forked from Floorp-Projects/Floorp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnsWindowsDllInterceptor.h
1411 lines (1274 loc) · 45.5 KB
/
nsWindowsDllInterceptor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef NS_WINDOWS_DLL_INTERCEPTOR_H_
#define NS_WINDOWS_DLL_INTERCEPTOR_H_
#include "mozilla/Assertions.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/UniquePtr.h"
#include "nsWindowsHelpers.h"
#include <wchar.h>
#include <windows.h>
#include <winternl.h>
/*
* Simple function interception.
*
* We have two separate mechanisms for intercepting a function: We can use the
* built-in nop space, if it exists, or we can create a detour.
*
* Using the built-in nop space works as follows: On x86-32, DLL functions
* begin with a two-byte nop (mov edi, edi) and are preceeded by five bytes of
* NOP instructions.
*
* When we detect a function with this prelude, we do the following:
*
* 1. Write a long jump to our interceptor function into the five bytes of NOPs
* before the function.
*
* 2. Write a short jump -5 into the two-byte nop at the beginning of the function.
*
* This mechanism is nice because it's thread-safe. It's even safe to do if
* another thread is currently running the function we're modifying!
*
* When the WindowsDllNopSpacePatcher is destroyed, we overwrite the short jump
* but not the long jump, so re-intercepting the same function won't work,
* because its prelude won't match.
*
*
* Unfortunately nop space patching doesn't work on functions which don't have
* this magic prelude (and in particular, x86-64 never has the prelude). So
* when we can't use the built-in nop space, we fall back to using a detour,
* which works as follows:
*
* 1. Save first N bytes of OrigFunction to trampoline, where N is a
* number of bytes >= 5 that are instruction aligned.
*
* 2. Replace first 5 bytes of OrigFunction with a jump to the Hook
* function.
*
* 3. After N bytes of the trampoline, add a jump to OrigFunction+N to
* continue original program flow.
*
* 4. Hook function needs to call the trampoline during its execution,
* to invoke the original function (so address of trampoline is
* returned).
*
* When the WindowsDllDetourPatcher object is destructed, OrigFunction is
* patched again to jump directly to the trampoline instead of going through
* the hook function. As such, re-intercepting the same function won't work, as
* jump instructions are not supported.
*
* Note that this is not thread-safe. Sad day.
*
*/
#include <stdint.h>
#define COPY_CODES(NBYTES) do { \
memcpy(&tramp[nTrampBytes], &origBytes[nOrigBytes], NBYTES); \
nOrigBytes += NBYTES; \
nTrampBytes += NBYTES; \
} while (0)
namespace mozilla {
namespace internal {
class AutoVirtualProtect
{
public:
AutoVirtualProtect(void* aFunc, size_t aSize, DWORD aProtect)
: mFunc(aFunc), mSize(aSize), mNewProtect(aProtect), mOldProtect(0),
mSuccess(false)
{}
~AutoVirtualProtect()
{
if (mSuccess) {
VirtualProtectEx(GetCurrentProcess(), mFunc, mSize, mOldProtect,
&mOldProtect);
}
}
bool Protect()
{
mSuccess = !!VirtualProtectEx(GetCurrentProcess(), mFunc, mSize,
mNewProtect, &mOldProtect);
if (!mSuccess) {
// printf("VirtualProtectEx failed! %d\n", GetLastError());
}
return mSuccess;
}
private:
void* const mFunc;
size_t const mSize;
DWORD const mNewProtect;
DWORD mOldProtect;
bool mSuccess;
};
class WindowsDllNopSpacePatcher
{
typedef uint8_t* byteptr_t;
HMODULE mModule;
// Dumb array for remembering the addresses of functions we've patched.
// (This should be nsTArray, but non-XPCOM code uses this class.)
static const size_t maxPatchedFns = 16;
byteptr_t mPatchedFns[maxPatchedFns];
int mPatchedFnsLen;
public:
WindowsDllNopSpacePatcher()
: mModule(0)
, mPatchedFnsLen(0)
{}
#if defined(_M_IX86)
~WindowsDllNopSpacePatcher()
{
// Restore the mov edi, edi to the beginning of each function we patched.
for (int i = 0; i < mPatchedFnsLen; i++) {
byteptr_t fn = mPatchedFns[i];
// Ensure we can write to the code.
AutoVirtualProtect protect(fn, 2, PAGE_EXECUTE_READWRITE);
if (!protect.Protect()) {
continue;
}
// mov edi, edi
*((uint16_t*)fn) = 0xff8b;
// I don't think this is actually necessary, but it can't hurt.
FlushInstructionCache(GetCurrentProcess(),
/* ignored */ nullptr,
/* ignored */ 0);
}
}
void Init(const char* aModuleName)
{
if (!IsCompatible()) {
#if defined(MOZILLA_INTERNAL_API)
NS_WARNING("NOP space patching is unavailable for compatibility reasons");
#endif
return;
}
mModule = LoadLibraryExA(aModuleName, nullptr, 0);
if (!mModule) {
//printf("LoadLibraryEx for '%s' failed\n", aModuleName);
return;
}
}
/**
* NVIDIA Optimus drivers utilize Microsoft Detours 2.x to patch functions
* in our address space. There is a bug in Detours 2.x that causes it to
* patch at the wrong address when attempting to detour code that is already
* NOP space patched. This function is an effort to detect the presence of
* this NVIDIA code in our address space and disable NOP space patching if it
* is. We also check AppInit_DLLs since this is the mechanism that the Optimus
* drivers use to inject into our process.
*/
static bool IsCompatible()
{
// These DLLs are known to have bad interactions with this style of patching
const wchar_t* kIncompatibleDLLs[] = {
L"detoured.dll",
L"_etoured.dll",
L"nvd3d9wrap.dll",
L"nvdxgiwrap.dll"
};
// See if the infringing DLLs are already loaded
for (unsigned int i = 0; i < mozilla::ArrayLength(kIncompatibleDLLs); ++i) {
if (GetModuleHandleW(kIncompatibleDLLs[i])) {
return false;
}
}
if (GetModuleHandleW(L"user32.dll")) {
// user32 is loaded but the infringing DLLs are not, assume we're safe to
// proceed.
return true;
}
// If user32 has not loaded yet, check AppInit_DLLs to ensure that Optimus
// won't be loaded once user32 is initialized.
HKEY hkey = NULL;
if (!RegOpenKeyExW(HKEY_LOCAL_MACHINE,
L"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows",
0, KEY_QUERY_VALUE, &hkey)) {
nsAutoRegKey key(hkey);
DWORD numBytes = 0;
const wchar_t kAppInitDLLs[] = L"AppInit_DLLs";
// Query for required buffer size
LONG status = RegQueryValueExW(hkey, kAppInitDLLs, nullptr,
nullptr, nullptr, &numBytes);
mozilla::UniquePtr<wchar_t[]> data;
if (!status) {
// Allocate the buffer and query for the actual data
data = mozilla::MakeUnique<wchar_t[]>(numBytes / sizeof(wchar_t));
status = RegQueryValueExW(hkey, kAppInitDLLs, nullptr,
nullptr, (LPBYTE)data.get(), &numBytes);
}
if (!status) {
// For each token, split up the filename components and then check the
// name of the file.
const wchar_t kDelimiters[] = L", ";
wchar_t* tokenContext = nullptr;
wchar_t* token = wcstok_s(data.get(), kDelimiters, &tokenContext);
while (token) {
wchar_t fname[_MAX_FNAME] = {0};
if (!_wsplitpath_s(token, nullptr, 0, nullptr, 0,
fname, mozilla::ArrayLength(fname),
nullptr, 0)) {
// nvinit.dll is responsible for bootstrapping the DLL injection, so
// that is the library that we check for here
const wchar_t kNvInitName[] = L"nvinit";
if (!_wcsnicmp(fname, kNvInitName,
mozilla::ArrayLength(kNvInitName))) {
return false;
}
}
token = wcstok_s(nullptr, kDelimiters, &tokenContext);
}
}
}
return true;
}
bool AddHook(const char* aName, intptr_t aHookDest, void** aOrigFunc)
{
if (!mModule) {
return false;
}
if (!IsCompatible()) {
#if defined(MOZILLA_INTERNAL_API)
NS_WARNING("NOP space patching is unavailable for compatibility reasons");
#endif
return false;
}
MOZ_RELEASE_ASSERT(mPatchedFnsLen < maxPatchedFns, "No room for the hook");
byteptr_t fn = reinterpret_cast<byteptr_t>(GetProcAddress(mModule, aName));
if (!fn) {
//printf ("GetProcAddress failed\n");
return false;
}
fn = ResolveRedirectedAddress(fn);
// Ensure we can read and write starting at fn - 5 (for the long jmp we're
// going to write) and ending at fn + 2 (for the short jmp up to the long
// jmp). These bytes may span two pages with different protection.
AutoVirtualProtect protectBefore(fn - 5, 5, PAGE_EXECUTE_READWRITE);
AutoVirtualProtect protectAfter(fn, 2, PAGE_EXECUTE_READWRITE);
if (!protectBefore.Protect() || !protectAfter.Protect()) {
return false;
}
bool rv = WriteHook(fn, aHookDest, aOrigFunc);
if (rv) {
mPatchedFns[mPatchedFnsLen] = fn;
mPatchedFnsLen++;
}
return rv;
}
bool WriteHook(byteptr_t aFn, intptr_t aHookDest, void** aOrigFunc)
{
// Check that the 5 bytes before aFn are NOP's or INT 3's,
// and that the 2 bytes after aFn are mov(edi, edi).
//
// It's safe to read aFn[-5] because we set it to PAGE_EXECUTE_READWRITE
// before calling WriteHook.
for (int i = -5; i <= -1; i++) {
if (aFn[i] != 0x90 && aFn[i] != 0xcc) { // nop or int 3
return false;
}
}
// mov edi, edi. Yes, there are two ways to encode the same thing:
//
// 0x89ff == mov r/m, r
// 0x8bff == mov r, r/m
//
// where "r" is register and "r/m" is register or memory. Windows seems to
// use 8bff; I include 89ff out of paranoia.
if ((aFn[0] != 0x8b && aFn[0] != 0x89) || aFn[1] != 0xff) {
return false;
}
// Write a long jump into the space above the function.
aFn[-5] = 0xe9; // jmp
*((intptr_t*)(aFn - 4)) = aHookDest - (uintptr_t)(aFn); // target displacement
// Set aOrigFunc here, because after this point, aHookDest might be called,
// and aHookDest might use the aOrigFunc pointer.
*aOrigFunc = aFn + 2;
// Short jump up into our long jump.
*((uint16_t*)(aFn)) = 0xf9eb; // jmp $-5
// I think this routine is safe without this, but it can't hurt.
FlushInstructionCache(GetCurrentProcess(),
/* ignored */ nullptr,
/* ignored */ 0);
return true;
}
private:
static byteptr_t ResolveRedirectedAddress(const byteptr_t aOriginalFunction)
{
// If function entry is jmp rel8 stub to the internal implementation, we
// resolve redirected address from the jump target.
if (aOriginalFunction[0] == 0xeb) {
int8_t offset = (int8_t)(aOriginalFunction[1]);
if (offset <= 0) {
// Bail out for negative offset: probably already patched by some
// third-party code.
return aOriginalFunction;
}
for (int8_t i = 0; i < offset; i++) {
if (aOriginalFunction[2 + i] != 0x90) {
// Bail out on insufficient nop space.
return aOriginalFunction;
}
}
return aOriginalFunction + 2 + offset;
}
// If function entry is jmp [disp32] such as used by kernel32,
// we resolve redirected address from import table.
if (aOriginalFunction[0] == 0xff && aOriginalFunction[1] == 0x25) {
return (byteptr_t)(**((uint32_t**) (aOriginalFunction + 2)));
}
return aOriginalFunction;
}
#else
void Init(const char* aModuleName)
{
// Not implemented except on x86-32.
}
bool AddHook(const char* aName, intptr_t aHookDest, void** aOrigFunc)
{
// Not implemented except on x86-32.
return false;
}
#endif
};
class WindowsDllDetourPatcher
{
typedef unsigned char* byteptr_t;
public:
WindowsDllDetourPatcher()
: mModule(0), mHookPage(0), mMaxHooks(0), mCurHooks(0)
{
}
~WindowsDllDetourPatcher()
{
int i;
byteptr_t p;
for (i = 0, p = mHookPage; i < mCurHooks; i++, p += kHookSize) {
#if defined(_M_IX86)
size_t nBytes = 1 + sizeof(intptr_t);
#elif defined(_M_X64)
size_t nBytes = 2 + sizeof(intptr_t);
#else
#error "Unknown processor type"
#endif
byteptr_t origBytes = (byteptr_t)DecodePointer(*((byteptr_t*)p));
// ensure we can modify the original code
AutoVirtualProtect protect(origBytes, nBytes, PAGE_EXECUTE_READWRITE);
if (!protect.Protect()) {
continue;
}
// Remove the hook by making the original function jump directly
// in the trampoline.
intptr_t dest = (intptr_t)(p + sizeof(void*));
#if defined(_M_IX86)
// Ensure the JMP from CreateTrampoline is where we expect it to be.
if (origBytes[0] != 0xE9)
continue;
*((intptr_t*)(origBytes + 1)) =
dest - (intptr_t)(origBytes + 5); // target displacement
#elif defined(_M_X64)
// Ensure the MOV R11 from CreateTrampoline is where we expect it to be.
if (origBytes[0] != 0x49 || origBytes[1] != 0xBB)
continue;
*((intptr_t*)(origBytes + 2)) = dest;
#else
#error "Unknown processor type"
#endif
}
}
void Init(const char* aModuleName, int aNumHooks = 0)
{
if (mModule) {
return;
}
mModule = LoadLibraryExA(aModuleName, nullptr, 0);
if (!mModule) {
//printf("LoadLibraryEx for '%s' failed\n", aModuleName);
return;
}
int hooksPerPage = 4096 / kHookSize;
if (aNumHooks == 0) {
aNumHooks = hooksPerPage;
}
mMaxHooks = aNumHooks + (hooksPerPage % aNumHooks);
mHookPage = (byteptr_t)VirtualAllocEx(GetCurrentProcess(), nullptr,
mMaxHooks * kHookSize,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READ);
if (!mHookPage) {
mModule = 0;
return;
}
}
bool Initialized() { return !!mModule; }
bool AddHook(const char* aName, intptr_t aHookDest, void** aOrigFunc)
{
if (!mModule) {
return false;
}
void* pAddr = (void*)GetProcAddress(mModule, aName);
if (!pAddr) {
//printf ("GetProcAddress failed\n");
return false;
}
pAddr = ResolveRedirectedAddress((byteptr_t)pAddr);
CreateTrampoline(pAddr, aHookDest, aOrigFunc);
if (!*aOrigFunc) {
//printf ("CreateTrampoline failed\n");
return false;
}
return true;
}
protected:
const static int kPageSize = 4096;
const static int kHookSize = 128;
HMODULE mModule;
byteptr_t mHookPage;
int mMaxHooks;
int mCurHooks;
// rex bits
static const BYTE kMaskHighNibble = 0xF0;
static const BYTE kRexOpcode = 0x40;
static const BYTE kMaskRexW = 0x08;
static const BYTE kMaskRexR = 0x04;
static const BYTE kMaskRexX = 0x02;
static const BYTE kMaskRexB = 0x01;
// mod r/m bits
static const BYTE kRegFieldShift = 3;
static const BYTE kMaskMod = 0xC0;
static const BYTE kMaskReg = 0x38;
static const BYTE kMaskRm = 0x07;
static const BYTE kRmNeedSib = 0x04;
static const BYTE kModReg = 0xC0;
static const BYTE kModDisp32 = 0x80;
static const BYTE kModDisp8 = 0x40;
static const BYTE kModNoRegDisp = 0x00;
static const BYTE kRmNoRegDispDisp32 = 0x05;
// sib bits
static const BYTE kMaskSibScale = 0xC0;
static const BYTE kMaskSibIndex = 0x38;
static const BYTE kMaskSibBase = 0x07;
static const BYTE kSibBaseEbp = 0x05;
// Register bit IDs.
static const BYTE kRegAx = 0x0;
static const BYTE kRegCx = 0x1;
static const BYTE kRegDx = 0x2;
static const BYTE kRegBx = 0x3;
static const BYTE kRegSp = 0x4;
static const BYTE kRegBp = 0x5;
static const BYTE kRegSi = 0x6;
static const BYTE kRegDi = 0x7;
// Special ModR/M codes. These indicate operands that cannot be simply
// memcpy-ed.
// Operand is a 64-bit RIP-relative address.
static const int kModOperand64 = -2;
// Operand is not yet handled by our trampoline.
static const int kModUnknown = -1;
/**
* Returns the number of bytes taken by the ModR/M byte, SIB (if present)
* and the instruction's operand. In special cases, the special MODRM codes
* above are returned.
* aModRm points to the ModR/M byte of the instruction.
* On return, aSubOpcode (if present) is filled with the subopcode/register
* code found in the ModR/M byte.
*/
int CountModRmSib(const BYTE *aModRm, BYTE* aSubOpcode = nullptr)
{
if (!aModRm) {
MOZ_ASSERT(aModRm, "Missing ModRM byte");
return kModUnknown;
}
int numBytes = 1; // Start with 1 for mod r/m byte itself
switch (*aModRm & kMaskMod) {
case kModReg:
return numBytes;
case kModDisp8:
numBytes += 1;
break;
case kModDisp32:
numBytes += 4;
break;
case kModNoRegDisp:
if ((*aModRm & kMaskRm) == kRmNoRegDispDisp32) {
#if defined(_M_X64)
if (aSubOpcode) {
*aSubOpcode = (*aModRm & kMaskReg) >> kRegFieldShift;
}
return kModOperand64;
#else
// On IA-32, all ModR/M instruction modes address memory relative to 0
numBytes += 4;
#endif
} else if (((*aModRm & kMaskRm) == kRmNeedSib &&
(*(aModRm + 1) & kMaskSibBase) == kSibBaseEbp)) {
numBytes += 4;
}
break;
default:
// This should not be reachable
MOZ_ASSERT_UNREACHABLE("Impossible value for modr/m byte mod bits");
return kModUnknown;
}
if ((*aModRm & kMaskRm) == kRmNeedSib) {
// SIB byte
numBytes += 1;
}
if (aSubOpcode) {
*aSubOpcode = (*aModRm & kMaskReg) >> kRegFieldShift;
}
return numBytes;
}
#if defined(_M_X64)
// To patch for JMP and JE
enum JumpType {
Je,
Jne,
Jmp,
Call
};
struct JumpPatch {
JumpPatch()
: mHookOffset(0), mJumpAddress(0), mType(JumpType::Jmp)
{
}
JumpPatch(size_t aOffset, intptr_t aAddress, JumpType aType = JumpType::Jmp)
: mHookOffset(aOffset), mJumpAddress(aAddress), mType(aType)
{
}
size_t GenerateJump(uint8_t* aCode)
{
size_t offset = mHookOffset;
if (mType == JumpType::Je) {
// JNE RIP+14
aCode[offset] = 0x75;
aCode[offset + 1] = 14;
offset += 2;
} else if (mType == JumpType::Jne) {
// JE RIP+14
aCode[offset] = 0x74;
aCode[offset + 1] = 14;
offset += 2;
}
// Near call/jmp, absolute indirect, address given in r/m32
if (mType == JumpType::Call) {
// CALL [RIP+0]
aCode[offset] = 0xff;
aCode[offset + 1] = 0x15;
// The offset to jump destination -- ie it is placed 2 bytes after the offset.
*reinterpret_cast<int32_t*>(aCode + offset + 2) = 2;
aCode[offset + 2 + 4] = 0xeb; // JMP +8 (jump over mJumpAddress)
aCode[offset + 2 + 4 + 1] = 8;
*reinterpret_cast<int64_t*>(aCode + offset + 2 + 4 + 2) = mJumpAddress;
return offset + 2 + 4 + 2 + 8;
} else {
// JMP [RIP+0]
aCode[offset] = 0xff;
aCode[offset + 1] = 0x25;
// The offset to jump destination is 0
*reinterpret_cast<int32_t*>(aCode + offset + 2) = 0;
*reinterpret_cast<int64_t*>(aCode + offset + 2 + 4) = mJumpAddress;
return offset + 2 + 4 + 8;
}
}
size_t mHookOffset;
intptr_t mJumpAddress;
JumpType mType;
};
#endif
enum ePrefixGroupBits
{
eNoPrefixes = 0,
ePrefixGroup1 = (1 << 0),
ePrefixGroup2 = (1 << 1),
ePrefixGroup3 = (1 << 2),
ePrefixGroup4 = (1 << 3)
};
int CountPrefixBytes(byteptr_t aBytes, const int aBytesIndex,
unsigned char* aOutGroupBits)
{
unsigned char& groupBits = *aOutGroupBits;
groupBits = eNoPrefixes;
int index = aBytesIndex;
while (true) {
switch (aBytes[index]) {
// Group 1
case 0xF0: // LOCK
case 0xF2: // REPNZ
case 0xF3: // REP / REPZ
if (groupBits & ePrefixGroup1) {
return -1;
}
groupBits |= ePrefixGroup1;
++index;
break;
// Group 2
case 0x2E: // CS override / branch not taken
case 0x36: // SS override
case 0x3E: // DS override / branch taken
case 0x64: // FS override
case 0x65: // GS override
if (groupBits & ePrefixGroup2) {
return -1;
}
groupBits |= ePrefixGroup2;
++index;
break;
// Group 3
case 0x66: // operand size override
if (groupBits & ePrefixGroup3) {
return -1;
}
groupBits |= ePrefixGroup3;
++index;
break;
// Group 4
case 0x67: // Address size override
if (groupBits & ePrefixGroup4) {
return -1;
}
groupBits |= ePrefixGroup4;
++index;
break;
default:
return index - aBytesIndex;
}
}
}
// Return a ModR/M byte made from the 2 Mod bits, the register used for the
// reg bits and the register used for the R/M bits.
BYTE BuildModRmByte(BYTE aModBits, BYTE aReg, BYTE aRm)
{
MOZ_ASSERT((aRm & kMaskRm) == aRm);
MOZ_ASSERT((aModBits & kMaskMod) == aModBits);
MOZ_ASSERT(((aReg << kRegFieldShift) & kMaskReg) == (aReg << kRegFieldShift));
return aModBits | (aReg << kRegFieldShift) | aRm;
}
void CreateTrampoline(void* aOrigFunction, intptr_t aDest, void** aOutTramp)
{
*aOutTramp = nullptr;
AutoVirtualProtect protectHookPage(mHookPage, mMaxHooks * kHookSize,
PAGE_EXECUTE_READWRITE);
if (!protectHookPage.Protect()) {
return;
}
byteptr_t tramp = FindTrampolineSpace();
if (!tramp) {
return;
}
// We keep the address of the original function in the first bytes of
// the trampoline buffer
*((void**)tramp) = EncodePointer(aOrigFunction);
tramp += sizeof(void*);
byteptr_t origBytes = (byteptr_t)aOrigFunction;
// # of bytes of the original function that we can overwrite.
int nOrigBytes = 0;
#if defined(_M_IX86)
int pJmp32 = -1;
while (nOrigBytes < 5) {
// Understand some simple instructions that might be found in a
// prologue; we might need to extend this as necessary.
//
// Note! If we ever need to understand jump instructions, we'll
// need to rewrite the displacement argument.
unsigned char prefixGroups;
int numPrefixBytes = CountPrefixBytes(origBytes, nOrigBytes, &prefixGroups);
if (numPrefixBytes < 0 || (prefixGroups & (ePrefixGroup3 | ePrefixGroup4))) {
// Either the prefix sequence was bad, or there are prefixes that
// we don't currently support (groups 3 and 4)
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
nOrigBytes += numPrefixBytes;
if (origBytes[nOrigBytes] >= 0x88 &&
origBytes[nOrigBytes] <= 0x8B) {
// various MOVs
++nOrigBytes;
int len = CountModRmSib(origBytes + nOrigBytes);
if (len < 0) {
MOZ_ASSERT_UNREACHABLE("Unrecognized MOV opcode sequence");
return;
}
nOrigBytes += len;
} else if (origBytes[nOrigBytes] == 0xA1) {
// MOV eax, [seg:offset]
nOrigBytes += 5;
} else if (origBytes[nOrigBytes] == 0xB8) {
// MOV 0xB8: http://ref.x86asm.net/coder32.html#xB8
nOrigBytes += 5;
} else if (origBytes[nOrigBytes] == 0x33 &&
(origBytes[nOrigBytes+1] & kMaskMod) == kModReg) {
// XOR r32, r32
nOrigBytes += 2;
} else if ((origBytes[nOrigBytes] & 0xf8) == 0x40) {
// INC r32
nOrigBytes += 1;
} else if (origBytes[nOrigBytes] == 0x83) {
// ADD|ODR|ADC|SBB|AND|SUB|XOR|CMP r/m, imm8
unsigned char b = origBytes[nOrigBytes + 1];
if ((b & 0xc0) == 0xc0) {
// ADD|ODR|ADC|SBB|AND|SUB|XOR|CMP r, imm8
nOrigBytes += 3;
} else {
// bail
MOZ_ASSERT_UNREACHABLE("Unrecognized bit opcode sequence");
return;
}
} else if (origBytes[nOrigBytes] == 0x68) {
// PUSH with 4-byte operand
nOrigBytes += 5;
} else if ((origBytes[nOrigBytes] & 0xf0) == 0x50) {
// 1-byte PUSH/POP
nOrigBytes++;
} else if (origBytes[nOrigBytes] == 0x6A) {
// PUSH imm8
nOrigBytes += 2;
} else if (origBytes[nOrigBytes] == 0xe9) {
pJmp32 = nOrigBytes;
// jmp 32bit offset
nOrigBytes += 5;
} else if (origBytes[nOrigBytes] == 0xff &&
origBytes[nOrigBytes + 1] == 0x25) {
// jmp [disp32]
nOrigBytes += 6;
} else if (origBytes[nOrigBytes] == 0xc2) {
// ret imm16. We can't handle this but it happens. We don't ASSERT but we do fail to hook.
#if defined(MOZILLA_INTERNAL_API)
NS_WARNING("Cannot hook method -- RET opcode found");
#endif
return;
} else {
//printf ("Unknown x86 instruction byte 0x%02x, aborting trampoline\n", origBytes[nOrigBytes]);
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
}
// The trampoline is a copy of the instructions that we just traced,
// followed by a jump that we add below.
memcpy(tramp, aOrigFunction, nOrigBytes);
#elif defined(_M_X64)
// The number of bytes used by the trampoline.
int nTrampBytes = 0;
bool foundJmp = false;
while (nOrigBytes < 13) {
// If we found JMP 32bit offset, we require that the next bytes must
// be NOP or INT3. There is no reason to copy them.
// TODO: This used to trigger for Je as well. Now that I allow
// instructions after CALL and JE, I don't think I need that.
// The only real value of this condition is that if code follows a JMP
// then its _probably_ the target of a JMP somewhere else and we
// will be overwriting it, which would be tragic. This seems
// highly unlikely.
if (foundJmp) {
if (origBytes[nOrigBytes] == 0x90 || origBytes[nOrigBytes] == 0xcc) {
nOrigBytes++;
continue;
}
MOZ_ASSERT_UNREACHABLE("Opcode sequence includes commands after JMP");
return;
}
if (origBytes[nOrigBytes] == 0x0f) {
COPY_CODES(1);
if (origBytes[nOrigBytes] == 0x1f) {
// nop (multibyte)
COPY_CODES(1);
if ((origBytes[nOrigBytes] & 0xc0) == 0x40 &&
(origBytes[nOrigBytes] & 0x7) == 0x04) {
COPY_CODES(3);
} else {
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
} else if (origBytes[nOrigBytes] == 0x05) {
// syscall
COPY_CODES(1);
} else if (origBytes[nOrigBytes] == 0x10 ||
origBytes[nOrigBytes] == 0x11) {
// SSE: movups xmm, xmm/m128
// movups xmm/m128, xmm
COPY_CODES(1);
int nModRmSibBytes = CountModRmSib(&origBytes[nOrigBytes]);
if (nModRmSibBytes < 0) {
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
} else {
COPY_CODES(nModRmSibBytes);
}
} else if (origBytes[nOrigBytes] == 0x84) {
// je rel32
JumpPatch jump(nTrampBytes - 1, // overwrite the 0x0f we copied above
(intptr_t)(origBytes + nOrigBytes + 5 +
*(reinterpret_cast<int32_t*>(origBytes + nOrigBytes + 1))),
JumpType::Je);
nTrampBytes = jump.GenerateJump(tramp);
nOrigBytes += 5;
} else {
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
} else if (origBytes[nOrigBytes] == 0x40 ||
origBytes[nOrigBytes] == 0x41) {
// Plain REX or REX.B
COPY_CODES(1);
if ((origBytes[nOrigBytes] & 0xf0) == 0x50) {
// push/pop with Rx register
COPY_CODES(1);
} else if (origBytes[nOrigBytes] >= 0xb8 && origBytes[nOrigBytes] <= 0xbf) {
// mov r32, imm32
COPY_CODES(5);
} else {
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
} else if (origBytes[nOrigBytes] == 0x45) {
// REX.R & REX.B
COPY_CODES(1);
if (origBytes[nOrigBytes] == 0x33) {
// xor r32, r32
COPY_CODES(2);
} else {
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
} else if ((origBytes[nOrigBytes] & 0xfa) == 0x48) {
// REX.W | REX.WR | REX.WRB | REX.WB
COPY_CODES(1);
if (origBytes[nOrigBytes] == 0x81 &&
(origBytes[nOrigBytes + 1] & 0xf8) == 0xe8) {
// sub r, dword
COPY_CODES(6);
} else if (origBytes[nOrigBytes] == 0x83 &&
(origBytes[nOrigBytes + 1] & 0xf8) == 0xe8) {
// sub r, byte
COPY_CODES(3);
} else if (origBytes[nOrigBytes] == 0x83 &&
(origBytes[nOrigBytes + 1] & (kMaskMod|kMaskReg)) == kModReg) {
// add r, byte
COPY_CODES(3);
} else if (origBytes[nOrigBytes] == 0x83 &&
(origBytes[nOrigBytes + 1] & 0xf8) == 0x60) {
// and [r+d], imm8
COPY_CODES(5);
} else if (origBytes[nOrigBytes] == 0x2b &&
(origBytes[nOrigBytes + 1] & kMaskMod) == kModReg) {
// sub r64, r64
COPY_CODES(2);
} else if (origBytes[nOrigBytes] == 0x85) {
// 85 /r => TEST r/m32, r32
if ((origBytes[nOrigBytes + 1] & 0xc0) == 0xc0) {
COPY_CODES(2);
} else {
MOZ_ASSERT_UNREACHABLE("Unrecognized opcode sequence");
return;
}
} else if ((origBytes[nOrigBytes] & 0xfd) == 0x89) {
// MOV r/m64, r64 | MOV r64, r/m64
BYTE reg;
int len = CountModRmSib(origBytes + nOrigBytes + 1, ®);
if (len < 0) {
MOZ_ASSERT(len == kModOperand64);
if (len != kModOperand64) {
return;
}
nOrigBytes += 2; // skip the MOV and MOD R/M bytes
// The instruction MOVs 64-bit data from a RIP-relative memory
// address (determined with a 32-bit offset from RIP) into a
// 64-bit register.
int64_t* absAddr =
reinterpret_cast<int64_t*>(origBytes + nOrigBytes + 4 +
*reinterpret_cast<int32_t*>(origBytes + nOrigBytes));
nOrigBytes += 4;
if (reg == kRegAx) {
// Destination is RAX. Encode instruction as MOVABS with a
// 64-bit absolute address as its immediate operand.
tramp[nTrampBytes] = 0xa1;
++nTrampBytes;
int64_t** trampOperandPtr = reinterpret_cast<int64_t**>(tramp + nTrampBytes);
*trampOperandPtr = absAddr;
nTrampBytes += 8;
} else {
// The MOV must be done in two steps. First, we MOVABS the
// absolute 64-bit address into our target register.
// Then, we MOV from that address into the register
// using register-indirect addressing.
tramp[nTrampBytes] = 0xb8 + reg;
++nTrampBytes;
int64_t** trampOperandPtr = reinterpret_cast<int64_t**>(tramp + nTrampBytes);
*trampOperandPtr = absAddr;
nTrampBytes += 8;
tramp[nTrampBytes] = 0x48;
tramp[nTrampBytes+1] = 0x8b;
tramp[nTrampBytes+2] = BuildModRmByte(kModNoRegDisp, reg, reg);
nTrampBytes += 3;
}
} else {
COPY_CODES(len+1);
}
} else if (origBytes[nOrigBytes] == 0xc7) {