Pipeline based on SlimYoloV3 project - https://github.com/PengyiZhang/SlimYOLOv3 Base Yolov3 code from - https://github.com/erikguo/yolov3
- YoloV3-SPP3
Supports
- Python 3.6
- Cuda 9.0, 10.0 (Other cuda version support is experimental)
cd installation
cat requirements.txt | xargs -n 1 -L 1 pip install
- Load Dataset
gtf.set_train_dataset(img_dir, label_dir, class_list_file, batch_size=2, img_size=608)
- Set Hyper Params
gtf.set_hyperparams(optimizer="sgd", lr=0.00579, multi_scale=False, evolve=True, num_generations=2);
- Train
gtf.Train(num_epochs=2);
- Reload Model, prune and retrain
gtf.prune_weights("yolov3-spp3.cfg", "weights/last.pt", "pruned1.cfg", "pruned1.pt"1);
gtf.Train(num_epochs=2, finetune=True)
- Add support for Coco-Type Annotated Datasets
- Add support for VOC-Type Annotated Dataset
- Test on Kaggle and Colab
- Add validation feature & data pipeline
- Add Optimizer selection feature
- Enable Learning-Rate Scheduler Support
- Enable Layer Freezing
- Set Verbosity Levels
- Add Project management and version control support (Similar to Monk Classification)
- Add Graph Visualization Support
- Enable batch proessing at inference
- Add feature for top-k output visualization
- Add Multi-GPU training
- Auto correct missing or corrupt images - Currently skips them
- Add Experimental Data Analysis Feature