forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dueling_q_tf2_atari.py
218 lines (189 loc) · 8.67 KB
/
dueling_q_tf2_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gym
import tensorflow as tf
from tensorflow import keras
import random
import numpy as np
import datetime as dt
import imageio
STORE_PATH = 'C:\\Users\\Andy\\TensorFlowBook\\TensorBoard'
MAX_EPSILON = 1
MIN_EPSILON = 0.1
EPSILON_MIN_ITER = 500000
GAMMA = 0.99
BATCH_SIZE = 32
TAU = 0.08
POST_PROCESS_IMAGE_SIZE = (105, 80, 1)
DELAY_TRAINING = 50000
NUM_FRAMES = 4
GIF_RECORDING_FREQ = 100
env = gym.make("SpaceInvaders-v0")
num_actions = env.action_space.n
class DQModel(keras.Model):
def __init__(self, hidden_size: int, num_actions: int, dueling: bool):
super(DQModel, self).__init__()
self.dueling = dueling
self.conv1 = keras.layers.Conv2D(16, (8, 8), (4, 4), activation='relu')
self.conv2 = keras.layers.Conv2D(32, (4, 4), (2, 2), activation='relu')
self.flatten = keras.layers.Flatten()
self.adv_dense = keras.layers.Dense(hidden_size, activation='relu',
kernel_initializer=keras.initializers.he_normal())
self.adv_out = keras.layers.Dense(num_actions,
kernel_initializer=keras.initializers.he_normal())
if dueling:
self.v_dense = keras.layers.Dense(hidden_size, activation='relu',
kernel_initializer=keras.initializers.he_normal())
self.v_out = keras.layers.Dense(1, kernel_initializer=keras.initializers.he_normal())
self.lambda_layer = keras.layers.Lambda(lambda x: x - tf.reduce_mean(x))
self.combine = keras.layers.Add()
def call(self, input):
x = self.conv1(input)
x = self.conv2(x)
x = self.flatten(x)
adv = self.adv_dense(x)
adv = self.adv_out(adv)
if self.dueling:
v = self.v_dense(x)
v = self.v_out(v)
norm_adv = self.lambda_layer(adv)
combined = self.combine([v, norm_adv])
return combined
return adv
primary_network = DQModel(256, num_actions, True)
target_network = DQModel(256, num_actions, True)
primary_network.compile(optimizer=keras.optimizers.Adam(), loss='mse')
# make target_network = primary_network
for t, e in zip(target_network.trainable_variables, primary_network.trainable_variables):
t.assign(e)
primary_network.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.Huber())
class Memory:
def __init__(self, max_memory):
self._max_memory = max_memory
self._actions = np.zeros(max_memory, dtype=np.int32)
self._rewards = np.zeros(max_memory, dtype=np.float32)
self._frames = np.zeros((POST_PROCESS_IMAGE_SIZE[0], POST_PROCESS_IMAGE_SIZE[1], max_memory), dtype=np.float32)
self._terminal = np.zeros(max_memory, dtype=np.bool)
self._i = 0
def add_sample(self, frame, action, reward, terminal):
self._actions[self._i] = action
self._rewards[self._i] = reward
self._frames[:, :, self._i] = frame[:, :, 0]
self._terminal[self._i] = terminal
if self._i % (self._max_memory - 1) == 0 and self._i != 0:
self._i = BATCH_SIZE + NUM_FRAMES + 1
else:
self._i += 1
def sample(self):
if self._i < BATCH_SIZE + NUM_FRAMES + 1:
raise ValueError("Not enough memory to extract a batch")
else:
rand_idxs = np.random.randint(NUM_FRAMES + 1, self._i, size=BATCH_SIZE)
states = np.zeros((BATCH_SIZE, POST_PROCESS_IMAGE_SIZE[0], POST_PROCESS_IMAGE_SIZE[1], NUM_FRAMES),
dtype=np.float32)
next_states = np.zeros((BATCH_SIZE, POST_PROCESS_IMAGE_SIZE[0], POST_PROCESS_IMAGE_SIZE[1], NUM_FRAMES),
dtype=np.float32)
for i, idx in enumerate(rand_idxs):
states[i] = self._frames[:, :, idx - 1 - NUM_FRAMES:idx - 1]
next_states[i] = self._frames[:, :, idx - NUM_FRAMES:idx]
return states, self._actions[rand_idxs], self._rewards[rand_idxs], next_states, self._terminal[rand_idxs]
memory = Memory(500000)
# memory = Memory(100)
def image_preprocess(image, new_size=(105, 80)):
# convert to greyscale, resize and normalize the image
image = tf.image.rgb_to_grayscale(image)
image = tf.image.resize(image, new_size)
image = image / 255
return image
def choose_action(state, primary_network, eps, step):
if step < DELAY_TRAINING:
return random.randint(0, num_actions - 1)
else:
if random.random() < eps:
return random.randint(0, num_actions - 1)
else:
return np.argmax(primary_network(tf.reshape(state, (1, POST_PROCESS_IMAGE_SIZE[0],
POST_PROCESS_IMAGE_SIZE[1], NUM_FRAMES)).numpy()))
def update_network(primary_network, target_network):
# update target network parameters slowly from primary network
for t, e in zip(target_network.trainable_variables, primary_network.trainable_variables):
t.assign(t * (1 - TAU) + e * TAU)
def process_state_stack(state_stack, state):
for i in range(1, state_stack.shape[-1]):
state_stack[:, :, i - 1].assign(state_stack[:, :, i])
state_stack[:, :, -1].assign(state[:, :, 0])
return state_stack
def record_gif(frame_list, episode, fps=50):
imageio.mimsave(STORE_PATH + f"/SPACE_INVADERS_EPISODE-{episode}.gif", frame_list, fps=fps) #duration=duration_per_frame)
def train(primary_network, memory, target_network=None):
states, actions, rewards, next_states, terminal = memory.sample()
# predict Q(s,a) given the batch of states
prim_qt = primary_network(states)
# predict Q(s',a') from the evaluation network
prim_qtp1 = primary_network(next_states)
# copy the prim_qt tensor into the target_q tensor - we then will update one index corresponding to the max action
target_q = prim_qt.numpy()
updates = rewards
valid_idxs = terminal != True
batch_idxs = np.arange(BATCH_SIZE)
if target_network is None:
updates[valid_idxs] += GAMMA * np.amax(prim_qtp1.numpy()[valid_idxs, :], axis=1)
else:
prim_action_tp1 = np.argmax(prim_qtp1.numpy(), axis=1)
q_from_target = target_network(next_states)
updates[valid_idxs] += GAMMA * q_from_target.numpy()[batch_idxs[valid_idxs], prim_action_tp1[valid_idxs]]
target_q[batch_idxs, actions] = updates
loss = primary_network.train_on_batch(states, target_q)
return loss
num_episodes = 1000000
eps = MAX_EPSILON
render = False
train_writer = tf.summary.create_file_writer(STORE_PATH + f"/DuelingQSI_{dt.datetime.now().strftime('%d%m%Y%H%M')}")
double_q = True
steps = 0
for i in range(num_episodes):
state = env.reset()
state = image_preprocess(state)
state_stack = tf.Variable(np.repeat(state.numpy(), NUM_FRAMES).reshape((POST_PROCESS_IMAGE_SIZE[0],
POST_PROCESS_IMAGE_SIZE[1],
NUM_FRAMES)))
cnt = 1
avg_loss = 0
tot_reward = 0
if i % GIF_RECORDING_FREQ == 0:
frame_list = []
while True:
if render:
env.render()
action = choose_action(state_stack, primary_network, eps, steps)
next_state, reward, done, info = env.step(action)
tot_reward += reward
if i % GIF_RECORDING_FREQ == 0:
frame_list.append(tf.cast(tf.image.resize(next_state, (480, 320)), tf.uint8).numpy())
next_state = image_preprocess(next_state)
state_stack = process_state_stack(state_stack, next_state)
# store in memory
memory.add_sample(next_state, action, reward, done)
if steps > DELAY_TRAINING:
loss = train(primary_network, memory, target_network if double_q else None)
update_network(primary_network, target_network)
else:
loss = -1
avg_loss += loss
# linearly decay the eps value
if steps > DELAY_TRAINING:
eps = MAX_EPSILON - ((steps - DELAY_TRAINING) / EPSILON_MIN_ITER) * \
(MAX_EPSILON - MIN_EPSILON) if steps < EPSILON_MIN_ITER else \
MIN_EPSILON
steps += 1
if done:
if steps > DELAY_TRAINING:
avg_loss /= cnt
print(f"Episode: {i}, Reward: {tot_reward}, avg loss: {avg_loss:.5f}, eps: {eps:.3f}")
with train_writer.as_default():
tf.summary.scalar('reward', tot_reward, step=i)
tf.summary.scalar('avg loss', avg_loss, step=i)
else:
print(f"Pre-training...Episode: {i}")
if i % GIF_RECORDING_FREQ == 0:
record_gif(frame_list, i)
break
cnt += 1