Skip to content

Latest commit

 

History

History
 
 

5_pytorch_retinanet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Project Details

Pipeline based on EfficientDet project - https://github.com/yhenon/pytorch-retinanet




Supported Models

  • Resnet18
  • Resnet34
  • Resnet50
  • Resnet101
  • Resnet152


Installation

Supports

  • Python 3.6
  • Cuda 9.0 (Other cuda version support is experimental)

cd installation

cat requirements.txt | xargs -n 1 -L 1 pip install




Functional Documentation

Link




Pipeline

  • Load Dataset

gtf.Train_Dataset(root_dir="../sample_dataset", coco_dir="kangaroo", img_dir="images", set_dir="Train", batch_size=8, image_size=512, use_gpu=True)

  • Load Model

gtf.Model(model_name="resnet18");

  • Set Hyper Parameters

gtf.Set_Hyperparams(lr=0.0001, val_interval=1, es_min_delta=0.0, es_patience=0)

  • Train

gtf.Train(num_epochs=2, output_model_name="trained.pt");




TODO

  • Add support for Coco-Type Annotated Datasets
  • Add support for VOC-Type Annotated Dataset
  • Test on Kaggle and Colab
  • Add validation feature & data pipeline
  • Add Optimizer selection feature
  • Enable Learning-Rate Scheduler Support
  • Enable Layer Freezing
  • Set Verbosity Levels
  • Add Project management and version control support (Similar to Monk Classification)
  • Add Graph Visualization Support
  • Enable batch proessing at inference
  • Add feature for top-k output visualization
  • Add Multi-GPU training
  • Auto correct missing or corrupt images - Currently skips them
  • Add Experimental Data Analysis Feature



External Contributors list