-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpascal_multilabel_datalayers.py
216 lines (170 loc) · 6.69 KB
/
pascal_multilabel_datalayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# imports
import json
import time
import pickle
import scipy.misc
import skimage.io
import caffe
import numpy as np
import os.path as osp
from xml.dom import minidom
from random import shuffle
from threading import Thread
from PIL import Image
from tools import SimpleTransformer
class PascalMultilabelDataLayerSync(caffe.Layer):
"""
This is a simple synchronous datalayer for training a multilabel model on
PASCAL.
"""
def setup(self, bottom, top):
self.top_names = ['data', 'label']
# === Read input parameters ===
# params is a python dictionary with layer parameters.
params = eval(self.param_str)
# Check the parameters for validity.
check_params(params)
# store input as class variables
self.batch_size = params['batch_size']
# Create a batch loader to load the images.
self.batch_loader = BatchLoader(params, None)
# === reshape tops ===
# since we use a fixed input image size, we can shape the data layer
# once. Else, we'd have to do it in the reshape call.
top[0].reshape(
self.batch_size, 3, params['im_shape'][0], params['im_shape'][1])
# Note the 20 channels (because PASCAL has 20 classes.)
top[1].reshape(self.batch_size, 20)
print_info("PascalMultilabelDataLayerSync", params)
def forward(self, bottom, top):
"""
Load data.
"""
for itt in range(self.batch_size):
# Use the batch loader to load the next image.
im, multilabel = self.batch_loader.load_next_image()
# Add directly to the caffe data layer
top[0].data[itt, ...] = im
top[1].data[itt, ...] = multilabel
def reshape(self, bottom, top):
"""
There is no need to reshape the data, since the input is of fixed size
(rows and columns)
"""
pass
def backward(self, top, propagate_down, bottom):
"""
These layers does not back propagate
"""
pass
class BatchLoader(object):
"""
This class abstracts away the loading of images.
Images can either be loaded singly, or in a batch. The latter is used for
the asyncronous data layer to preload batches while other processing is
performed.
"""
def __init__(self, params, result):
self.result = result
self.batch_size = params['batch_size']
self.pascal_root = params['pascal_root']
self.im_shape = params['im_shape']
# get list of image indexes.
list_file = params['split'] + '.txt'
self.indexlist = [line.rstrip('\n') for line in open(
osp.join(self.pascal_root, 'ImageSets/Main', list_file))]
self._cur = 0 # current image
# this class does some simple data-manipulations
self.transformer = SimpleTransformer()
print "BatchLoader initialized with {} images".format(
len(self.indexlist))
def load_next_image(self):
"""
Load the next image in a batch.
"""
# Did we finish an epoch?
if self._cur == len(self.indexlist):
self._cur = 0
shuffle(self.indexlist)
# Load an image
index = self.indexlist[self._cur] # Get the image index
image_file_name = index + '.jpg'
im = np.asarray(Image.open(
osp.join(self.pascal_root, 'JPEGImages', image_file_name)))
im = scipy.misc.imresize(im, self.im_shape) # resize
# do a simple horizontal flip as data augmentation
flip = np.random.choice(2)*2-1
im = im[:, ::flip, :]
# Load and prepare ground truth
multilabel = np.zeros(20).astype(np.float32)
anns = load_pascal_annotation(index, self.pascal_root)
for label in anns['gt_classes']:
# in the multilabel problem we don't care how MANY instances
# there are of each class. Only if they are present.
# The "-1" is b/c we are not interested in the background
# class.
multilabel[label - 1] = 1
self._cur += 1
return self.transformer.preprocess(im), multilabel
def load_pascal_annotation(index, pascal_root):
"""
This code is borrowed from Ross Girshick's FAST-RCNN code
(https://github.com/rbgirshick/fast-rcnn).
It parses the PASCAL .xml metadata files.
See publication for further details: (http://arxiv.org/abs/1504.08083).
Thanks Ross!
"""
classes = ('__background__', # always index 0
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
class_to_ind = dict(zip(classes, xrange(21)))
filename = osp.join(pascal_root, 'Annotations', index + '.xml')
# print 'Loading: {}'.format(filename)
def get_data_from_tag(node, tag):
return node.getElementsByTagName(tag)[0].childNodes[0].data
with open(filename) as f:
data = minidom.parseString(f.read())
objs = data.getElementsByTagName('object')
num_objs = len(objs)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros((num_objs), dtype=np.int32)
overlaps = np.zeros((num_objs, 21), dtype=np.float32)
# Load object bounding boxes into a data frame.
for ix, obj in enumerate(objs):
# Make pixel indexes 0-based
x1 = float(get_data_from_tag(obj, 'xmin')) - 1
y1 = float(get_data_from_tag(obj, 'ymin')) - 1
x2 = float(get_data_from_tag(obj, 'xmax')) - 1
y2 = float(get_data_from_tag(obj, 'ymax')) - 1
cls = class_to_ind[
str(get_data_from_tag(obj, "name")).lower().strip()]
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[ix, cls] = 1.0
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes': boxes,
'gt_classes': gt_classes,
'gt_overlaps': overlaps,
'flipped': False,
'index': index}
def check_params(params):
"""
A utility function to check the parameters for the data layers.
"""
assert 'split' in params.keys(
), 'Params must include split (train, val, or test).'
required = ['batch_size', 'pascal_root', 'im_shape']
for r in required:
assert r in params.keys(), 'Params must include {}'.format(r)
def print_info(name, params):
"""
Output some info regarding the class
"""
print "{} initialized for split: {}, with bs: {}, im_shape: {}.".format(
name,
params['split'],
params['batch_size'],
params['im_shape'])