forked from Floorp-Projects/Floorp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimgFrame.cpp
1062 lines (888 loc) · 28.2 KB
/
imgFrame.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "ImageRegion.h"
#include "ShutdownTracker.h"
#include "prenv.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "gfxAlphaRecovery.h"
static bool gDisableOptimize = false;
#include "GeckoProfiler.h"
#include "mozilla/Likely.h"
#include "MainThreadUtils.h"
#include "mozilla/MemoryReporting.h"
#include "nsMargin.h"
#include "nsThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/Tools.h"
namespace mozilla {
using namespace gfx;
namespace image {
static UserDataKey kVolatileBuffer;
static void
VolatileBufferRelease(void* vbuf)
{
delete static_cast<VolatileBufferPtr<unsigned char>*>(vbuf);
}
static int32_t
VolatileSurfaceStride(const IntSize& size, SurfaceFormat format)
{
// Stride must be a multiple of four or cairo will complain.
return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
}
static already_AddRefed<DataSourceSurface>
CreateLockedSurface(VolatileBuffer* vbuf,
const IntSize& size,
SurfaceFormat format)
{
VolatileBufferPtr<unsigned char>* vbufptr =
new VolatileBufferPtr<unsigned char>(vbuf);
MOZ_ASSERT(!vbufptr->WasBufferPurged(), "Expected image data!");
int32_t stride = VolatileSurfaceStride(size, format);
RefPtr<DataSourceSurface> surf =
Factory::CreateWrappingDataSourceSurface(*vbufptr, stride, size, format);
if (!surf) {
delete vbufptr;
return nullptr;
}
surf->AddUserData(&kVolatileBuffer, vbufptr, VolatileBufferRelease);
return surf.forget();
}
static already_AddRefed<VolatileBuffer>
AllocateBufferForImage(const IntSize& size, SurfaceFormat format)
{
int32_t stride = VolatileSurfaceStride(size, format);
RefPtr<VolatileBuffer> buf = new VolatileBuffer();
if (buf->Init(stride * size.height,
1 << gfxAlphaRecovery::GoodAlignmentLog2())) {
return buf.forget();
}
return nullptr;
}
// Returns true if an image of aWidth x aHeight is allowed and legal.
static bool
AllowedImageSize(int32_t aWidth, int32_t aHeight)
{
// reject over-wide or over-tall images
const int32_t k64KLimit = 0x0000FFFF;
if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) {
NS_WARNING("image too big");
return false;
}
// protect against invalid sizes
if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) {
return false;
}
// check to make sure we don't overflow a 32-bit
CheckedInt32 requiredBytes = CheckedInt32(aWidth) * CheckedInt32(aHeight) * 4;
if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
NS_WARNING("width or height too large");
return false;
}
#if defined(XP_MACOSX)
// CoreGraphics is limited to images < 32K in *height*, so clamp all surfaces
// on the Mac to that height
if (MOZ_UNLIKELY(aHeight > SHRT_MAX)) {
NS_WARNING("image too big");
return false;
}
#endif
return true;
}
static bool AllowedImageAndFrameDimensions(const nsIntSize& aImageSize,
const nsIntRect& aFrameRect)
{
if (!AllowedImageSize(aImageSize.width, aImageSize.height)) {
return false;
}
if (!AllowedImageSize(aFrameRect.width, aFrameRect.height)) {
return false;
}
nsIntRect imageRect(0, 0, aImageSize.width, aImageSize.height);
if (!imageRect.Contains(aFrameRect)) {
NS_WARNING("Animated image frame does not fit inside bounds of image");
}
return true;
}
imgFrame::imgFrame()
: mMonitor("imgFrame")
, mDecoded(0, 0, 0, 0)
, mLockCount(0)
, mTimeout(100)
, mDisposalMethod(DisposalMethod::NOT_SPECIFIED)
, mBlendMethod(BlendMethod::OVER)
, mHasNoAlpha(false)
, mAborted(false)
, mOptimizable(false)
, mPalettedImageData(nullptr)
, mPaletteDepth(0)
, mNonPremult(false)
, mSinglePixel(false)
, mCompositingFailed(false)
{
static bool hasCheckedOptimize = false;
if (!hasCheckedOptimize) {
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
gDisableOptimize = true;
}
hasCheckedOptimize = true;
}
}
imgFrame::~imgFrame()
{
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mAborted || IsImageCompleteInternal());
#endif
free(mPalettedImageData);
mPalettedImageData = nullptr;
}
nsresult
imgFrame::InitForDecoder(const nsIntSize& aImageSize,
const nsIntRect& aRect,
SurfaceFormat aFormat,
uint8_t aPaletteDepth /* = 0 */,
bool aNonPremult /* = false */)
{
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!AllowedImageAndFrameDimensions(aImageSize, aRect)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aImageSize;
mOffset.MoveTo(aRect.x, aRect.y);
mSize.SizeTo(aRect.width, aRect.height);
mFormat = aFormat;
mPaletteDepth = aPaletteDepth;
mNonPremult = aNonPremult;
if (aPaletteDepth != 0) {
// We're creating for a paletted image.
if (aPaletteDepth > 8) {
NS_WARNING("Should have legal palette depth");
NS_ERROR("This Depth is not supported");
mAborted = true;
return NS_ERROR_FAILURE;
}
// Use the fallible allocator here. Paletted images always use 1 byte per
// pixel, so calculating the amount of memory we need is straightforward.
mPalettedImageData =
static_cast<uint8_t*>(malloc(PaletteDataLength() +
(mSize.width * mSize.height)));
if (!mPalettedImageData) {
NS_WARNING("malloc for paletted image data should succeed");
}
NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
} else {
MOZ_ASSERT(!mImageSurface, "Called imgFrame::InitForDecoder() twice?");
mVBuf = AllocateBufferForImage(mSize, mFormat);
if (!mVBuf) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mVBuf->OnHeap()) {
int32_t stride = VolatileSurfaceStride(mSize, mFormat);
VolatileBufferPtr<uint8_t> ptr(mVBuf);
memset(ptr, 0, stride * mSize.height);
}
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
if (!mImageSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
return NS_OK;
}
nsresult
imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
const nsIntSize& aSize,
const SurfaceFormat aFormat,
Filter aFilter,
uint32_t aImageFlags)
{
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!AllowedImageSize(aSize.width, aSize.height)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aSize;
mOffset.MoveTo(0, 0);
mSize.SizeTo(aSize.width, aSize.height);
mFormat = aFormat;
mPaletteDepth = 0;
RefPtr<DrawTarget> target;
bool canUseDataSurface =
gfxPlatform::GetPlatform()->CanRenderContentToDataSurface();
if (canUseDataSurface) {
// It's safe to use data surfaces for content on this platform, so we can
// get away with using volatile buffers.
MOZ_ASSERT(!mImageSurface, "Called imgFrame::InitWithDrawable() twice?");
mVBuf = AllocateBufferForImage(mSize, mFormat);
if (!mVBuf) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
int32_t stride = VolatileSurfaceStride(mSize, mFormat);
VolatileBufferPtr<uint8_t> ptr(mVBuf);
if (!ptr) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mVBuf->OnHeap()) {
memset(ptr, 0, stride * mSize.height);
}
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
target = gfxPlatform::GetPlatform()->
CreateDrawTargetForData(ptr, mSize, stride, mFormat);
} else {
// We can't use data surfaces for content, so we'll create an offscreen
// surface instead. This means if someone later calls RawAccessRef(), we
// may have to do an expensive readback, but we warned callers about that in
// the documentation for this method.
MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
target = gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(mSize, mFormat);
}
if (!target) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
// Draw using the drawable the caller provided.
nsIntRect imageRect(0, 0, mSize.width, mSize.height);
RefPtr<gfxContext> ctx = new gfxContext(target);
gfxUtils::DrawPixelSnapped(ctx, aDrawable, mSize,
ImageRegion::Create(imageRect),
mFormat, aFilter, aImageFlags);
if (canUseDataSurface && !mImageSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!canUseDataSurface) {
// We used an offscreen surface, which is an "optimized" surface from
// imgFrame's perspective.
mOptSurface = target->Snapshot();
}
// If we reach this point, we should regard ourselves as complete.
mDecoded = GetRect();
MOZ_ASSERT(IsImageComplete());
return NS_OK;
}
nsresult
imgFrame::Optimize()
{
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mLockCount == 1,
"Should only optimize when holding the lock exclusively");
// Don't optimize during shutdown because gfxPlatform may not be available.
if (ShutdownTracker::ShutdownHasStarted()) {
return NS_OK;
}
if (!mOptimizable || gDisableOptimize) {
return NS_OK;
}
if (mPalettedImageData || mOptSurface || mSinglePixel) {
return NS_OK;
}
// Don't do single-color opts on non-premult data.
// Cairo doesn't support non-premult single-colors.
if (mNonPremult) {
return NS_OK;
}
/* Figure out if the entire image is a constant color */
if (gfxPrefs::ImageSingleColorOptimizationEnabled() &&
mImageSurface->Stride() == mSize.width * 4) {
uint32_t* imgData = (uint32_t*) ((uint8_t*) mVBufPtr);
uint32_t firstPixel = * (uint32_t*) imgData;
uint32_t pixelCount = mSize.width * mSize.height + 1;
while (--pixelCount && *imgData++ == firstPixel)
;
if (pixelCount == 0) {
// all pixels were the same
if (mFormat == SurfaceFormat::B8G8R8A8 ||
mFormat == SurfaceFormat::B8G8R8X8) {
mSinglePixel = true;
mSinglePixelColor.a = ((firstPixel >> 24) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.r = ((firstPixel >> 16) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.g = ((firstPixel >> 8) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.b = ((firstPixel >> 0) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.r /= mSinglePixelColor.a;
mSinglePixelColor.g /= mSinglePixelColor.a;
mSinglePixelColor.b /= mSinglePixelColor.a;
// blow away the older surfaces (if they exist), to release their memory
mVBuf = nullptr;
mVBufPtr = nullptr;
mImageSurface = nullptr;
mOptSurface = nullptr;
return NS_OK;
}
}
// if it's not RGB24/ARGB32, don't optimize, but we never hit this at the
// moment
}
#ifdef ANDROID
SurfaceFormat optFormat = gfxPlatform::GetPlatform()
->Optimal2DFormatForContent(gfxContentType::COLOR);
if (mFormat != SurfaceFormat::B8G8R8A8 &&
optFormat == SurfaceFormat::R5G6B5) {
RefPtr<VolatileBuffer> buf =
AllocateBufferForImage(mSize, optFormat);
if (!buf) {
return NS_OK;
}
RefPtr<DataSourceSurface> surf =
CreateLockedSurface(buf, mSize, optFormat);
if (!surf) {
return NS_ERROR_OUT_OF_MEMORY;
}
DataSourceSurface::MappedSurface mapping;
if (!surf->Map(DataSourceSurface::MapType::WRITE, &mapping)) {
gfxCriticalError() << "imgFrame::Optimize failed to map surface";
return NS_ERROR_FAILURE;
}
RefPtr<DrawTarget> target =
Factory::CreateDrawTargetForData(BackendType::CAIRO,
mapping.mData,
mSize,
mapping.mStride,
optFormat);
if (!target) {
gfxWarning() << "imgFrame::Optimize failed in CreateDrawTargetForData";
return NS_ERROR_OUT_OF_MEMORY;
}
Rect rect(0, 0, mSize.width, mSize.height);
target->DrawSurface(mImageSurface, rect, rect);
target->Flush();
surf->Unmap();
mImageSurface = surf;
mVBuf = buf;
mFormat = optFormat;
}
#else
mOptSurface = gfxPlatform::GetPlatform()
->ScreenReferenceDrawTarget()->OptimizeSourceSurface(mImageSurface);
if (mOptSurface == mImageSurface) {
mOptSurface = nullptr;
}
#endif
if (mOptSurface) {
mVBuf = nullptr;
mVBufPtr = nullptr;
mImageSurface = nullptr;
}
#ifdef MOZ_WIDGET_ANDROID
// On Android, free mImageSurface unconditionally if we're discardable. This
// allows the operating system to free our volatile buffer.
// XXX(seth): We'd eventually like to do this on all platforms, but right now
// converting raw memory to a SourceSurface is expensive on some backends.
mImageSurface = nullptr;
#endif
return NS_OK;
}
DrawableFrameRef
imgFrame::DrawableRef()
{
return DrawableFrameRef(this);
}
RawAccessFrameRef
imgFrame::RawAccessRef()
{
return RawAccessFrameRef(this);
}
void
imgFrame::SetRawAccessOnly()
{
AssertImageDataLocked();
// Lock our data and throw away the key.
LockImageData();
}
imgFrame::SurfaceWithFormat
imgFrame::SurfaceForDrawing(bool aDoPadding,
bool aDoPartialDecode,
bool aDoTile,
gfxContext* aContext,
const nsIntMargin& aPadding,
gfxRect& aImageRect,
ImageRegion& aRegion,
SourceSurface* aSurface)
{
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
IntSize size(int32_t(aImageRect.Width()), int32_t(aImageRect.Height()));
if (!aDoPadding && !aDoPartialDecode) {
NS_ASSERTION(!mSinglePixel, "This should already have been handled");
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, size), mFormat);
}
gfxRect available = gfxRect(mDecoded.x, mDecoded.y, mDecoded.width,
mDecoded.height);
if (aDoTile || mSinglePixel) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
RefPtr<DrawTarget> target =
gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(size, SurfaceFormat::B8G8R8A8);
if (!target) {
return SurfaceWithFormat();
}
// Fill 'available' with whatever we've got
if (mSinglePixel) {
target->FillRect(ToRect(aRegion.Intersect(available).Rect()),
ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
SurfacePattern pattern(aSurface,
ExtendMode::REPEAT,
Matrix::Translation(mDecoded.x, mDecoded.y));
target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
}
RefPtr<SourceSurface> newsurf = target->Snapshot();
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, size),
target->GetFormat());
}
// Not tiling, and we have a surface, so we can account for
// padding and/or a partial decode just by twiddling parameters.
gfxPoint paddingTopLeft(aPadding.left, aPadding.top);
aRegion = aRegion.Intersect(available) - paddingTopLeft;
aContext->Multiply(gfxMatrix::Translation(paddingTopLeft));
aImageRect = gfxRect(0, 0, mSize.width, mSize.height);
IntSize availableSize(mDecoded.width, mDecoded.height);
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
mFormat);
}
bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
Filter aFilter, uint32_t aImageFlags)
{
PROFILER_LABEL("imgFrame", "Draw",
js::ProfileEntry::Category::GRAPHICS);
MOZ_ASSERT(NS_IsMainThread());
NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
NS_ASSERTION(!aRegion.IsRestricted() ||
!aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
NS_ASSERTION(!mPalettedImageData, "Directly drawing a paletted image!");
MonitorAutoLock lock(mMonitor);
nsIntMargin padding(mOffset.y,
mImageSize.width - (mOffset.x + mSize.width),
mImageSize.height - (mOffset.y + mSize.height),
mOffset.x);
bool doPadding = padding != nsIntMargin(0,0,0,0);
bool doPartialDecode = !IsImageCompleteInternal();
if (mSinglePixel && !doPadding && !doPartialDecode) {
if (mSinglePixelColor.a == 0.0) {
return true;
}
RefPtr<DrawTarget> dt = aContext->GetDrawTarget();
dt->FillRect(ToRect(aRegion.Rect()),
ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, aContext->CurrentOp()));
return true;
}
RefPtr<SourceSurface> surf = GetSurfaceInternal();
if (!surf && !mSinglePixel) {
return false;
}
gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
bool doTile = !imageRect.Contains(aRegion.Rect()) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
ImageRegion region(aRegion);
// SurfaceForDrawing changes the current transform, and we need it to still
// be changed when we call gfxUtils::DrawPixelSnapped. We still need to
// restore it before returning though.
// XXXjwatt In general having functions require someone further up the stack
// to undo transform changes that they make is bad practice. We should
// change how this code works.
gfxContextMatrixAutoSaveRestore autoSR(aContext);
SurfaceWithFormat surfaceResult =
SurfaceForDrawing(doPadding, doPartialDecode, doTile, aContext,
padding, imageRect, region, surf);
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
imageRect.Size(), region, surfaceResult.mFormat,
aFilter, aImageFlags);
}
return true;
}
nsresult
imgFrame::ImageUpdated(const nsIntRect& aUpdateRect)
{
MonitorAutoLock lock(mMonitor);
return ImageUpdatedInternal(aUpdateRect);
}
nsresult
imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect)
{
mMonitor.AssertCurrentThreadOwns();
mDecoded.UnionRect(mDecoded, aUpdateRect);
// clamp to bounds, in case someone sends a bogus updateRect (I'm looking at
// you, gif decoder)
nsIntRect boundsRect(mOffset, mSize);
mDecoded.IntersectRect(mDecoded, boundsRect);
// If the image is now complete, wake up anyone who's waiting.
if (IsImageCompleteInternal()) {
mMonitor.NotifyAll();
}
return NS_OK;
}
void
imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
DisposalMethod aDisposalMethod /* = DisposalMethod::KEEP */,
int32_t aRawTimeout /* = 0 */,
BlendMethod aBlendMethod /* = BlendMethod::OVER */)
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
if (aFrameOpacity == Opacity::OPAQUE) {
mHasNoAlpha = true;
}
mDisposalMethod = aDisposalMethod;
mTimeout = aRawTimeout;
mBlendMethod = aBlendMethod;
ImageUpdatedInternal(GetRect());
}
nsIntRect
imgFrame::GetRect() const
{
return gfx::IntRect(mOffset, mSize);
}
int32_t
imgFrame::GetStride() const
{
mMonitor.AssertCurrentThreadOwns();
if (mImageSurface) {
return mImageSurface->Stride();
}
return VolatileSurfaceStride(mSize, mFormat);
}
SurfaceFormat
imgFrame::GetFormat() const
{
MonitorAutoLock lock(mMonitor);
return mFormat;
}
uint32_t
imgFrame::GetImageBytesPerRow() const
{
mMonitor.AssertCurrentThreadOwns();
if (mVBuf) {
return mSize.width * BytesPerPixel(mFormat);
}
if (mPaletteDepth) {
return mSize.width;
}
return 0;
}
uint32_t
imgFrame::GetImageDataLength() const
{
return GetImageBytesPerRow() * mSize.height;
}
void
imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const
{
MonitorAutoLock lock(mMonitor);
GetImageDataInternal(aData, aLength);
}
void
imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const
{
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
if (mImageSurface) {
*aData = mVBufPtr;
MOZ_ASSERT(*aData,
"mImageSurface is non-null, but mVBufPtr is null in GetImageData");
} else if (mPalettedImageData) {
*aData = mPalettedImageData + PaletteDataLength();
MOZ_ASSERT(*aData,
"mPalettedImageData is non-null, but result is null in GetImageData");
} else {
MOZ_ASSERT(false,
"Have neither mImageSurface nor mPalettedImageData in GetImageData");
*aData = nullptr;
}
*aLength = GetImageDataLength();
}
uint8_t*
imgFrame::GetImageData() const
{
uint8_t* data;
uint32_t length;
GetImageData(&data, &length);
return data;
}
bool
imgFrame::GetIsPaletted() const
{
return mPalettedImageData != nullptr;
}
void
imgFrame::GetPaletteData(uint32_t** aPalette, uint32_t* length) const
{
AssertImageDataLocked();
if (!mPalettedImageData) {
*aPalette = nullptr;
*length = 0;
} else {
*aPalette = (uint32_t*) mPalettedImageData;
*length = PaletteDataLength();
}
}
uint32_t*
imgFrame::GetPaletteData() const
{
uint32_t* data;
uint32_t length;
GetPaletteData(&data, &length);
return data;
}
nsresult
imgFrame::LockImageData()
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0) {
return NS_ERROR_FAILURE;
}
mLockCount++;
// If we are not the first lock, there's nothing to do.
if (mLockCount != 1) {
return NS_OK;
}
// If we're the first lock, but have an image surface, we're OK.
if (mImageSurface) {
mVBufPtr = mVBuf;
return NS_OK;
}
// Paletted images don't have surfaces, so there's nothing to do.
if (mPalettedImageData) {
return NS_OK;
}
MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
return NS_ERROR_FAILURE;
}
void
imgFrame::AssertImageDataLocked() const
{
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
#endif
}
class UnlockImageDataRunnable : public nsRunnable
{
public:
explicit UnlockImageDataRunnable(imgFrame* aTarget)
: mTarget(aTarget)
{
MOZ_ASSERT(mTarget);
}
NS_IMETHOD Run() { return mTarget->UnlockImageData(); }
private:
RefPtr<imgFrame> mTarget;
};
nsresult
imgFrame::UnlockImageData()
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
if (mLockCount <= 0) {
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(mLockCount > 1 || IsImageCompleteInternal() || mAborted,
"Should have marked complete or aborted before unlocking");
// If we're about to become unlocked, we don't need to hold on to our data
// surface anymore. (But we don't need to do anything for paletted images,
// which don't have surfaces.)
if (mLockCount == 1 && !mPalettedImageData) {
// We can't safely optimize off-main-thread, so create a runnable to do it.
if (!NS_IsMainThread()) {
nsCOMPtr<nsIRunnable> runnable = new UnlockImageDataRunnable(this);
NS_DispatchToMainThread(runnable);
return NS_OK;
}
// If we're using a surface format with alpha but the image has no alpha,
// change the format. This doesn't change the underlying data at all, but
// allows DrawTargets to avoid blending when drawing known opaque images.
if (mHasNoAlpha && mFormat == SurfaceFormat::B8G8R8A8 && mImageSurface) {
mFormat = SurfaceFormat::B8G8R8X8;
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
}
// Convert the data surface to a GPU surface or a single color if possible.
// This will also release mImageSurface if possible.
Optimize();
// Allow the OS to release our data surface.
mVBufPtr = nullptr;
}
mLockCount--;
return NS_OK;
}
void
imgFrame::SetOptimizable()
{
AssertImageDataLocked();
MonitorAutoLock lock(mMonitor);
mOptimizable = true;
}
Color
imgFrame::SinglePixelColor() const
{
MOZ_ASSERT(NS_IsMainThread());
return mSinglePixelColor;
}
bool
imgFrame::IsSinglePixel() const
{
MOZ_ASSERT(NS_IsMainThread());
return mSinglePixel;
}
already_AddRefed<SourceSurface>
imgFrame::GetSurface()
{
MonitorAutoLock lock(mMonitor);
return GetSurfaceInternal();
}
already_AddRefed<SourceSurface>
imgFrame::GetSurfaceInternal()
{
mMonitor.AssertCurrentThreadOwns();
if (mOptSurface) {
if (mOptSurface->IsValid()) {
RefPtr<SourceSurface> surf(mOptSurface);
return surf.forget();
} else {
mOptSurface = nullptr;
}
}
if (mImageSurface) {
RefPtr<SourceSurface> surf(mImageSurface);
return surf.forget();
}
if (!mVBuf) {
return nullptr;
}
VolatileBufferPtr<char> buf(mVBuf);
if (buf.WasBufferPurged()) {
return nullptr;
}
return CreateLockedSurface(mVBuf, mSize, mFormat);
}
already_AddRefed<DrawTarget>
imgFrame::GetDrawTarget()
{
MonitorAutoLock lock(mMonitor);
uint8_t* data;
uint32_t length;
GetImageDataInternal(&data, &length);
if (!data) {
return nullptr;
}
int32_t stride = GetStride();
return gfxPlatform::GetPlatform()->
CreateDrawTargetForData(data, mSize, stride, mFormat);
}
AnimationData
imgFrame::GetAnimationData() const
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
uint8_t* data;
if (mPalettedImageData) {
data = mPalettedImageData;
} else {
uint32_t length;
GetImageDataInternal(&data, &length);
}
bool hasAlpha = mFormat == SurfaceFormat::B8G8R8A8;
return AnimationData(data, PaletteDataLength(), mTimeout, GetRect(),
mBlendMethod, mDisposalMethod, hasAlpha);
}
ScalingData
imgFrame::GetScalingData() const
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
MOZ_ASSERT(!GetIsPaletted(), "GetScalingData can't handle paletted images");
uint8_t* data;
uint32_t length;
GetImageDataInternal(&data, &length);
return ScalingData(data, mSize, GetImageBytesPerRow(), mFormat);
}
void
imgFrame::Abort()
{
MonitorAutoLock lock(mMonitor);
mAborted = true;
// Wake up anyone who's waiting.
mMonitor.NotifyAll();
}
bool
imgFrame::IsImageComplete() const
{
MonitorAutoLock lock(mMonitor);
return IsImageCompleteInternal();
}
void