forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegNet.cpp
809 lines (622 loc) · 25.3 KB
/
segNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "segNet.h"
#include "cudaMappedMemory.h"
#include "cudaOverlay.h"
#include "cudaResize.h"
#include "commandLine.h"
#include "filesystem.h"
// constructor
segNet::segNet() : tensorNet()
{
mLastInputImg = NULL;
mLastInputWidth = 0;
mLastInputHeight = 0;
mClassColors[0] = NULL; // cpu ptr
mClassColors[1] = NULL; // gpu ptr
mClassMap[0] = NULL;
mClassMap[1] = NULL;
mNetworkType = SEGNET_CUSTOM;
}
// destructor
segNet::~segNet()
{
}
// FilterModeFromStr
segNet::FilterMode segNet::FilterModeFromStr( const char* str, FilterMode default_value )
{
if( !str )
return default_value;
if( strcasecmp(str, "point") == 0 )
return segNet::FILTER_POINT;
else if( strcasecmp(str, "linear") == 0 )
return segNet::FILTER_LINEAR;
return default_value;
}
// NetworkTypeFromStr
segNet::NetworkType segNet::NetworkTypeFromStr( const char* modelName )
{
if( !modelName )
return segNet::SEGNET_CUSTOM;
segNet::NetworkType type = segNet::FCN_ALEXNET_CITYSCAPES_HD;
if( strcasecmp(modelName, "cityscapes-sd") == 0 || strcasecmp(modelName, "fcn-alexnet-cityscapes-sd") == 0 )
type = segNet::FCN_ALEXNET_CITYSCAPES_SD;
else if( strcasecmp(modelName, "cityscapes") == 0 || strcasecmp(modelName, "cityscapes-hd") == 0 || strcasecmp(modelName, "fcn-alexnet-cityscapes-hd") == 0 )
type = segNet::FCN_ALEXNET_CITYSCAPES_HD;
else if( strcasecmp(modelName, "pascal-voc") == 0 || strcasecmp(modelName, "fcn-alexnet-pascal-voc") == 0 )
type = segNet::FCN_ALEXNET_PASCAL_VOC;
else if( strcasecmp(modelName, "synthia-cvpr16") == 0 || strcasecmp(modelName, "fcn-alexnet-synthia-cvpr16") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_CVPR16;
else if( strcasecmp(modelName, "synthia-summer-sd") == 0 || strcasecmp(modelName, "fcn-alexnet-synthia-summer-sd") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_SUMMER_SD;
else if( strcasecmp(modelName, "synthia-summer-hd") == 0 || strcasecmp(modelName, "fcn-alexnet-synthia-summer-hd") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_SUMMER_HD;
else if( strcasecmp(modelName, "aerial-fpv") == 0 || strcasecmp(modelName, "aerial-fpv-720p") == 0 || strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p;
else
type = segNet::SEGNET_CUSTOM;
return type;
}
// Create
segNet* segNet::Create( NetworkType networkType, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
segNet* net = NULL;
if( networkType == FCN_ALEXNET_PASCAL_VOC )
net = Create("networks/FCN-Alexnet-Pascal-VOC/deploy.prototxt", "networks/FCN-Alexnet-Pascal-VOC/snapshot_iter_146400.caffemodel", "networks/FCN-Alexnet-Pascal-VOC/pascal-voc-classes.txt", "networks/FCN-Alexnet-Pascal-VOC/pascal-voc-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == FCN_ALEXNET_SYNTHIA_CVPR16 )
net = Create("networks/FCN-Alexnet-SYNTHIA-CVPR16/deploy.prototxt", "networks/FCN-Alexnet-SYNTHIA-CVPR16/snapshot_iter_1206700.caffemodel", "networks/FCN-Alexnet-SYNTHIA-CVPR16/synthia-cvpr16-labels.txt", "networks/FCN-Alexnet-SYNTHIA-CVPR16/synthia-cvpr16-train-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == FCN_ALEXNET_SYNTHIA_SUMMER_HD )
net = Create("networks/FCN-Alexnet-SYNTHIA-Summer-HD/deploy.prototxt", "networks/FCN-Alexnet-SYNTHIA-Summer-HD/snapshot_iter_902888.caffemodel", "networks/FCN-Alexnet-SYNTHIA-Summer-HD/synthia-seq-labels.txt", "networks/FCN-Alexnet-SYNTHIA-Summer-HD/synthia-seq-train-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == FCN_ALEXNET_SYNTHIA_SUMMER_SD )
net = Create("networks/FCN-Alexnet-SYNTHIA-Summer-SD/deploy.prototxt", "networks/FCN-Alexnet-SYNTHIA-Summer-SD/snapshot_iter_431816.caffemodel", "networks/FCN-Alexnet-SYNTHIA-Summer-SD/synthia-seq-labels.txt", "networks/FCN-Alexnet-SYNTHIA-Summer-SD/synthia-seq-train-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == FCN_ALEXNET_CITYSCAPES_HD )
net = Create("networks/FCN-Alexnet-Cityscapes-HD/deploy.prototxt", "networks/FCN-Alexnet-Cityscapes-HD/snapshot_iter_367568.caffemodel", "networks/FCN-Alexnet-Cityscapes-HD/cityscapes-labels.txt", "networks/FCN-Alexnet-Cityscapes-HD/cityscapes-deploy-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == FCN_ALEXNET_CITYSCAPES_SD )
net = Create("networks/FCN-Alexnet-Cityscapes-SD/deploy.prototxt", "networks/FCN-Alexnet-Cityscapes-SD/snapshot_iter_114860.caffemodel", "networks/FCN-Alexnet-Cityscapes-SD/cityscapes-labels.txt", "networks/FCN-Alexnet-Cityscapes-SD/cityscapes-deploy-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
//else if( networkType == FCN_ALEXNET_AERIAL_FPV_720p_4ch )
// net = Create("FCN-Alexnet-Aerial-FPV-4ch-720p/deploy.prototxt", "FCN-Alexnet-Aerial-FPV-4ch-720p/snapshot_iter_1777146.caffemodel", "FCN-Alexnet-Aerial-FPV-4ch-720p/fpv-labels.txt", "FCN-Alexnet-Aerial-FPV-4ch-720p/fpv-deploy-colors.txt", "data", "score_fr_4classes", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_AERIAL_FPV_720p )
net = Create("networks/FCN-Alexnet-Aerial-FPV-720p/fcn_alexnet.deploy.prototxt", "networks/FCN-Alexnet-Aerial-FPV-720p/snapshot_iter_10280.caffemodel", "networks/FCN-Alexnet-Aerial-FPV-720p/fpv-labels.txt", "networks/FCN-Alexnet-Aerial-FPV-720p/fpv-deploy-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else
return NULL;
if( net != NULL )
net->mNetworkType = networkType;
}
// Create
segNet* segNet::Create( int argc, char** argv )
{
commandLine cmdLine(argc, argv);
const char* modelName = cmdLine.GetString("model");
if( !modelName )
{
modelName = "fcn-alexnet-cityscapes-hd";
if( argc > 3 )
modelName = argv[3];
segNet::NetworkType type = segNet::SEGNET_CUSTOM;
if( strcasecmp(modelName, "fcn-alexnet-cityscapes-sd") == 0 || strcasecmp(modelName, "fcn-alexnet-cityscapes") == 0 )
type = segNet::FCN_ALEXNET_CITYSCAPES_SD;
else if( strcasecmp(modelName, "fcn-alexnet-cityscapes-hd") == 0 )
type = segNet::FCN_ALEXNET_CITYSCAPES_HD;
else if( strcasecmp(modelName, "fcn-alexnet-pascal-voc") == 0 )
type = segNet::FCN_ALEXNET_PASCAL_VOC;
else if( strcasecmp(modelName, "fcn-alexnet-synthia-cvpr16") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_CVPR16;
else if( strcasecmp(modelName, "fcn-alexnet-synthia-summer-sd") == 0 || strcasecmp(modelName, "fcn-alexnet-synthia-summer") == 0)
type = segNet::FCN_ALEXNET_SYNTHIA_SUMMER_SD;
else if( strcasecmp(modelName, "fcn-alexnet-synthia-summer-hd") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_SUMMER_HD;
else if( strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p;
/*else if( strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p-4ch") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p_4ch;
else if( strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p-21ch") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p_21ch;*/
// create segnet from pretrained model
return segNet::Create(type);
}
else
{
const char* prototxt = cmdLine.GetString("prototxt");
const char* labels = cmdLine.GetString("labels");
const char* colors = cmdLine.GetString("colors");
const char* input = cmdLine.GetString("input_blob");
const char* output = cmdLine.GetString("output_blob");
if( !input ) input = SEGNET_DEFAULT_INPUT;
if( !output ) output = SEGNET_DEFAULT_OUTPUT;
int maxBatchSize = cmdLine.GetInt("batch_size");
if( maxBatchSize < 1 )
maxBatchSize = 2;
return segNet::Create(prototxt, modelName, labels, colors, input, output, maxBatchSize);
}
}
// Create
segNet* segNet::Create( const char* prototxt, const char* model, const char* labels_path, const char* colors_path,
const char* input_blob, const char* output_blob, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
// create segmentation model
segNet* net = new segNet();
if( !net )
return NULL;
printf("\n");
printf("segNet -- loading segmentation network model from:\n");
printf(" -- prototxt: %s\n", prototxt);
printf(" -- model: %s\n", model);
printf(" -- labels: %s\n", labels_path);
printf(" -- colors: %s\n", colors_path);
printf(" -- input_blob '%s'\n", input_blob);
printf(" -- output_blob '%s'\n", output_blob);
printf(" -- batch_size %u\n\n", maxBatchSize);
//net->EnableProfiler();
//net->EnableDebug();
//net->DisableFP16(); // debug;
// load network
std::vector<std::string> output_blobs;
output_blobs.push_back(output_blob);
if( !net->LoadNetwork(prototxt, model, NULL, input_blob, output_blobs, maxBatchSize,
precision, device, allowGPUFallback) )
{
printf("segNet -- failed to initialize.\n");
return NULL;
}
// initialize array of class colors
const uint32_t numClasses = net->GetNumClasses();
if( !cudaAllocMapped((void**)&net->mClassColors[0], (void**)&net->mClassColors[1], numClasses * sizeof(float4)) )
return NULL;
for( uint32_t n=0; n < numClasses; n++ )
{
net->mClassColors[0][n*4+0] = 255.0f; // r
net->mClassColors[0][n*4+1] = 0.0f; // g
net->mClassColors[0][n*4+2] = 0.0f; // b
net->mClassColors[0][n*4+3] = 255.0f; // a
}
// initialize array of classified argmax
const int s_w = DIMS_W(net->mOutputs[0].dims);
const int s_h = DIMS_H(net->mOutputs[0].dims);
const int s_c = DIMS_C(net->mOutputs[0].dims);
printf(LOG_GIE "segNet outputs -- s_w %i s_h %i s_c %i\n", s_w, s_h, s_c);
if( !cudaAllocMapped((void**)&net->mClassMap[0], (void**)&net->mClassMap[1], s_w * s_h * sizeof(uint8_t)) )
return NULL;
// load class info
net->loadClassColors(colors_path);
net->loadClassLabels(labels_path);
return net;
}
// loadClassColors
bool segNet::loadClassColors( const char* filename )
{
if( !filename )
return false;
// locate the file
const std::string path = locateFile(filename);
if( path.length() == 0 )
{
printf("segNet -- failed to find %s\n", filename);
return false;
}
// open the file
FILE* f = fopen(path.c_str(), "r");
if( !f )
{
printf("segNet -- failed to open %s\n", path.c_str());
return false;
}
// read class colors
char str[512];
int idx = 0;
while( fgets(str, 512, f) != NULL )
{
const int len = strlen(str);
if( len > 0 )
{
if( str[len-1] == '\n' )
str[len-1] = 0;
int r = 255;
int g = 255;
int b = 255;
int a = 255;
sscanf(str, "%i %i %i %i", &r, &g, &b, &a);
printf("segNet -- class %02i color %i %i %i %i\n", idx, r, g, b, a);
SetClassColor(idx, r, g, b, a);
idx++;
}
}
fclose(f);
printf("segNet -- loaded %i class colors\n", idx);
if( idx == 0 )
return false;
return true;
}
// loadClassLabels
bool segNet::loadClassLabels( const char* filename )
{
if( !filename )
return false;
// locate the file
const std::string path = locateFile(filename);
if( path.length() == 0 )
{
printf("segNet -- failed to find %s\n", filename);
return false;
}
// open the file
FILE* f = fopen(path.c_str(), "r");
if( !f )
{
printf("segNet -- failed to open %s\n", path.c_str());
return false;
}
// read class labels
char str[512];
while( fgets(str, 512, f) != NULL )
{
const int len = strlen(str);
if( len > 0 )
{
if( str[len-1] == '\n' )
str[len-1] = 0;
printf("segNet -- class %02zu label '%s'\n", mClassLabels.size(), str);
mClassLabels.push_back(str);
}
}
fclose(f);
printf("segNet -- loaded %zu class labels\n", mClassLabels.size());
if( mClassLabels.size() == 0 )
return false;
mClassPath = path;
return true;
}
// SetClassColor
void segNet::SetClassColor( uint32_t classIndex, float r, float g, float b, float a )
{
if( classIndex >= GetNumClasses() || !mClassColors[0] )
return;
const uint32_t i = classIndex * 4;
mClassColors[0][i+0] = r;
mClassColors[0][i+1] = g;
mClassColors[0][i+2] = b;
mClassColors[0][i+3] = a;
}
// SetGlobalAlpha
void segNet::SetGlobalAlpha( float alpha, bool explicit_exempt )
{
const uint32_t numClasses = GetNumClasses();
for( uint32_t n=0; n < numClasses; n++ )
{
if( !explicit_exempt || mClassColors[0][n*4+3] == 255 )
mClassColors[0][n*4+3] = alpha;
}
}
// FindClassID
int segNet::FindClassID( const char* label_name )
{
if( !label_name )
return -1;
const uint32_t numLabels = mClassLabels.size();
for( uint32_t n=0; n < numLabels; n++ )
{
if( strcasecmp(label_name, mClassLabels[n].c_str()) == 0 )
return n;
}
return -1;
}
// declaration from imageNet.cu
cudaError_t cudaPreImageNet( float4* input, size_t inputWidth, size_t inputHeight, float* output, size_t outputWidth, size_t outputHeight, cudaStream_t stream );
// Process
bool segNet::Process( float* rgba, uint32_t width, uint32_t height, const char* ignore_class )
{
if( !rgba || width == 0 || height == 0 )
{
printf("segNet::Process( 0x%p, %u, %u ) -> invalid parameters\n", rgba, width, height);
return false;
}
// downsample and convert to band-sequential BGR
if( CUDA_FAILED(cudaPreImageNet((float4*)rgba, width, height, mInputCUDA, mWidth, mHeight, GetStream())) )
{
printf("segNet::Process() -- cudaPreImageNet failed\n");
return false;
}
// process with TensorRT
void* inferenceBuffers[] = { mInputCUDA, mOutputs[0].CUDA };
if( !mContext->execute(1, inferenceBuffers) )
{
printf(LOG_GIE "segNet::Process() -- failed to execute TensorRT context\n");
return false;
}
PROFILER_REPORT(); // report total time, when profiling enabled
// generate argmax classification map
if( !classify(ignore_class) )
return false;
// cache pointer to last image processed
mLastInputImg = rgba;
mLastInputWidth = width;
mLastInputHeight = height;
return true;
}
// argmax classification
bool segNet::classify( const char* ignore_class )
{
// retrieve scores
float* scores = mOutputs[0].CPU;
const int s_w = DIMS_W(mOutputs[0].dims);
const int s_h = DIMS_H(mOutputs[0].dims);
const int s_c = DIMS_C(mOutputs[0].dims);
//const float s_x = float(width) / float(s_w); // TODO bug: this should use mWidth/mHeight dimensions, in case user dimensions are different
//const float s_y = float(height) / float(s_h);
const float s_x = float(s_w) / float(mWidth);
const float s_y = float(s_h) / float(mHeight);
// if desired, find the ID of the class to ignore (typically void)
const int ignoreID = FindClassID(ignore_class);
//printf(LOG_GIE "segNet::Process -- s_w %i s_h %i s_c %i s_x %f s_y %f\n", s_w, s_h, s_c, s_x, s_y);
//printf(LOG_GIE "segNet::Process -- ignoring class '%s' id=%i\n", ignore_class, ignoreID);
// find the argmax-classified class of each tile
uint8_t* classMap = mClassMap[0];
for( uint32_t y=0; y < s_h; y++ )
{
for( uint32_t x=0; x < s_w; x++ )
{
float p_max = -100000.0f;
int c_max = -1;
for( int c=0; c < s_c; c++ )
{
// skip ignoreID
if( c == ignoreID )
continue;
// check if this class score is higher
const float p = scores[c * s_w * s_h + y * s_w + x];
if( c_max < 0 || p > p_max )
{
p_max = p;
c_max = c;
}
}
classMap[y * s_w + x] = c_max;
}
}
return true;
}
// Mask (binary)
bool segNet::Mask( uint8_t* output, uint32_t out_width, uint32_t out_height )
{
if( !output || out_width == 0 || out_height == 0 )
{
printf("segNet::Mask( 0x%p, %u, %u ) -> invalid parameters\n", output, out_width, out_height);
return false;
}
// retrieve classification map
uint8_t* classMap = mClassMap[0];
const int s_w = DIMS_W(mOutputs[0].dims);
const int s_h = DIMS_H(mOutputs[0].dims);
const float s_x = float(s_w) / float(out_width);
const float s_y = float(s_h) / float(out_height);
// overlay pixels onto original
for( uint32_t y=0; y < out_height; y++ )
{
for( uint32_t x=0; x < out_width; x++ )
{
const int cx = float(x) * s_x;
const int cy = float(y) * s_y;
// get the class ID of this cell
const uint8_t classIdx = classMap[cy * s_w + cx];
// output the pixel
output[y * out_width + x] = classIdx;
}
}
return true;
}
// Mask (colorized)
bool segNet::Mask( float* output, uint32_t width, uint32_t height, FilterMode filter )
{
if( !output || width == 0 || height == 0 )
{
printf("segNet::Mask( 0x%p, %u, %u ) -> invalid parameters\n", output, width, height);
return false;
}
// filter in point or linear
if( filter == FILTER_POINT )
return overlayPoint(NULL, 0, 0, output, width, height, true);
else if( filter == FILTER_LINEAR )
return overlayLinear(NULL, 0, 0, output, width, height, true);
return false;
}
// Overlay
bool segNet::Overlay( float* output, uint32_t width, uint32_t height, FilterMode filter )
{
if( !output || width == 0 || height == 0 )
{
printf("segNet::Overlay( 0x%p, %u, %u ) -> invalid parameters\n", output, width, height);
return false;
}
if( !mLastInputImg )
{
printf(LOG_TRT "segNet -- Process() must be called before Overlay()\n");
return false;
}
// filter in point or linear
if( filter == FILTER_POINT )
return overlayPoint(mLastInputImg, mLastInputWidth, mLastInputHeight, output, width, height, false);
else if( filter == FILTER_LINEAR )
return overlayLinear(mLastInputImg, mLastInputWidth, mLastInputHeight, output, width, height, false);
return false;
}
#define OVERLAY_CUDA
// declaration from segNet.cu
cudaError_t cudaSegOverlay( float4* input, uint32_t in_width, uint32_t in_height,
float4* output, uint32_t out_width, uint32_t out_height,
float4* class_colors, uint8_t* scores, const int2& scores_dim,
bool filter_linear, bool mask_only, cudaStream_t stream );
// overlayLinear
bool segNet::overlayPoint( float* input, uint32_t in_width, uint32_t in_height, float* output, uint32_t out_width, uint32_t out_height, bool mask_only )
{
#ifdef OVERLAY_CUDA
// generate overlay on the GPU
if( CUDA_FAILED(cudaSegOverlay((float4*)input, in_width, in_height, (float4*)output, out_width, out_height,
(float4*)mClassColors[1], mClassMap[1], make_int2(DIMS_W(mOutputs[0].dims), DIMS_H(mOutputs[0].dims)),
false, mask_only, GetStream())) )
{
printf(LOG_TRT "segNet -- failed to process %ux%u overlay/mask with CUDA\n", out_width, out_height);
return false;
}
#else
// retrieve classification map
uint8_t* classMap = mClassMap[0];
const int s_w = DIMS_W(mOutputs[0].dims);
const int s_h = DIMS_H(mOutputs[0].dims);
const float s_x = float(s_w) / float(out_width);
const float s_y = float(s_h) / float(out_height);
// overlay pixels onto original
for( uint32_t y=0; y < out_height; y++ )
{
for( uint32_t x=0; x < out_width; x++ )
{
const int cx = float(x) * s_x;
const int cy = float(y) * s_y;
// get the class ID of this cell
const uint8_t classIdx = classMap[cy * s_w + cx];
// find the color of this class
float* c_color = GetClassColor(classIdx);
// output the pixel
float* px_out = output + (((y * out_width * 4) + x * 4));
if( mask_only )
{
// only draw the segmentation mask
px_out[0] = c_color[0];
px_out[1] = c_color[1];
px_out[2] = c_color[2];
px_out[3] = 255.0f;
}
else
{
// alpha blend with input image
const uint32_t x_in = float(x) / float(out_width) * float(in_width);
const uint32_t y_in = float(y) / float(out_height) * float(in_height);
float* px_in = input + (((y_in * in_width * 4) + x_in * 4));
const float alph = c_color[3] / 255.0f;
const float inva = 1.0f - alph;
px_out[0] = alph * c_color[0] + inva * px_in[0];
px_out[1] = alph * c_color[1] + inva * px_in[1];
px_out[2] = alph * c_color[2] + inva * px_in[2];
px_out[3] = 255.0f;
}
}
}
#endif
return true;
}
// overlayLinear
bool segNet::overlayLinear( float* input, uint32_t in_width, uint32_t in_height, float* output, uint32_t out_width, uint32_t out_height, bool mask_only )
{
#ifdef OVERLAY_CUDA
// generate overlay on the GPU
if( CUDA_FAILED(cudaSegOverlay((float4*)input, in_width, in_height, (float4*)output, out_width, out_height,
(float4*)mClassColors[1], mClassMap[1], make_int2(DIMS_W(mOutputs[0].dims), DIMS_H(mOutputs[0].dims)),
true, mask_only, GetStream())) )
{
printf(LOG_TRT "segNet -- failed to process %ux%u overlay/mask with CUDA\n", out_width, out_height);
return false;
}
#else
// retrieve classification map
uint8_t* classMap = mClassMap[0];
const int s_w = DIMS_W(mOutputs[0].dims);
const int s_h = DIMS_H(mOutputs[0].dims);
const float s_x = float(s_w) / float(out_width);
const float s_y = float(s_h) / float(out_height);
// overlay pixels onto original
for( uint32_t y=0; y < out_height; y++ )
{
for( uint32_t x=0; x < out_width; x++ )
{
const float cx = float(x) * s_x;
const float cy = float(y) * s_y;
const int x1 = int(cx);
const int y1 = int(cy);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
#define CHK_BOUNDS(x, y) ( (y < 0 ? 0 : (y >= (s_h - 1) ? (s_h - 1) : y)) * s_w + (x < 0 ? 0 : (x >= (s_w - 1) ? (s_w - 1) : x)) )
/*const uint8_t classIdx[] = { classMap[y1 * s_w + x1],
classMap[y1 * s_w + x2],
classMap[y2 * s_w + x2],
classMap[y2 * s_w + x1] };*/
const uint8_t classIdx[] = { classMap[CHK_BOUNDS(x1, y1)],
classMap[CHK_BOUNDS(x2, y1)],
classMap[CHK_BOUNDS(x2, y2)],
classMap[CHK_BOUNDS(x1, y2)] };
float* cc[] = { GetClassColor(classIdx[0]),
GetClassColor(classIdx[1]),
GetClassColor(classIdx[2]),
GetClassColor(classIdx[3]) };
// compute bilinear weights
const float x1d = cx - float(x1);
const float y1d = cy - float(y1);
const float x2d = 1.0f - x1d;
const float y2d = 1.0f - y1d;
const float x1f = 1.0f - x1d;
const float y1f = 1.0f - y1d;
const float x2f = 1.0f - x1f;
const float y2f = 1.0f - y1f;
/*int c_index = 0;
if( y2d > y1d )
{
if( x2d > y2d ) c_index = 2;
else c_index = 3;
}
else
{
if( x2d > y2d ) c_index = 1;
else c_index = 0;
}*/
//float* c_color = GetClassColor(classIdx[c_index]);
//printf("x %u y %u cx %f cy %f x1d %f y1d %f x2d %f y2d %f c %i\n", x, y, cx, cy, x1d, y1d, x2d, y2d, c_index);
float c_color[] = { cc[0][0] * x1f * y1f + cc[1][0] * x2f * y1f + cc[2][0] * x2f * y2f + cc[3][0] * x1f * y2f,
cc[0][1] * x1f * y1f + cc[1][1] * x2f * y1f + cc[2][1] * x2f * y2f + cc[3][1] * x1f * y2f,
cc[0][2] * x1f * y1f + cc[1][2] * x2f * y1f + cc[2][2] * x2f * y2f + cc[3][2] * x1f * y2f,
cc[0][3] * x1f * y1f + cc[1][3] * x2f * y1f + cc[2][3] * x2f * y2f + cc[3][3] * x1f * y2f };
// output the pixel
float* px_out = output + (((y * out_width * 4) + x * 4));
if( mask_only )
{
// only draw the segmentation mask
px_out[0] = c_color[0];
px_out[1] = c_color[1];
px_out[2] = c_color[2];
px_out[3] = 255.0f;
}
else
{
// alpha blend with input image
const int x_in = float(x) / float(out_width) * float(in_width);
const int y_in = float(y) / float(out_height) * float(in_height);
float* px_in = input + (((y_in * in_width * 4) + x_in * 4));
const float alph = c_color[3] / 255.0f;
const float inva = 1.0f - alph;
px_out[0] = alph * c_color[0] + inva * px_in[0];
px_out[1] = alph * c_color[1] + inva * px_in[1];
px_out[2] = alph * c_color[2] + inva * px_in[2];
px_out[3] = 255.0f;
}
}
}
#endif
return true;
}