Pipeline based on EfficientDet project - https://github.com/yhenon/pytorch-retinanet
- Resnet18
- Resnet34
- Resnet50
- Resnet101
- Resnet152
Supports
- Python 3.6
- Cuda 9.0 (Other cuda version support is experimental)
cd installation
cat requirements.txt | xargs -n 1 -L 1 pip install
- Load Dataset
gtf.Train_Dataset(root_dir="../sample_dataset", coco_dir="kangaroo", img_dir="images", set_dir="Train", batch_size=8, image_size=512, use_gpu=True)
- Load Model
gtf.Model(model_name="resnet18");
- Set Hyper Parameters
gtf.Set_Hyperparams(lr=0.0001, val_interval=1, es_min_delta=0.0, es_patience=0)
- Train
gtf.Train(num_epochs=2, output_model_name="trained.pt");
- Add support for Coco-Type Annotated Datasets
- Add support for VOC-Type Annotated Dataset
- Test on Kaggle and Colab
- Add validation feature & data pipeline
- Add Optimizer selection feature
- Enable Learning-Rate Scheduler Support
- Enable Layer Freezing
- Set Verbosity Levels
- Add Project management and version control support (Similar to Monk Classification)
- Add Graph Visualization Support
- Enable batch proessing at inference
- Add feature for top-k output visualization
- Add Multi-GPU training
- Auto correct missing or corrupt images - Currently skips them
- Add Experimental Data Analysis Feature
- https://github.com/THEFASHIONGEEK: Multi GPU feature