Skip to content

Latest commit

 

History

History
 
 

11_slimyolov3

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Project Details

Pipeline based on SlimYoloV3 project - https://github.com/PengyiZhang/SlimYOLOv3 Base Yolov3 code from - https://github.com/erikguo/yolov3




Supported Models

  • YoloV3-SPP3


Installation

Supports

  • Python 3.6
  • Cuda 9.0, 10.0 (Other cuda version support is experimental)

cd installation

cat requirements.txt | xargs -n 1 -L 1 pip install




Pipeline

  • Load Dataset

gtf.set_train_dataset(img_dir, label_dir, class_list_file, batch_size=2, img_size=608)

  • Set Hyper Params

gtf.set_hyperparams(optimizer="sgd", lr=0.00579, multi_scale=False, evolve=True, num_generations=2);

  • Train

gtf.Train(num_epochs=2);

  • Reload Model, prune and retrain

gtf.prune_weights("yolov3-spp3.cfg", "weights/last.pt", "pruned1.cfg", "pruned1.pt"1);

gtf.Train(num_epochs=2, finetune=True)




TODO

  • Add support for Coco-Type Annotated Datasets
  • Add support for VOC-Type Annotated Dataset
  • Test on Kaggle and Colab
  • Add validation feature & data pipeline
  • Add Optimizer selection feature
  • Enable Learning-Rate Scheduler Support
  • Enable Layer Freezing
  • Set Verbosity Levels
  • Add Project management and version control support (Similar to Monk Classification)
  • Add Graph Visualization Support
  • Enable batch proessing at inference
  • Add feature for top-k output visualization
  • Add Multi-GPU training
  • Auto correct missing or corrupt images - Currently skips them
  • Add Experimental Data Analysis Feature