forked from VarML/TACR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
130 lines (116 loc) · 4.62 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import argparse
import pandas as pd
import random
import numpy as np
import pickle
from stock_env.apps import config
from stock_env.allocation.env_portfolio import StockPortfolioEnv
from tac.evaluation.evaluate_episodes import eval_test
from tac.models.transformer_actor import TransformerActor
import torch.backends.cudnn as cudnn
from tac.models.ddpg import DDPGActor
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
def experiment(variant):
device = variant.get('device', 'cuda')
train_algo = variant['algo'] #control use which algorithm
env_name, dataset = variant['env'], variant['dataset']
group_name = f'{env_name}-{dataset}'
train = pd.read_csv("datasets/" + dataset+"_train.csv", index_col=[0])
trade = pd.read_csv("datasets/" + dataset + "_trade.csv", index_col=[0])
max_ep_len = train.index[-1]
dataset_path = f'{"trajectory/" + variant["dataset"] + "_traj.pkl"}'
with open(dataset_path, 'rb') as f:
trajectories = pickle.load(f)
state_space = trajectories[0]['observations'].shape[1]
stock_dimension = len(train.tic.unique())
print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}")
turbulence_threshold = 100 if dataset == "dow" else None
env_kwargs = {
"dataset": dataset,
"initial_amount": 1000000,
"transaction_cost": 0.0025,
"state_space": state_space,
"stock_dim": stock_dimension,
"tech_indicator_list": config.TECHNICAL_INDICATORS_LIST,
"action_space": stock_dimension,
"mode": "test",
"turbulence_threshold": turbulence_threshold,
}
env = StockPortfolioEnv(df=trade, **env_kwargs)
seed = variant['seed']
env.seed(seed)
env.action_space.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(seed)
state_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
states = []
for path in trajectories:
states.append(path['observations'])
states = np.concatenate(states, axis=0)
state_mean, state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6
u = variant['u']
if train_algo == "transformer":
model = TransformerActor(
state_dim=state_dim,
act_dim=act_dim,
max_length=u,
max_ep_len=max_ep_len,
hidden_size=variant['embed_dim'],
n_layer=variant['n_layer'],
n_head=variant['n_head'],
n_inner=4 * variant['embed_dim'],
activation_function=variant['activation_function'],
n_positions=1024,
resid_pdrop=variant['dropout'],
attn_pdrop=variant['dropout'],
)
elif train_algo == "DDPG":
model = DDPGActor(
state_dim=state_dim,
act_dim=act_dim,
max_length=u,
max_ep_len=max_ep_len,
hidden_size=variant['embed_dim'],
n_layer=variant['n_layer'],
n_head=variant['n_head'],
n_inner=4 * variant['embed_dim'],
activation_function=variant['activation_function'],
n_positions=1024,
resid_pdrop=variant['dropout'],
attn_pdrop=variant['dropout'],
)
model.load_state_dict(torch.load(group_name+'_'+train_algo+'.pt')) # ex stock-kdd_DDPG_.pt
eval_test(
env,
state_dim,
act_dim,
model,
max_ep_len=max_ep_len,
state_mean=state_mean,
state_std=state_std,
device=device
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='csi') # kdd, hightech, dow, ndx, mdax, csi
parser.add_argument('--env', type=str, default='stock')
parser.add_argument('--seed', type=int, default=3389)
parser.add_argument('--u', type=int, default=20)
parser.add_argument('--pct_traj', type=float, default=1.)
parser.add_argument('--embed_dim', type=int, default=128)
parser.add_argument('--n_layer', type=int, default=5)
parser.add_argument('--n_head', type=int, default=1)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--activation_function', type=str, default='relu')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--algo', type=str, default='transformer')
args = parser.parse_args()
experiment(variant=vars(args))