Skip to content

Latest commit

 

History

History
55 lines (38 loc) · 1.27 KB

readme.md

File metadata and controls

55 lines (38 loc) · 1.27 KB
  • ID3、C4.5的Python实现,其中C4.5有待完善,后续加入CART。

  • 依赖

    • NumPy
    • Matplotlib
  • 测试

      from id3_c45 import DecisionTree
      if __name__=='__main__':
          #Toy data
          X = [[1, 2, 0, 1, 0],
               [0, 1, 1, 0, 1],
               [1, 0, 0, 0, 1],
               [2, 1, 1, 0, 1],
               [1, 1, 0, 1, 1]]
          y = ['yes','yes','no','no','no']
        
          clf = DecisionTree(mode='ID3')
          clf.fit(X,y)
          clf.show()
          print  clf.predict(X)   #['yes' 'yes' 'no' 'no' 'no']
      
          clf_ = DecisionTree(mode='C4.5')
          clf_.fit(X,y).show()
          print clf_.predict(X)   #['yes' 'yes' 'no' 'no' 'no']
    

    ID3:

    C4.5:

  • 存在的问题

    (1) 如果测试集中某个样本的某个特征的值在训练集中没出现,则会造成训练出来的树的某个分支,对该样本不能分类,出现KeyError:

      from sklearn.datasets import load_digits
      dataset = load_digits()
      X =  dataset['data']
      y = dataset['target']
      clf.fit(X[0:1000],y[0:1000])
      for i in range(1000,1500):
          try:
              print clf.predict(X[i])==y[i]
          except KeyError:
              print "KeyError"
    

    (2)目前还不能对多个样本并行预测