-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
136 lines (107 loc) · 4.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import ast
import re
from langchain import OpenAI
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain.agents.agent_toolkits import (
SQLDatabaseToolkit,
create_retriever_tool,
create_sql_agent,
)
from langchain.agents.agent_types import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.sql_database import SQLDatabase
from langchain.tools import Tool
from langchain.utilities import SQLDatabase
from langchain.vectorstores import FAISS
from langchain_experimental.sql import SQLDatabaseChain
from pydantic import BaseModel, Field
def run_query_save_results(db, query):
res = db.run(query)
res = [el for sub in ast.literal_eval(res) for el in sub if el]
res = [re.sub(r'\b\d+\b', '', string).strip() for string in res]
return res
def run_query_save_results_names(db, query):
res = db.run(query)
res = ast.literal_eval(res)
res = [' '.join(i) for i in res]
return res
def get_retriever(texts):
embeddings = OpenAIEmbeddings()
vector_db = FAISS.from_texts(texts, embeddings)
return vector_db.as_retriever()
def get_agent():
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
llm = ChatOpenAI(temperature=0, model_name='gpt-4')
artists = run_query_save_results(db, "SELECT Name FROM Artist")
customers = run_query_save_results(db, "SELECT Company, Address, City, State, Country FROM Customer")
employees = run_query_save_results(db, "SELECT Address, City, State, Country FROM Employee")
albums = run_query_save_results(db, "SELECT Title FROM Album")
customer_names = run_query_save_results_names(db, "SELECT FirstName, LastName FROM Customer")
employee_names = run_query_save_results_names(db, "SELECT FirstName, LastName FROM Employee")
texts = (
artists +
customers +
customer_names +
employee_names +
employees +
albums
)
retriever = get_retriever(texts)
retriever_tool = create_retriever_tool(
retriever,
name='name_search',
description='use to learn how a piece of data is actually written, can be from names, surnames addresses etc'
)
sql_agent = create_sql_agent(
llm=llm,
toolkit=SQLDatabaseToolkit(db=db, llm=llm),
verbose=True,
agent_type=AgentType.OPENAI_FUNCTIONS
)
sql_tool = Tool(
func=sql_agent.run,
name="db_agent",
description="use to get information from the databases, ask exactly what you want in natural language"
)
# db_chain = SQLDatabaseChain.from_llm(
# OpenAI(temperature=0, verbose=True),
# db
# )
# sql_tool = Tool(
# func=db_chain.run,
# name="db_agent",
# description="use to get information from the databases, ask exactly what you want in natural language"
# )
TEMPLATE = """You are working with an SQL database.
You have a tool called `name_search` through which you can lookup the name of any entity that is present in the database. This could be a person name, an address, a music track name or others.
You should always use this `name_search` tool to search for the correct way that something is written before you use the `db_agent` tool.
You should use the `name_search` tool ONLY ONCE and you should also use the `db_agent` tool ONLY ONCE.
If the user questions contains a term that is not spelled correctly, you should assume that the user meant the correct spelling and answer the question for the correctly spelled term.
As soon as you have an answer to the question, you should return and not invoke more functions.
"""
class PythonInputs(BaseModel):
query: str = Field(description="code snippet to run")
template = TEMPLATE.format()
prompt = ChatPromptTemplate.from_messages([
("system", template),
MessagesPlaceholder(variable_name="agent_scratchpad"),
("human", "{input}")
])
tools = [
sql_tool,
retriever_tool
]
agent = OpenAIFunctionsAgent(
llm=llm,
prompt=prompt,
tools=tools
)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
max_iterations=2,
early_stopping_method="generate"
)
return agent_executor