forked from Floorp-Projects/Floorp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStreamingLexer.h
750 lines (660 loc) · 29.7 KB
/
StreamingLexer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* StreamingLexer is a lexing framework designed to make it simple to write
* image decoders without worrying about the details of how the data is arriving
* from the network.
*/
#ifndef mozilla_image_StreamingLexer_h
#define mozilla_image_StreamingLexer_h
#include <algorithm>
#include <cstdint>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Maybe.h"
#include "mozilla/Move.h"
#include "mozilla/Variant.h"
#include "mozilla/Vector.h"
namespace mozilla {
namespace image {
/// Buffering behaviors for StreamingLexer transitions.
enum class BufferingStrategy
{
BUFFERED, // Data will be buffered and processed in one chunk.
UNBUFFERED // Data will be processed as it arrives, in multiple chunks.
};
/// Control flow behaviors for StreamingLexer transitions.
enum class ControlFlowStrategy
{
CONTINUE, // If there's enough data, proceed to the next state immediately.
YIELD // Yield to the caller before proceeding to the next state.
};
/// Possible terminal states for the lexer.
enum class TerminalState
{
SUCCESS,
FAILURE
};
/// Possible yield reasons for the lexer.
enum class Yield
{
NEED_MORE_DATA, // The lexer cannot continue without more data.
OUTPUT_AVAILABLE // There is output available for the caller to consume.
};
/// The result of a call to StreamingLexer::Lex().
typedef Variant<TerminalState, Yield> LexerResult;
/**
* LexerTransition is a type used to give commands to the lexing framework.
* Code that uses StreamingLexer can create LexerTransition values using the
* static methods on Transition, and then return them to the lexing framework
* for execution.
*/
template <typename State>
class LexerTransition
{
public:
// This is implicit so that Terminate{Success,Failure}() can return a
// TerminalState and have it implicitly converted to a
// LexerTransition<State>, which avoids the need for a "<State>"
// qualification to the Terminate{Success,Failure}() callsite.
MOZ_IMPLICIT LexerTransition(TerminalState aFinalState)
: mNextState(aFinalState)
{}
bool NextStateIsTerminal() const
{
return mNextState.template is<TerminalState>();
}
TerminalState NextStateAsTerminal() const
{
return mNextState.template as<TerminalState>();
}
State NextState() const
{
return mNextState.template as<NonTerminalState>().mState;
}
State UnbufferedState() const
{
return *mNextState.template as<NonTerminalState>().mUnbufferedState;
}
size_t Size() const
{
return mNextState.template as<NonTerminalState>().mSize;
}
BufferingStrategy Buffering() const
{
return mNextState.template as<NonTerminalState>().mBufferingStrategy;
}
ControlFlowStrategy ControlFlow() const
{
return mNextState.template as<NonTerminalState>().mControlFlowStrategy;
}
private:
friend struct Transition;
LexerTransition(State aNextState,
const Maybe<State>& aUnbufferedState,
size_t aSize,
BufferingStrategy aBufferingStrategy,
ControlFlowStrategy aControlFlowStrategy)
: mNextState(NonTerminalState(aNextState, aUnbufferedState, aSize,
aBufferingStrategy, aControlFlowStrategy))
{}
struct NonTerminalState
{
State mState;
Maybe<State> mUnbufferedState;
size_t mSize;
BufferingStrategy mBufferingStrategy;
ControlFlowStrategy mControlFlowStrategy;
NonTerminalState(State aState,
const Maybe<State>& aUnbufferedState,
size_t aSize,
BufferingStrategy aBufferingStrategy,
ControlFlowStrategy aControlFlowStrategy)
: mState(aState)
, mUnbufferedState(aUnbufferedState)
, mSize(aSize)
, mBufferingStrategy(aBufferingStrategy)
, mControlFlowStrategy(aControlFlowStrategy)
{
MOZ_ASSERT_IF(mBufferingStrategy == BufferingStrategy::UNBUFFERED,
mUnbufferedState);
MOZ_ASSERT_IF(mUnbufferedState,
mBufferingStrategy == BufferingStrategy::UNBUFFERED);
}
};
Variant<NonTerminalState, TerminalState> mNextState;
};
struct Transition
{
/// Transition to @aNextState, buffering @aSize bytes of data.
template <typename State>
static LexerTransition<State>
To(const State& aNextState, size_t aSize)
{
return LexerTransition<State>(aNextState, Nothing(), aSize,
BufferingStrategy::BUFFERED,
ControlFlowStrategy::CONTINUE);
}
/// Yield to the caller, transitioning to @aNextState when Lex() is next
/// invoked. The same data that was delivered for the current state will be
/// delivered again.
template <typename State>
static LexerTransition<State>
ToAfterYield(const State& aNextState)
{
return LexerTransition<State>(aNextState, Nothing(), 0,
BufferingStrategy::BUFFERED,
ControlFlowStrategy::YIELD);
}
/**
* Transition to @aNextState via @aUnbufferedState, reading @aSize bytes of
* data unbuffered.
*
* The unbuffered data will be delivered in state @aUnbufferedState, which may
* be invoked repeatedly until all @aSize bytes have been delivered. Then,
* @aNextState will be invoked with no data. No state transitions are allowed
* from @aUnbufferedState except for transitions to a terminal state, so
* @aNextState will always be reached unless lexing terminates early.
*/
template <typename State>
static LexerTransition<State>
ToUnbuffered(const State& aNextState,
const State& aUnbufferedState,
size_t aSize)
{
return LexerTransition<State>(aNextState, Some(aUnbufferedState), aSize,
BufferingStrategy::UNBUFFERED,
ControlFlowStrategy::CONTINUE);
}
/**
* Continue receiving unbuffered data. @aUnbufferedState should be the same
* state as the @aUnbufferedState specified in the preceding call to
* ToUnbuffered().
*
* This should be used during an unbuffered read initiated by ToUnbuffered().
*/
template <typename State>
static LexerTransition<State>
ContinueUnbuffered(const State& aUnbufferedState)
{
return LexerTransition<State>(aUnbufferedState, Nothing(), 0,
BufferingStrategy::BUFFERED,
ControlFlowStrategy::CONTINUE);
}
/**
* Continue receiving unbuffered data. @aUnbufferedState should be the same
* state as the @aUnbufferedState specified in the preceding call to
* ToUnbuffered(). @aSize indicates the amount of data that has already been
* consumed; the next state will receive the same data that was delivered to
* the current state, without the first @aSize bytes.
*
* This should be used during an unbuffered read initiated by ToUnbuffered().
*/
template <typename State>
static LexerTransition<State>
ContinueUnbufferedAfterYield(const State& aUnbufferedState, size_t aSize)
{
return LexerTransition<State>(aUnbufferedState, Nothing(), aSize,
BufferingStrategy::BUFFERED,
ControlFlowStrategy::YIELD);
}
/**
* Terminate lexing, ending up in terminal state SUCCESS. (The implicit
* LexerTransition constructor will convert the result to a LexerTransition
* as needed.)
*
* No more data will be delivered after this function is used.
*/
static TerminalState
TerminateSuccess()
{
return TerminalState::SUCCESS;
}
/**
* Terminate lexing, ending up in terminal state FAILURE. (The implicit
* LexerTransition constructor will convert the result to a LexerTransition
* as needed.)
*
* No more data will be delivered after this function is used.
*/
static TerminalState
TerminateFailure()
{
return TerminalState::FAILURE;
}
private:
Transition();
};
/**
* StreamingLexer is a lexing framework designed to make it simple to write
* image decoders without worrying about the details of how the data is arriving
* from the network.
*
* To use StreamingLexer:
*
* - Create a State type. This should be an |enum class| listing all of the
* states that you can be in while lexing the image format you're trying to
* read.
*
* - Add an instance of StreamingLexer<State> to your decoder class. Initialize
* it with a Transition::To() the state that you want to start lexing in, and
* a Transition::To() the state you'd like to use to handle truncated data.
*
* - In your decoder's DoDecode() method, call Lex(), passing in the input
* data and length that are passed to DoDecode(). You also need to pass
* a lambda which dispatches to lexing code for each state based on the State
* value that's passed in. The lambda generally should just continue a
* |switch| statement that calls different methods for each State value. Each
* method should return a LexerTransition<State>, which the lambda should
* return in turn.
*
* - Write the methods that actually implement lexing for your image format.
* These methods should return either Transition::To(), to move on to another
* state, or Transition::Terminate{Success,Failure}(), if lexing has
* terminated in either success or failure. (There are also additional
* transitions for unbuffered reads; see below.)
*
* That's the basics. The StreamingLexer will track your position in the input
* and buffer enough data so that your lexing methods can process everything in
* one pass. Lex() returns Yield::NEED_MORE_DATA if more data is needed, in
* which case you should just return from DoDecode(). If lexing reaches a
* terminal state, Lex() returns TerminalState::SUCCESS or
* TerminalState::FAILURE, and you can check which one to determine if lexing
* succeeded or failed and do any necessary cleanup.
*
* Sometimes, the input data is truncated. StreamingLexer will notify you when
* this happens by invoking the truncated data state you passed to the
* constructor. At this point you can attempt to recover and return
* TerminalState::SUCCESS or TerminalState::FAILURE, depending on whether you
* were successful. Note that you can't return anything other than a terminal
* state in this situation, since there's no more data to read. For the same
* reason, your truncated data state shouldn't require any data. (That is, the
* @aSize argument you pass to Transition::To() must be zero.) Violating these
* requirements will trigger assertions and an immediate transition to
* TerminalState::FAILURE.
*
* Some lexers may want to *avoid* buffering in some cases, and just process the
* data as it comes in. This is useful if, for example, you just want to skip
* over a large section of data; there's no point in buffering data you're just
* going to ignore.
*
* You can begin an unbuffered read with Transition::ToUnbuffered(). This works
* a little differently than Transition::To() in that you specify *two* states.
* The @aUnbufferedState argument specifies a state that will be called
* repeatedly with unbuffered data, as soon as it arrives. The implementation
* for that state should return either a transition to a terminal state, or a
* Transition::ContinueUnbuffered() to the same @aUnbufferedState. (From a
* technical perspective, it's not necessary to specify the state again, but
* it's helpful to human readers.) Once the amount of data requested in the
* original call to Transition::ToUnbuffered() has been delivered, Lex() will
* transition to the @aNextState state specified via Transition::ToUnbuffered().
* That state will be invoked with *no* data; it's just called to signal that
* the unbuffered read is over.
*
* It's sometimes useful for a lexer to provide incremental results, rather
* than simply running to completion and presenting all its output at once. For
* example, when decoding animated images, it may be useful to produce each
* frame incrementally. StreamingLexer supports this by allowing a lexer to
* yield.
*
* To yield back to the caller, a state implementation can simply return
* Transition::ToAfterYield(). ToAfterYield()'s @aNextState argument specifies
* the next state that the lexer should transition to, just like when using
* Transition::To(), but there are two differences. One is that Lex() will
* return to the caller before processing any more data when it encounters a
* yield transition. This provides an opportunity for the caller to interact with the
* lexer's intermediate results. The second difference is that @aNextState
* will be called with *the same data as the state that you returned
* Transition::ToAfterYield() from*. This allows a lexer to partially consume
* the data, return intermediate results, and then finish consuming the data
* when @aNextState is called.
*
* It's also possible to yield during an unbuffered read. Just return a
* Transition::ContinueUnbufferedAfterYield(). Just like with
* Transition::ContinueUnbuffered(), the @aUnbufferedState must be the same as
* the one originally passed to Transition::ToUnbuffered(). The second argument,
* @aSize, specifies the amount of data that the lexer has already consumed.
* When @aUnbufferedState is next invoked, it will get the same data that it
* received previously, except that the first @aSize bytes will be excluded.
* This makes it easy to consume unbuffered data incrementally.
*
* XXX(seth): We should be able to get of the |State| stuff totally once bug
* 1198451 lands, since we can then just return a function representing the next
* state directly.
*/
template <typename State, size_t InlineBufferSize = 16>
class StreamingLexer
{
public:
StreamingLexer(LexerTransition<State> aStartState,
LexerTransition<State> aTruncatedState)
: mTransition(TerminalState::FAILURE)
, mTruncatedTransition(aTruncatedState)
{
if (!aStartState.NextStateIsTerminal() &&
aStartState.ControlFlow() == ControlFlowStrategy::YIELD) {
// Allowing a StreamingLexer to start in a yield state doesn't make sense
// semantically (since yield states are supposed to deliver the same data
// as previous states, and there's no previous state here), but more
// importantly, it's necessary to advance a SourceBufferIterator at least
// once before you can read from it, and adding the necessary checks to
// Lex() to avoid that issue has the potential to mask real bugs. So
// instead, it's better to forbid starting in a yield state.
MOZ_ASSERT_UNREACHABLE("Starting in a yield state");
return;
}
if (!aTruncatedState.NextStateIsTerminal() &&
(aTruncatedState.ControlFlow() == ControlFlowStrategy::YIELD ||
aTruncatedState.Buffering() == BufferingStrategy::UNBUFFERED ||
aTruncatedState.Size() != 0)) {
// The truncated state can't receive any data because, by definition,
// there is no more data to receive. That means that yielding or an
// unbuffered read would not make sense, and that the state must require
// zero bytes.
MOZ_ASSERT_UNREACHABLE("Truncated state makes no sense");
return;
}
SetTransition(aStartState);
}
template <typename Func>
LexerResult Lex(SourceBufferIterator& aIterator,
IResumable* aOnResume,
Func aFunc)
{
if (mTransition.NextStateIsTerminal()) {
// We've already reached a terminal state. We never deliver any more data
// in this case; just return the terminal state again immediately.
return LexerResult(mTransition.NextStateAsTerminal());
}
Maybe<LexerResult> result;
// If the lexer requested a yield last time, we deliver the same data again
// before we read anything else from |aIterator|. Note that although to the
// callers of Lex(), Yield::NEED_MORE_DATA is just another type of yield,
// internally they're different in that we don't redeliver the same data in
// the Yield::NEED_MORE_DATA case, and |mYieldingToState| is not set. This
// means that for Yield::NEED_MORE_DATA, we go directly to the loop below.
if (mYieldingToState) {
result = mTransition.Buffering() == BufferingStrategy::UNBUFFERED
? UnbufferedReadAfterYield(aIterator, aFunc)
: BufferedReadAfterYield(aIterator, aFunc);
}
while (!result) {
MOZ_ASSERT_IF(mTransition.Buffering() == BufferingStrategy::UNBUFFERED,
mUnbufferedState);
// Figure out how much we need to read.
const size_t toRead = mTransition.Buffering() == BufferingStrategy::UNBUFFERED
? mUnbufferedState->mBytesRemaining
: mTransition.Size() - mBuffer.length();
// Attempt to advance the iterator by |toRead| bytes.
switch (aIterator.AdvanceOrScheduleResume(toRead, aOnResume)) {
case SourceBufferIterator::WAITING:
// We can't continue because the rest of the data hasn't arrived from
// the network yet. We don't have to do anything special; the
// SourceBufferIterator will ensure that |aOnResume| gets called when
// more data is available.
result = Some(LexerResult(Yield::NEED_MORE_DATA));
break;
case SourceBufferIterator::COMPLETE:
// The data is truncated; if not, the lexer would've reached a
// terminal state by now. We only get to
// SourceBufferIterator::COMPLETE after every byte of data has been
// delivered to the lexer.
result = Truncated(aIterator, aFunc);
break;
case SourceBufferIterator::READY:
// Process the new data that became available.
MOZ_ASSERT(aIterator.Data());
result = mTransition.Buffering() == BufferingStrategy::UNBUFFERED
? UnbufferedRead(aIterator, aFunc)
: BufferedRead(aIterator, aFunc);
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown SourceBufferIterator state");
result = SetTransition(Transition::TerminateFailure());
}
};
return *result;
}
private:
template <typename Func>
Maybe<LexerResult> UnbufferedRead(SourceBufferIterator& aIterator, Func aFunc)
{
MOZ_ASSERT(mTransition.Buffering() == BufferingStrategy::UNBUFFERED);
MOZ_ASSERT(mUnbufferedState);
MOZ_ASSERT(!mYieldingToState);
MOZ_ASSERT(mBuffer.empty(),
"Buffered read at the same time as unbuffered read?");
MOZ_ASSERT(aIterator.Length() <= mUnbufferedState->mBytesRemaining,
"Read too much data during unbuffered read?");
MOZ_ASSERT(mUnbufferedState->mBytesConsumedInCurrentChunk == 0,
"Already consumed data in the current chunk, but not yielding?");
if (mUnbufferedState->mBytesRemaining == 0) {
// We're done with the unbuffered read, so transition to the next state.
return SetTransition(aFunc(mTransition.NextState(), nullptr, 0));
}
return ContinueUnbufferedRead(aIterator.Data(), aIterator.Length(),
aIterator.Length(), aFunc);
}
template <typename Func>
Maybe<LexerResult> UnbufferedReadAfterYield(SourceBufferIterator& aIterator, Func aFunc)
{
MOZ_ASSERT(mTransition.Buffering() == BufferingStrategy::UNBUFFERED);
MOZ_ASSERT(mUnbufferedState);
MOZ_ASSERT(mYieldingToState);
MOZ_ASSERT(mBuffer.empty(),
"Buffered read at the same time as unbuffered read?");
MOZ_ASSERT(aIterator.Length() <= mUnbufferedState->mBytesRemaining,
"Read too much data during unbuffered read?");
MOZ_ASSERT(mUnbufferedState->mBytesConsumedInCurrentChunk <= aIterator.Length(),
"Consumed more data than the current chunk holds?");
MOZ_ASSERT(mTransition.UnbufferedState() == *mYieldingToState);
mYieldingToState = Nothing();
if (mUnbufferedState->mBytesRemaining == 0) {
// We're done with the unbuffered read, so transition to the next state.
return SetTransition(aFunc(mTransition.NextState(), nullptr, 0));
}
// Since we've yielded, we may have already consumed some data in this
// chunk. Make the necessary adjustments. (Note that the std::min call is
// just belt-and-suspenders to keep this code memory safe even if there's
// a bug somewhere.)
const size_t toSkip =
std::min(mUnbufferedState->mBytesConsumedInCurrentChunk, aIterator.Length());
const char* data = aIterator.Data() + toSkip;
const size_t length = aIterator.Length() - toSkip;
// If |length| is zero, we've hit the end of the current chunk. This only
// happens if we yield right at the end of a chunk. Rather than call |aFunc|
// with a |length| of zero bytes (which seems potentially surprising to
// decoder authors), we go ahead and read more data.
if (length == 0) {
return FinishCurrentChunkOfUnbufferedRead(aIterator.Length());
}
return ContinueUnbufferedRead(data, length, aIterator.Length(), aFunc);
}
template <typename Func>
Maybe<LexerResult> ContinueUnbufferedRead(const char* aData,
size_t aLength,
size_t aChunkLength,
Func aFunc)
{
// Call aFunc with the unbuffered state to indicate that we're in the
// middle of an unbuffered read. We enforce that any state transition
// passed back to us is either a terminal state or takes us back to the
// unbuffered state.
LexerTransition<State> unbufferedTransition =
aFunc(mTransition.UnbufferedState(), aData, aLength);
// If we reached a terminal state, we're done.
if (unbufferedTransition.NextStateIsTerminal()) {
return SetTransition(unbufferedTransition);
}
MOZ_ASSERT(mTransition.UnbufferedState() ==
unbufferedTransition.NextState());
// Perform bookkeeping.
if (unbufferedTransition.ControlFlow() == ControlFlowStrategy::YIELD) {
mUnbufferedState->mBytesConsumedInCurrentChunk += unbufferedTransition.Size();
return SetTransition(unbufferedTransition);
}
MOZ_ASSERT(unbufferedTransition.Size() == 0);
return FinishCurrentChunkOfUnbufferedRead(aChunkLength);
}
Maybe<LexerResult> FinishCurrentChunkOfUnbufferedRead(size_t aChunkLength)
{
// We've finished an unbuffered read of a chunk of length |aChunkLength|, so
// update |myBytesRemaining| to reflect that we're |aChunkLength| closer to
// the end of the unbuffered read. (The std::min call is just
// belt-and-suspenders to keep this code memory safe even if there's a bug
// somewhere.)
mUnbufferedState->mBytesRemaining -=
std::min(mUnbufferedState->mBytesRemaining, aChunkLength);
// Since we're moving on to a new chunk, we can forget about the count of
// bytes consumed by yielding in the current chunk.
mUnbufferedState->mBytesConsumedInCurrentChunk = 0;
return Nothing(); // Keep processing.
}
template <typename Func>
Maybe<LexerResult> BufferedRead(SourceBufferIterator& aIterator, Func aFunc)
{
MOZ_ASSERT(mTransition.Buffering() == BufferingStrategy::BUFFERED);
MOZ_ASSERT(!mYieldingToState);
MOZ_ASSERT(!mUnbufferedState,
"Buffered read at the same time as unbuffered read?");
MOZ_ASSERT(mBuffer.length() < mTransition.Size() ||
(mBuffer.length() == 0 && mTransition.Size() == 0),
"Buffered more than we needed?");
// If we have all the data, we don't actually need to buffer anything.
if (mBuffer.empty() && aIterator.Length() == mTransition.Size()) {
return SetTransition(aFunc(mTransition.NextState(),
aIterator.Data(),
aIterator.Length()));
}
// We do need to buffer, so make sure the buffer has enough capacity. We
// deliberately wait until we know for sure we need to buffer to call
// reserve() since it could require memory allocation.
if (!mBuffer.reserve(mTransition.Size())) {
return SetTransition(Transition::TerminateFailure());
}
// Append the new data we just got to the buffer.
if (!mBuffer.append(aIterator.Data(), aIterator.Length())) {
return SetTransition(Transition::TerminateFailure());
}
if (mBuffer.length() != mTransition.Size()) {
return Nothing(); // Keep processing.
}
// We've buffered everything, so transition to the next state.
return SetTransition(aFunc(mTransition.NextState(),
mBuffer.begin(),
mBuffer.length()));
}
template <typename Func>
Maybe<LexerResult> BufferedReadAfterYield(SourceBufferIterator& aIterator,
Func aFunc)
{
MOZ_ASSERT(mTransition.Buffering() == BufferingStrategy::BUFFERED);
MOZ_ASSERT(mYieldingToState);
MOZ_ASSERT(!mUnbufferedState,
"Buffered read at the same time as unbuffered read?");
MOZ_ASSERT(mBuffer.length() <= mTransition.Size(),
"Buffered more than we needed?");
State nextState = Move(*mYieldingToState);
// After a yield, we need to take the same data that we delivered to the
// last state, and deliver it again to the new state. We know that this is
// happening right at a state transition, and that the last state was a
// buffered read, so there are two cases:
// 1. We got the data from the SourceBufferIterator directly.
if (mBuffer.empty() && aIterator.Length() == mTransition.Size()) {
return SetTransition(aFunc(nextState,
aIterator.Data(),
aIterator.Length()));
}
// 2. We got the data from the buffer.
if (mBuffer.length() == mTransition.Size()) {
return SetTransition(aFunc(nextState,
mBuffer.begin(),
mBuffer.length()));
}
// Anything else indicates a bug.
MOZ_ASSERT_UNREACHABLE("Unexpected state encountered during yield");
return SetTransition(Transition::TerminateFailure());
}
template <typename Func>
Maybe<LexerResult> Truncated(SourceBufferIterator& aIterator,
Func aFunc)
{
// The data is truncated. Let the lexer clean up and decide which terminal
// state we should end up in.
LexerTransition<State> transition
= mTruncatedTransition.NextStateIsTerminal()
? mTruncatedTransition
: aFunc(mTruncatedTransition.NextState(), nullptr, 0);
if (!transition.NextStateIsTerminal()) {
MOZ_ASSERT_UNREACHABLE("Truncated state didn't lead to terminal state?");
return SetTransition(Transition::TerminateFailure());
}
// If the SourceBuffer was completed with a failing state, we end in
// TerminalState::FAILURE no matter what. This only happens in exceptional
// situations like SourceBuffer itself encountering a failure due to OOM.
if (NS_FAILED(aIterator.CompletionStatus())) {
return SetTransition(Transition::TerminateFailure());
}
return SetTransition(transition);
}
Maybe<LexerResult> SetTransition(const LexerTransition<State>& aTransition)
{
// There should be no transitions while we're buffering for a buffered read
// unless they're to terminal states. (The terminal state transitions would
// generally be triggered by error handling code.)
MOZ_ASSERT_IF(!mBuffer.empty(),
aTransition.NextStateIsTerminal() ||
mBuffer.length() == mTransition.Size());
// Similarly, the only transitions allowed in the middle of an unbuffered
// read are to a terminal state, or a yield to the same state. Otherwise, we
// should remain in the same state until the unbuffered read completes.
MOZ_ASSERT_IF(mUnbufferedState,
aTransition.NextStateIsTerminal() ||
(aTransition.ControlFlow() == ControlFlowStrategy::YIELD &&
aTransition.NextState() == mTransition.UnbufferedState()) ||
mUnbufferedState->mBytesRemaining == 0);
// If this transition is a yield, save the next state and return. We'll
// handle the rest when Lex() gets called again.
if (!aTransition.NextStateIsTerminal() &&
aTransition.ControlFlow() == ControlFlowStrategy::YIELD) {
mYieldingToState = Some(aTransition.NextState());
return Some(LexerResult(Yield::OUTPUT_AVAILABLE));
}
// Update our transition.
mTransition = aTransition;
// Get rid of anything left over from the previous state.
mBuffer.clear();
mYieldingToState = Nothing();
mUnbufferedState = Nothing();
// If we reached a terminal state, let the caller know.
if (mTransition.NextStateIsTerminal()) {
return Some(LexerResult(mTransition.NextStateAsTerminal()));
}
// If we're entering an unbuffered state, record how long we'll stay in it.
if (mTransition.Buffering() == BufferingStrategy::UNBUFFERED) {
mUnbufferedState.emplace(mTransition.Size());
}
return Nothing(); // Keep processing.
}
// State that tracks our position within an unbuffered read.
struct UnbufferedState
{
explicit UnbufferedState(size_t aBytesRemaining)
: mBytesRemaining(aBytesRemaining)
, mBytesConsumedInCurrentChunk(0)
{ }
size_t mBytesRemaining;
size_t mBytesConsumedInCurrentChunk;
};
Vector<char, InlineBufferSize> mBuffer;
LexerTransition<State> mTransition;
const LexerTransition<State> mTruncatedTransition;
Maybe<State> mYieldingToState;
Maybe<UnbufferedState> mUnbufferedState;
};
} // namespace image
} // namespace mozilla
#endif // mozilla_image_StreamingLexer_h