forked from sandboxdream/AI-Vtuber
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
43 lines (33 loc) · 1.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import subprocess # 导入子进程模块
from chatterbot import ChatBot # 导入聊天机器人库
from bilibili_api import live, sync # 导入bilibili直播API库
bot = ChatBot(
'Xzai', # 聊天机器人名字
database_uri='sqlite:///db.sqlite3' # 数据库URI,数据库用于存储对话历史
)
#版权信息,就别删了吧
print("--------------------")
print("作者:Xzai")
print("QQ:2744601427")
print("--------------------")
room_id = int(input("请输入直播间编号: ")) # 输入直播间编号
room = live.LiveDanmaku(room_id) # 连接弹幕服务器
@room.on('DANMU_MSG') # 弹幕消息事件回调函数
async def on_danmaku(event):
"""
处理弹幕消息
:param event: 弹幕消息事件
"""
content = event["data"]["info"][1] # 获取弹幕内容
user_name = event["data"]["info"][2][1] # 获取用户昵称
print(f"[{user_name}]: {content}") # 打印弹幕信息
prompt = f"{content}" # 设置观众提问
response = bot.get_response(prompt) # 生成回复
print(f"[AI回复{user_name}]:{response}") # 打印AI回复信息
command = f'edge-tts --voice zh-CN-XiaoyiNeural --text "{response.text}" --write-media output.mp3' # 将 AI 生成的文本传递给 edge-tts 命令
subprocess.run(command, shell=True) # 执行命令行指令
with open("./output.txt", "a", encoding="utf-8") as f:
f.write(f"[AI回复{user_name}]:{response}\n") # 将回复写入文件
command = 'mpv.exe -vo null output.mp3' # 播放音频文件
subprocess.run(command, shell=True) # 执行命令行指令
sync(room.connect()) # 开始监听弹幕流