]])
############################################################################################################################
# Trim function adapted from: https://codereview.stackexchange.com/questions/132914/crop-black-border-of-image-using-numpy #
############################################################################################################################
def trim(self, img, msk):
tolerance = 0.05 * float(img.max())
# Mask of non-black pixels (assuming image has a single channel).
bin = img > tolerance
# Coordinates of non-black pixels.
coords = np.argwhere(bin)
# Bounding box of non-black pixels.
x0, y0 = coords.min(axis=0)
x1, y1 = coords.max(axis=0) + 1 # slices are exclusive at the top
# Get the contents of the bounding box.
img_crop = img[x0:x1, y0:y1]
msk_crop = msk[x0:x1, y0:y1]
return img_crop, msk_crop
# Data augmentation.
def transform(self, img, msk, negate=True, max_angle=8, low=0.1, high=0.9, shear=0.0, fliplr=False, flipud=False):
# Random color inversion.
if negate:
if np.random.uniform() > 0.5:
if self.channels == 1:
img = (img.max() - img)
else:
for i in range(img.shape[2]):
img[:,:,i] = (img[:,:,i].max() - img[:,:,i])
# Random Flipping.
if fliplr:
if np.random.uniform() > 0.5:
img = np.fliplr(img)
msk = np.fliplr(msk)
if flipud:
if np.random.uniform() > 0.5:
img = np.flipud(img)
msk = np.flipud(msk)
# Random Rotation.
if max_angle != 0.0:
angle = np.random.uniform() * max_angle
if np.random.uniform() > 0.5:
angle = angle * -1.0
img = transform.rotate(img, angle, resize=False)
msk = transform.rotate(msk, angle, resize=False)
# Random Shear.
if shear != 0.0:
rand_shear = np.random.uniform(low=0, high=shear)
affine = transform.AffineTransform(shear=rand_shear)
img = transform.warp(img, inverse_map=affine)
msk = transform.warp(msk, inverse_map=affine)
# Crop.
if low != 0.0 or high != 1.0:
beg_crop = np.random.uniform(low=0, high=low, size=2)
end_crop = np.random.uniform(low=high, high=1.0, size=2)
s0 = img.shape[0]
s1 = img.shape[1]
img = img[int(beg_crop[0] * s0):int(end_crop[0] * s0), int(beg_crop[1] * s1):int(end_crop[1] * s1)]
msk = msk[int(beg_crop[0] * s0):int(end_crop[0] * s0), int(beg_crop[1] * s1):int(end_crop[1] * s1)]
return img, msk
def __getitem__(self, index):
item = self.imgs[index]
img_path = item['img']
msk_path = item['msk']
file_name = item['file']
img = self.loader(img_path)
msk = self.loader(msk_path)
if self.channels == 1:
if len(img.shape) > 2:
img = img[:,:,0]
if len(msk.shape) > 2:
msk = msk[:,:,0]
img = transform.resize(img, msk.shape, preserve_range=True)
resize_to = (256, 256)
use_msk = False
if self.trim_bool != 0:
img, msk = self.trim(img, msk)
if self.random_transform == 3:
img, msk = self.transform(img, msk, negate=False, max_angle=90, low=0.2, high=0.8, shear=0.05, fliplr=True, flipud=True)
elif self.random_transform == 2:
img, msk = self.transform(img, msk)
elif self.random_transform == 1:
img, msk = self.transform(img, msk, negate=False, max_angle=2, low=0.05, high=0.95)
msk = transform.resize(msk, resize_to, preserve_range=True)
msk[msk <= (msk.max() / 2)] = 0
msk[msk > (msk.max() / 2)] = 1
msk = msk.astype(np.int)
msk = torch.from_numpy(msk)
if self.sample != -1:
if self.has_label[index] != 0:
use_msk = True
else:
use_msk = False
else:
use_msk = True
if not use_msk:
msk[:,:,] = 0
img = transform.resize(img, resize_to, preserve_range=True).astype(np.float32)
if self.channels == 1:
img = (img - img.mean()) / (img.std() + 1e-10)
img = np.expand_dims(img, 0)
else:
tmp = np.zeros((img.shape[2], img.shape[0], img.shape[1]), dtype=np.float32)
for i in range(img.shape[2]):
tmp[i, :, :] = (img[:, :, i] - img[:, :, i].mean()) / (img[:, :, i].std() + 1e-10)
img = tmp
img = torch.from_numpy(img)
if self.return_path:
return img, msk, use_msk, file_name
else:
return img, msk, use_msk
def __len__(self):
return len(self.imgs)