forked from kuangliu/pytorch-cifar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficientnet.py
99 lines (81 loc) · 3.16 KB
/
efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
'''EfficientNet in PyTorch.
Paper: "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks".
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class Block(nn.Module):
'''expand + depthwise + pointwise + squeeze-excitation'''
def __init__(self, in_planes, out_planes, expansion, stride):
super(Block, self).__init__()
self.stride = stride
planes = expansion * in_planes
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, groups=planes, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(
planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential()
if stride == 1 and in_planes != out_planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=1,
stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_planes),
)
# SE layers
self.fc1 = nn.Conv2d(out_planes, out_planes//16, kernel_size=1)
self.fc2 = nn.Conv2d(out_planes//16, out_planes, kernel_size=1)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
shortcut = self.shortcut(x) if self.stride == 1 else out
# Squeeze-Excitation
w = F.avg_pool2d(out, out.size(2))
w = F.relu(self.fc1(w))
w = self.fc2(w).sigmoid()
out = out * w + shortcut
return out
class EfficientNet(nn.Module):
def __init__(self, cfg, num_classes=10):
super(EfficientNet, self).__init__()
self.cfg = cfg
self.conv1 = nn.Conv2d(3, 32, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.layers = self._make_layers(in_planes=32)
self.linear = nn.Linear(cfg[-1][1], num_classes)
def _make_layers(self, in_planes):
layers = []
for expansion, out_planes, num_blocks, stride in self.cfg:
strides = [stride] + [1]*(num_blocks-1)
for stride in strides:
layers.append(Block(in_planes, out_planes, expansion, stride))
in_planes = out_planes
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layers(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def EfficientNetB0():
# (expansion, out_planes, num_blocks, stride)
cfg = [(1, 16, 1, 2),
(6, 24, 2, 1),
(6, 40, 2, 2),
(6, 80, 3, 2),
(6, 112, 3, 1),
(6, 192, 4, 2),
(6, 320, 1, 2)]
return EfficientNet(cfg)
def test():
net = EfficientNetB0()
x = torch.randn(2, 3, 32, 32)
y = net(x)
print(y.shape)
# test()