forked from tesseract-ocr/tesseract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmastertrainer.cpp
989 lines (944 loc) · 39.3 KB
/
mastertrainer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
// Copyright 2010 Google Inc. All Rights Reserved.
// Author: [email protected] (Ray Smith)
///////////////////////////////////////////////////////////////////////
// File: mastertrainer.cpp
// Description: Trainer to build the MasterClassifier.
// Author: Ray Smith
// Created: Wed Nov 03 18:10:01 PDT 2010
//
// (C) Copyright 2010, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#include "mastertrainer.h"
#include <math.h>
#include <time.h>
#include "allheaders.h"
#include "boxread.h"
#include "classify.h"
#include "efio.h"
#include "errorcounter.h"
#include "featdefs.h"
#include "sampleiterator.h"
#include "shapeclassifier.h"
#include "shapetable.h"
#include "svmnode.h"
#include "scanutils.h"
namespace tesseract {
// Constants controlling clustering. With a low kMinClusteredShapes and a high
// kMaxUnicharsPerCluster, then kFontMergeDistance is the only limiting factor.
// Min number of shapes in the output.
const int kMinClusteredShapes = 1;
// Max number of unichars in any individual cluster.
const int kMaxUnicharsPerCluster = 2000;
// Mean font distance below which to merge fonts and unichars.
const float kFontMergeDistance = 0.025;
MasterTrainer::MasterTrainer(NormalizationMode norm_mode,
bool shape_analysis,
bool replicate_samples,
int debug_level)
: norm_mode_(norm_mode), samples_(fontinfo_table_),
junk_samples_(fontinfo_table_), verify_samples_(fontinfo_table_),
charsetsize_(0),
enable_shape_anaylsis_(shape_analysis),
enable_replication_(replicate_samples),
fragments_(NULL), prev_unichar_id_(-1), debug_level_(debug_level) {
}
MasterTrainer::~MasterTrainer() {
delete [] fragments_;
for (int p = 0; p < page_images_.size(); ++p)
pixDestroy(&page_images_[p]);
}
// WARNING! Serialize/DeSerialize are only partial, providing
// enough data to get the samples back and display them.
// Writes to the given file. Returns false in case of error.
bool MasterTrainer::Serialize(FILE* fp) const {
if (fwrite(&norm_mode_, sizeof(norm_mode_), 1, fp) != 1) return false;
if (!unicharset_.save_to_file(fp)) return false;
if (!feature_space_.Serialize(fp)) return false;
if (!samples_.Serialize(fp)) return false;
if (!junk_samples_.Serialize(fp)) return false;
if (!verify_samples_.Serialize(fp)) return false;
if (!master_shapes_.Serialize(fp)) return false;
if (!flat_shapes_.Serialize(fp)) return false;
if (!fontinfo_table_.Serialize(fp)) return false;
if (!xheights_.Serialize(fp)) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool MasterTrainer::DeSerialize(bool swap, FILE* fp) {
if (fread(&norm_mode_, sizeof(norm_mode_), 1, fp) != 1) return false;
if (swap) {
ReverseN(&norm_mode_, sizeof(norm_mode_));
}
if (!unicharset_.load_from_file(fp)) return false;
charsetsize_ = unicharset_.size();
if (!feature_space_.DeSerialize(swap, fp)) return false;
feature_map_.Init(feature_space_);
if (!samples_.DeSerialize(swap, fp)) return false;
if (!junk_samples_.DeSerialize(swap, fp)) return false;
if (!verify_samples_.DeSerialize(swap, fp)) return false;
if (!master_shapes_.DeSerialize(swap, fp)) return false;
if (!flat_shapes_.DeSerialize(swap, fp)) return false;
if (!fontinfo_table_.DeSerialize(swap, fp)) return false;
if (!xheights_.DeSerialize(swap, fp)) return false;
return true;
}
// Load an initial unicharset, or set one up if the file cannot be read.
void MasterTrainer::LoadUnicharset(const char* filename) {
if (!unicharset_.load_from_file(filename)) {
tprintf("Failed to load unicharset from file %s\n"
"Building unicharset for training from scratch...\n",
filename);
unicharset_.clear();
UNICHARSET initialized;
// Add special characters, as they were removed by the clear, but the
// default constructor puts them in.
unicharset_.AppendOtherUnicharset(initialized);
}
charsetsize_ = unicharset_.size();
delete [] fragments_;
fragments_ = new int[charsetsize_];
memset(fragments_, 0, sizeof(*fragments_) * charsetsize_);
samples_.LoadUnicharset(filename);
junk_samples_.LoadUnicharset(filename);
verify_samples_.LoadUnicharset(filename);
}
// Reads the samples and their features from the given .tr format file,
// adding them to the trainer with the font_id from the content of the file.
// See mftraining.cpp for a description of the file format.
// If verification, then these are verification samples, not training.
void MasterTrainer::ReadTrainingSamples(const char* page_name,
const FEATURE_DEFS_STRUCT& feature_defs,
bool verification) {
char buffer[2048];
int int_feature_type = ShortNameToFeatureType(feature_defs, kIntFeatureType);
int micro_feature_type = ShortNameToFeatureType(feature_defs,
kMicroFeatureType);
int cn_feature_type = ShortNameToFeatureType(feature_defs, kCNFeatureType);
int geo_feature_type = ShortNameToFeatureType(feature_defs, kGeoFeatureType);
FILE* fp = Efopen(page_name, "rb");
if (fp == NULL) {
tprintf("Failed to open tr file: %s\n", page_name);
return;
}
tr_filenames_.push_back(STRING(page_name));
while (fgets(buffer, sizeof(buffer), fp) != NULL) {
if (buffer[0] == '\n')
continue;
char* space = strchr(buffer, ' ');
if (space == NULL) {
tprintf("Bad format in tr file, reading fontname, unichar\n");
continue;
}
*space++ = '\0';
int font_id = GetFontInfoId(buffer);
if (font_id < 0) font_id = 0;
int page_number;
STRING unichar;
TBOX bounding_box;
if (!ParseBoxFileStr(space, &page_number, &unichar, &bounding_box)) {
tprintf("Bad format in tr file, reading box coords\n");
continue;
}
CHAR_DESC char_desc = ReadCharDescription(feature_defs, fp);
TrainingSample* sample = new TrainingSample;
sample->set_font_id(font_id);
sample->set_page_num(page_number + page_images_.size());
sample->set_bounding_box(bounding_box);
sample->ExtractCharDesc(int_feature_type, micro_feature_type,
cn_feature_type, geo_feature_type, char_desc);
AddSample(verification, unichar.string(), sample);
FreeCharDescription(char_desc);
}
charsetsize_ = unicharset_.size();
fclose(fp);
}
// Adds the given single sample to the trainer, setting the classid
// appropriately from the given unichar_str.
void MasterTrainer::AddSample(bool verification, const char* unichar,
TrainingSample* sample) {
if (verification) {
verify_samples_.AddSample(unichar, sample);
prev_unichar_id_ = -1;
} else if (unicharset_.contains_unichar(unichar)) {
if (prev_unichar_id_ >= 0)
fragments_[prev_unichar_id_] = -1;
prev_unichar_id_ = samples_.AddSample(unichar, sample);
if (flat_shapes_.FindShape(prev_unichar_id_, sample->font_id()) < 0)
flat_shapes_.AddShape(prev_unichar_id_, sample->font_id());
} else {
int junk_id = junk_samples_.AddSample(unichar, sample);
if (prev_unichar_id_ >= 0) {
CHAR_FRAGMENT* frag = CHAR_FRAGMENT::parse_from_string(unichar);
if (frag != NULL && frag->is_natural()) {
if (fragments_[prev_unichar_id_] == 0)
fragments_[prev_unichar_id_] = junk_id;
else if (fragments_[prev_unichar_id_] != junk_id)
fragments_[prev_unichar_id_] = -1;
}
delete frag;
}
prev_unichar_id_ = -1;
}
}
// Loads all pages from the given tif filename and append to page_images_.
// Must be called after ReadTrainingSamples, as the current number of images
// is used as an offset for page numbers in the samples.
void MasterTrainer::LoadPageImages(const char* filename) {
int page;
Pix* pix;
for (page = 0; (pix = pixReadTiff(filename, page)) != NULL; ++page) {
page_images_.push_back(pix);
}
tprintf("Loaded %d page images from %s\n", page, filename);
}
// Cleans up the samples after initial load from the tr files, and prior to
// saving the MasterTrainer:
// Remaps fragmented chars if running shape anaylsis.
// Sets up the samples appropriately for class/fontwise access.
// Deletes outlier samples.
void MasterTrainer::PostLoadCleanup() {
if (debug_level_ > 0)
tprintf("PostLoadCleanup...\n");
if (enable_shape_anaylsis_)
ReplaceFragmentedSamples();
SampleIterator sample_it;
sample_it.Init(NULL, NULL, true, &verify_samples_);
sample_it.NormalizeSamples();
verify_samples_.OrganizeByFontAndClass();
samples_.IndexFeatures(feature_space_);
// TODO(rays) DeleteOutliers is currently turned off to prove NOP-ness
// against current training.
// samples_.DeleteOutliers(feature_space_, debug_level_ > 0);
samples_.OrganizeByFontAndClass();
if (debug_level_ > 0)
tprintf("ComputeCanonicalSamples...\n");
samples_.ComputeCanonicalSamples(feature_map_, debug_level_ > 0);
}
// Gets the samples ready for training. Use after both
// ReadTrainingSamples+PostLoadCleanup or DeSerialize.
// Re-indexes the features and computes canonical and cloud features.
void MasterTrainer::PreTrainingSetup() {
if (debug_level_ > 0)
tprintf("PreTrainingSetup...\n");
samples_.IndexFeatures(feature_space_);
samples_.ComputeCanonicalFeatures();
if (debug_level_ > 0)
tprintf("ComputeCloudFeatures...\n");
samples_.ComputeCloudFeatures(feature_space_.Size());
}
// Sets up the master_shapes_ table, which tells which fonts should stay
// together until they get to a leaf node classifier.
void MasterTrainer::SetupMasterShapes() {
tprintf("Building master shape table\n");
int num_fonts = samples_.NumFonts();
ShapeTable char_shapes_begin_fragment(samples_.unicharset());
ShapeTable char_shapes_end_fragment(samples_.unicharset());
ShapeTable char_shapes(samples_.unicharset());
for (int c = 0; c < samples_.charsetsize(); ++c) {
ShapeTable shapes(samples_.unicharset());
for (int f = 0; f < num_fonts; ++f) {
if (samples_.NumClassSamples(f, c, true) > 0)
shapes.AddShape(c, f);
}
ClusterShapes(kMinClusteredShapes, 1, kFontMergeDistance, &shapes);
const CHAR_FRAGMENT *fragment = samples_.unicharset().get_fragment(c);
if (fragment == NULL)
char_shapes.AppendMasterShapes(shapes, NULL);
else if (fragment->is_beginning())
char_shapes_begin_fragment.AppendMasterShapes(shapes, NULL);
else if (fragment->is_ending())
char_shapes_end_fragment.AppendMasterShapes(shapes, NULL);
else
char_shapes.AppendMasterShapes(shapes, NULL);
}
ClusterShapes(kMinClusteredShapes, kMaxUnicharsPerCluster,
kFontMergeDistance, &char_shapes_begin_fragment);
char_shapes.AppendMasterShapes(char_shapes_begin_fragment, NULL);
ClusterShapes(kMinClusteredShapes, kMaxUnicharsPerCluster,
kFontMergeDistance, &char_shapes_end_fragment);
char_shapes.AppendMasterShapes(char_shapes_end_fragment, NULL);
ClusterShapes(kMinClusteredShapes, kMaxUnicharsPerCluster,
kFontMergeDistance, &char_shapes);
master_shapes_.AppendMasterShapes(char_shapes, NULL);
tprintf("Master shape_table:%s\n", master_shapes_.SummaryStr().string());
}
// Adds the junk_samples_ to the main samples_ set. Junk samples are initially
// fragments and n-grams (all incorrectly segmented characters).
// Various training functions may result in incorrectly segmented characters
// being added to the unicharset of the main samples, perhaps because they
// form a "radical" decomposition of some (Indic) grapheme, or because they
// just look the same as a real character (like rn/m)
// This function moves all the junk samples, to the main samples_ set, but
// desirable junk, being any sample for which the unichar already exists in
// the samples_ unicharset gets the unichar-ids re-indexed to match, but
// anything else gets re-marked as unichar_id 0 (space character) to identify
// it as junk to the error counter.
void MasterTrainer::IncludeJunk() {
// Get ids of fragments in junk_samples_ that replace the dead chars.
const UNICHARSET& junk_set = junk_samples_.unicharset();
const UNICHARSET& sample_set = samples_.unicharset();
int num_junks = junk_samples_.num_samples();
tprintf("Moving %d junk samples to master sample set.\n", num_junks);
for (int s = 0; s < num_junks; ++s) {
TrainingSample* sample = junk_samples_.mutable_sample(s);
int junk_id = sample->class_id();
const char* junk_utf8 = junk_set.id_to_unichar(junk_id);
int sample_id = sample_set.unichar_to_id(junk_utf8);
if (sample_id == INVALID_UNICHAR_ID)
sample_id = 0;
sample->set_class_id(sample_id);
junk_samples_.extract_sample(s);
samples_.AddSample(sample_id, sample);
}
junk_samples_.DeleteDeadSamples();
samples_.OrganizeByFontAndClass();
}
// Replicates the samples and perturbs them if the enable_replication_ flag
// is set. MUST be used after the last call to OrganizeByFontAndClass on
// the training samples, ie after IncludeJunk if it is going to be used, as
// OrganizeByFontAndClass will eat the replicated samples into the regular
// samples.
void MasterTrainer::ReplicateAndRandomizeSamplesIfRequired() {
if (enable_replication_) {
if (debug_level_ > 0)
tprintf("ReplicateAndRandomize...\n");
verify_samples_.ReplicateAndRandomizeSamples();
samples_.ReplicateAndRandomizeSamples();
samples_.IndexFeatures(feature_space_);
}
}
// Loads the basic font properties file into fontinfo_table_.
// Returns false on failure.
bool MasterTrainer::LoadFontInfo(const char* filename) {
FILE* fp = fopen(filename, "rb");
if (fp == NULL) {
fprintf(stderr, "Failed to load font_properties from %s\n", filename);
return false;
}
int italic, bold, fixed, serif, fraktur;
while (!feof(fp)) {
FontInfo fontinfo;
char* font_name = new char[1024];
fontinfo.name = font_name;
fontinfo.properties = 0;
fontinfo.universal_id = 0;
if (tfscanf(fp, "%1024s %i %i %i %i %i\n", font_name,
&italic, &bold, &fixed, &serif, &fraktur) != 6)
continue;
fontinfo.properties =
(italic << 0) +
(bold << 1) +
(fixed << 2) +
(serif << 3) +
(fraktur << 4);
if (!fontinfo_table_.contains(fontinfo)) {
fontinfo_table_.push_back(fontinfo);
}
}
fclose(fp);
return true;
}
// Loads the xheight font properties file into xheights_.
// Returns false on failure.
bool MasterTrainer::LoadXHeights(const char* filename) {
tprintf("fontinfo table is of size %d\n", fontinfo_table_.size());
xheights_.init_to_size(fontinfo_table_.size(), -1);
if (filename == NULL) return true;
FILE *f = fopen(filename, "rb");
if (f == NULL) {
fprintf(stderr, "Failed to load font xheights from %s\n", filename);
return false;
}
tprintf("Reading x-heights from %s ...\n", filename);
FontInfo fontinfo;
fontinfo.properties = 0; // Not used to lookup in the table.
fontinfo.universal_id = 0;
char buffer[1024];
int xht;
int total_xheight = 0;
int xheight_count = 0;
while (!feof(f)) {
if (tfscanf(f, "%1023s %d\n", buffer, &xht) != 2)
continue;
buffer[1023] = '\0';
fontinfo.name = buffer;
if (!fontinfo_table_.contains(fontinfo)) continue;
int fontinfo_id = fontinfo_table_.get_index(fontinfo);
xheights_[fontinfo_id] = xht;
total_xheight += xht;
++xheight_count;
}
if (xheight_count == 0) {
fprintf(stderr, "No valid xheights in %s!\n", filename);
fclose(f);
return false;
}
int mean_xheight = DivRounded(total_xheight, xheight_count);
for (int i = 0; i < fontinfo_table_.size(); ++i) {
if (xheights_[i] < 0)
xheights_[i] = mean_xheight;
}
fclose(f);
return true;
} // LoadXHeights
// Reads spacing stats from filename and adds them to fontinfo_table.
bool MasterTrainer::AddSpacingInfo(const char *filename) {
FILE* fontinfo_file = fopen(filename, "rb");
if (fontinfo_file == NULL)
return true; // We silently ignore missing files!
// Find the fontinfo_id.
int fontinfo_id = GetBestMatchingFontInfoId(filename);
if (fontinfo_id < 0) {
tprintf("No font found matching fontinfo filename %s\n", filename);
fclose(fontinfo_file);
return false;
}
tprintf("Reading spacing from %s for font %d...\n", filename, fontinfo_id);
// TODO(rays) scale should probably be a double, but keep as an int for now
// to duplicate current behavior.
int scale = kBlnXHeight / xheights_[fontinfo_id];
int num_unichars;
char uch[UNICHAR_LEN];
char kerned_uch[UNICHAR_LEN];
int x_gap, x_gap_before, x_gap_after, num_kerned;
ASSERT_HOST(tfscanf(fontinfo_file, "%d\n", &num_unichars) == 1);
FontInfo *fi = &fontinfo_table_.get(fontinfo_id);
fi->init_spacing(unicharset_.size());
FontSpacingInfo *spacing = NULL;
for (int l = 0; l < num_unichars; ++l) {
if (tfscanf(fontinfo_file, "%s %d %d %d",
uch, &x_gap_before, &x_gap_after, &num_kerned) != 4) {
tprintf("Bad format of font spacing file %s\n", filename);
fclose(fontinfo_file);
return false;
}
bool valid = unicharset_.contains_unichar(uch);
if (valid) {
spacing = new FontSpacingInfo();
spacing->x_gap_before = static_cast<inT16>(x_gap_before * scale);
spacing->x_gap_after = static_cast<inT16>(x_gap_after * scale);
}
for (int k = 0; k < num_kerned; ++k) {
if (tfscanf(fontinfo_file, "%s %d", kerned_uch, &x_gap) != 2) {
tprintf("Bad format of font spacing file %s\n", filename);
fclose(fontinfo_file);
delete spacing;
return false;
}
if (!valid || !unicharset_.contains_unichar(kerned_uch)) continue;
spacing->kerned_unichar_ids.push_back(
unicharset_.unichar_to_id(kerned_uch));
spacing->kerned_x_gaps.push_back(static_cast<inT16>(x_gap * scale));
}
if (valid) fi->add_spacing(unicharset_.unichar_to_id(uch), spacing);
}
fclose(fontinfo_file);
return true;
}
// Returns the font id corresponding to the given font name.
// Returns -1 if the font cannot be found.
int MasterTrainer::GetFontInfoId(const char* font_name) {
FontInfo fontinfo;
// We are only borrowing the string, so it is OK to const cast it.
fontinfo.name = const_cast<char*>(font_name);
fontinfo.properties = 0; // Not used to lookup in the table
fontinfo.universal_id = 0;
return fontinfo_table_.get_index(fontinfo);
}
// Returns the font_id of the closest matching font name to the given
// filename. It is assumed that a substring of the filename will match
// one of the fonts. If more than one is matched, the longest is returned.
int MasterTrainer::GetBestMatchingFontInfoId(const char* filename) {
int fontinfo_id = -1;
int best_len = 0;
for (int f = 0; f < fontinfo_table_.size(); ++f) {
if (strstr(filename, fontinfo_table_.get(f).name) != NULL) {
int len = strlen(fontinfo_table_.get(f).name);
// Use the longest matching length in case a substring of a font matched.
if (len > best_len) {
best_len = len;
fontinfo_id = f;
}
}
}
return fontinfo_id;
}
// Sets up a flat shapetable with one shape per class/font combination.
void MasterTrainer::SetupFlatShapeTable(ShapeTable* shape_table) {
// To exactly mimic the results of the previous implementation, the shapes
// must be clustered in order the fonts arrived, and reverse order of the
// characters within each font.
// Get a list of the fonts in the order they appeared.
GenericVector<int> active_fonts;
int num_shapes = flat_shapes_.NumShapes();
for (int s = 0; s < num_shapes; ++s) {
int font = flat_shapes_.GetShape(s)[0].font_ids[0];
int f = 0;
for (f = 0; f < active_fonts.size(); ++f) {
if (active_fonts[f] == font)
break;
}
if (f == active_fonts.size())
active_fonts.push_back(font);
}
// For each font in order, add all the shapes with that font in reverse order.
int num_fonts = active_fonts.size();
for (int f = 0; f < num_fonts; ++f) {
for (int s = num_shapes - 1; s >= 0; --s) {
int font = flat_shapes_.GetShape(s)[0].font_ids[0];
if (font == active_fonts[f]) {
shape_table->AddShape(flat_shapes_.GetShape(s));
}
}
}
}
// Sets up a Clusterer for mftraining on a single shape_id.
// Call FreeClusterer on the return value after use.
CLUSTERER* MasterTrainer::SetupForClustering(
const ShapeTable& shape_table,
const FEATURE_DEFS_STRUCT& feature_defs,
int shape_id,
int* num_samples) {
int desc_index = ShortNameToFeatureType(feature_defs, kMicroFeatureType);
int num_params = feature_defs.FeatureDesc[desc_index]->NumParams;
ASSERT_HOST(num_params == MFCount);
CLUSTERER* clusterer = MakeClusterer(
num_params, feature_defs.FeatureDesc[desc_index]->ParamDesc);
// We want to iterate over the samples of just the one shape.
IndexMapBiDi shape_map;
shape_map.Init(shape_table.NumShapes(), false);
shape_map.SetMap(shape_id, true);
shape_map.Setup();
// Reverse the order of the samples to match the previous behavior.
GenericVector<const TrainingSample*> sample_ptrs;
SampleIterator it;
it.Init(&shape_map, &shape_table, false, &samples_);
for (it.Begin(); !it.AtEnd(); it.Next()) {
sample_ptrs.push_back(&it.GetSample());
}
int sample_id = 0;
for (int i = sample_ptrs.size() - 1; i >= 0; --i) {
const TrainingSample* sample = sample_ptrs[i];
int num_features = sample->num_micro_features();
for (int f = 0; f < num_features; ++f)
MakeSample(clusterer, sample->micro_features()[f], sample_id);
++sample_id;
}
*num_samples = sample_id;
return clusterer;
}
// Writes the given float_classes (produced by SetupForFloat2Int) as inttemp
// to the given inttemp_file, and the corresponding pffmtable.
// The unicharset is the original encoding of graphemes, and shape_set should
// match the size of the shape_table, and may possibly be totally fake.
void MasterTrainer::WriteInttempAndPFFMTable(const UNICHARSET& unicharset,
const UNICHARSET& shape_set,
const ShapeTable& shape_table,
CLASS_STRUCT* float_classes,
const char* inttemp_file,
const char* pffmtable_file) {
tesseract::Classify *classify = new tesseract::Classify();
// Move the fontinfo table to classify.
fontinfo_table_.MoveTo(&classify->get_fontinfo_table());
INT_TEMPLATES int_templates = classify->CreateIntTemplates(float_classes,
shape_set);
FILE* fp = fopen(inttemp_file, "wb");
classify->WriteIntTemplates(fp, int_templates, shape_set);
fclose(fp);
// Now write pffmtable. This is complicated by the fact that the adaptive
// classifier still wants one indexed by unichar-id, but the static
// classifier needs one indexed by its shape class id.
// We put the shapetable_cutoffs in a GenericVector, and compute the
// unicharset cutoffs along the way.
GenericVector<uinT16> shapetable_cutoffs;
GenericVector<uinT16> unichar_cutoffs;
for (int c = 0; c < unicharset.size(); ++c)
unichar_cutoffs.push_back(0);
/* then write out each class */
for (int i = 0; i < int_templates->NumClasses; ++i) {
INT_CLASS Class = ClassForClassId(int_templates, i);
// Todo: Test with min instead of max
// int MaxLength = LengthForConfigId(Class, 0);
uinT16 max_length = 0;
for (int config_id = 0; config_id < Class->NumConfigs; config_id++) {
// Todo: Test with min instead of max
// if (LengthForConfigId (Class, config_id) < MaxLength)
uinT16 length = Class->ConfigLengths[config_id];
if (length > max_length)
max_length = Class->ConfigLengths[config_id];
int shape_id = float_classes[i].font_set.get(config_id);
const Shape& shape = shape_table.GetShape(shape_id);
for (int c = 0; c < shape.size(); ++c) {
int unichar_id = shape[c].unichar_id;
if (length > unichar_cutoffs[unichar_id])
unichar_cutoffs[unichar_id] = length;
}
}
shapetable_cutoffs.push_back(max_length);
}
fp = fopen(pffmtable_file, "wb");
shapetable_cutoffs.Serialize(fp);
for (int c = 0; c < unicharset.size(); ++c) {
const char *unichar = unicharset.id_to_unichar(c);
if (strcmp(unichar, " ") == 0) {
unichar = "NULL";
}
fprintf(fp, "%s %d\n", unichar, unichar_cutoffs[c]);
}
fclose(fp);
free_int_templates(int_templates);
delete classify;
}
// Generate debug output relating to the canonical distance between the
// two given UTF8 grapheme strings.
void MasterTrainer::DebugCanonical(const char* unichar_str1,
const char* unichar_str2) {
int class_id1 = unicharset_.unichar_to_id(unichar_str1);
int class_id2 = unicharset_.unichar_to_id(unichar_str2);
if (class_id2 == INVALID_UNICHAR_ID)
class_id2 = class_id1;
if (class_id1 == INVALID_UNICHAR_ID) {
tprintf("No unicharset entry found for %s\n", unichar_str1);
return;
} else {
tprintf("Font ambiguities for unichar %d = %s and %d = %s\n",
class_id1, unichar_str1, class_id2, unichar_str2);
}
int num_fonts = samples_.NumFonts();
const IntFeatureMap& feature_map = feature_map_;
// Iterate the fonts to get the similarity with other fonst of the same
// class.
tprintf(" ");
for (int f = 0; f < num_fonts; ++f) {
if (samples_.NumClassSamples(f, class_id2, false) == 0)
continue;
tprintf("%6d", f);
}
tprintf("\n");
for (int f1 = 0; f1 < num_fonts; ++f1) {
// Map the features of the canonical_sample.
if (samples_.NumClassSamples(f1, class_id1, false) == 0)
continue;
tprintf("%4d ", f1);
for (int f2 = 0; f2 < num_fonts; ++f2) {
if (samples_.NumClassSamples(f2, class_id2, false) == 0)
continue;
float dist = samples_.ClusterDistance(f1, class_id1, f2, class_id2,
feature_map);
tprintf(" %5.3f", dist);
}
tprintf("\n");
}
// Build a fake ShapeTable containing all the sample types.
ShapeTable shapes(unicharset_);
for (int f = 0; f < num_fonts; ++f) {
if (samples_.NumClassSamples(f, class_id1, true) > 0)
shapes.AddShape(class_id1, f);
if (class_id1 != class_id2 &&
samples_.NumClassSamples(f, class_id2, true) > 0)
shapes.AddShape(class_id2, f);
}
}
#ifndef GRAPHICS_DISABLED
// Debugging for cloud/canonical features.
// Displays a Features window containing:
// If unichar_str2 is in the unicharset, and canonical_font is non-negative,
// displays the canonical features of the char/font combination in red.
// If unichar_str1 is in the unicharset, and cloud_font is non-negative,
// displays the cloud feature of the char/font combination in green.
// The canonical features are drawn first to show which ones have no
// matches in the cloud features.
// Until the features window is destroyed, each click in the features window
// will display the samples that have that feature in a separate window.
void MasterTrainer::DisplaySamples(const char* unichar_str1, int cloud_font,
const char* unichar_str2,
int canonical_font) {
const IntFeatureMap& feature_map = feature_map_;
const IntFeatureSpace& feature_space = feature_map.feature_space();
ScrollView* f_window = CreateFeatureSpaceWindow("Features", 100, 500);
ClearFeatureSpaceWindow(norm_mode_ == NM_BASELINE ? baseline : character,
f_window);
int class_id2 = samples_.unicharset().unichar_to_id(unichar_str2);
if (class_id2 != INVALID_UNICHAR_ID && canonical_font >= 0) {
const TrainingSample* sample = samples_.GetCanonicalSample(canonical_font,
class_id2);
for (int f = 0; f < sample->num_features(); ++f) {
RenderIntFeature(f_window, &sample->features()[f], ScrollView::RED);
}
}
int class_id1 = samples_.unicharset().unichar_to_id(unichar_str1);
if (class_id1 != INVALID_UNICHAR_ID && cloud_font >= 0) {
const BitVector& cloud = samples_.GetCloudFeatures(cloud_font, class_id1);
for (int f = 0; f < cloud.size(); ++f) {
if (cloud[f]) {
INT_FEATURE_STRUCT feature =
feature_map.InverseIndexFeature(f);
RenderIntFeature(f_window, &feature, ScrollView::GREEN);
}
}
}
f_window->Update();
ScrollView* s_window = CreateFeatureSpaceWindow("Samples", 100, 500);
SVEventType ev_type;
do {
SVEvent* ev;
// Wait until a click or popup event.
ev = f_window->AwaitEvent(SVET_ANY);
ev_type = ev->type;
if (ev_type == SVET_CLICK) {
int feature_index = feature_space.XYToFeatureIndex(ev->x, ev->y);
if (feature_index >= 0) {
// Iterate samples and display those with the feature.
Shape shape;
shape.AddToShape(class_id1, cloud_font);
s_window->Clear();
samples_.DisplaySamplesWithFeature(feature_index, shape,
feature_space, ScrollView::GREEN,
s_window);
s_window->Update();
}
}
delete ev;
} while (ev_type != SVET_DESTROY);
}
#endif // GRAPHICS_DISABLED
void MasterTrainer::TestClassifierVOld(bool replicate_samples,
ShapeClassifier* test_classifier,
ShapeClassifier* old_classifier) {
SampleIterator sample_it;
sample_it.Init(NULL, NULL, replicate_samples, &samples_);
ErrorCounter::DebugNewErrors(test_classifier, old_classifier,
CT_UNICHAR_TOPN_ERR, fontinfo_table_,
page_images_, &sample_it);
}
// Tests the given test_classifier on the internal samples.
// See TestClassifier for details.
void MasterTrainer::TestClassifierOnSamples(CountTypes error_mode,
int report_level,
bool replicate_samples,
ShapeClassifier* test_classifier,
STRING* report_string) {
TestClassifier(error_mode, report_level, replicate_samples, &samples_,
test_classifier, report_string);
}
// Tests the given test_classifier on the given samples.
// error_mode indicates what counts as an error.
// report_levels:
// 0 = no output.
// 1 = bottom-line error rate.
// 2 = bottom-line error rate + time.
// 3 = font-level error rate + time.
// 4 = list of all errors + short classifier debug output on 16 errors.
// 5 = list of all errors + short classifier debug output on 25 errors.
// If replicate_samples is true, then the test is run on an extended test
// sample including replicated and systematically perturbed samples.
// If report_string is non-NULL, a summary of the results for each font
// is appended to the report_string.
double MasterTrainer::TestClassifier(CountTypes error_mode,
int report_level,
bool replicate_samples,
TrainingSampleSet* samples,
ShapeClassifier* test_classifier,
STRING* report_string) {
SampleIterator sample_it;
sample_it.Init(NULL, NULL, replicate_samples, samples);
if (report_level > 0) {
int num_samples = 0;
for (sample_it.Begin(); !sample_it.AtEnd(); sample_it.Next())
++num_samples;
tprintf("Iterator has charset size of %d/%d, %d shapes, %d samples\n",
sample_it.SparseCharsetSize(), sample_it.CompactCharsetSize(),
test_classifier->GetShapeTable()->NumShapes(), num_samples);
tprintf("Testing %sREPLICATED:\n", replicate_samples ? "" : "NON-");
}
double unichar_error = 0.0;
ErrorCounter::ComputeErrorRate(test_classifier, report_level,
error_mode, fontinfo_table_,
page_images_, &sample_it, &unichar_error,
NULL, report_string);
return unichar_error;
}
// Returns the average (in some sense) distance between the two given
// shapes, which may contain multiple fonts and/or unichars.
float MasterTrainer::ShapeDistance(const ShapeTable& shapes, int s1, int s2) {
const IntFeatureMap& feature_map = feature_map_;
const Shape& shape1 = shapes.GetShape(s1);
const Shape& shape2 = shapes.GetShape(s2);
int num_chars1 = shape1.size();
int num_chars2 = shape2.size();
float dist_sum = 0.0f;
int dist_count = 0;
if (num_chars1 > 1 || num_chars2 > 1) {
// In the multi-char case try to optimize the calculation by computing
// distances between characters of matching font where possible.
for (int c1 = 0; c1 < num_chars1; ++c1) {
for (int c2 = 0; c2 < num_chars2; ++c2) {
dist_sum += samples_.UnicharDistance(shape1[c1], shape2[c2],
true, feature_map);
++dist_count;
}
}
} else {
// In the single unichar case, there is little alternative, but to compute
// the squared-order distance between pairs of fonts.
dist_sum = samples_.UnicharDistance(shape1[0], shape2[0],
false, feature_map);
++dist_count;
}
return dist_sum / dist_count;
}
// Replaces samples that are always fragmented with the corresponding
// fragment samples.
void MasterTrainer::ReplaceFragmentedSamples() {
if (fragments_ == NULL) return;
// Remove samples that are replaced by fragments. Each class that was
// always naturally fragmented should be replaced by its fragments.
int num_samples = samples_.num_samples();
for (int s = 0; s < num_samples; ++s) {
TrainingSample* sample = samples_.mutable_sample(s);
if (fragments_[sample->class_id()] > 0)
samples_.KillSample(sample);
}
samples_.DeleteDeadSamples();
// Get ids of fragments in junk_samples_ that replace the dead chars.
const UNICHARSET& frag_set = junk_samples_.unicharset();
#if 0
// TODO(rays) The original idea was to replace only graphemes that were
// always naturally fragmented, but that left a lot of the Indic graphemes
// out. Determine whether we can go back to that idea now that spacing
// is fixed in the training images, or whether this code is obsolete.
bool* good_junk = new bool[frag_set.size()];
memset(good_junk, 0, sizeof(*good_junk) * frag_set.size());
for (int dead_ch = 1; dead_ch < unicharset_.size(); ++dead_ch) {
int frag_ch = fragments_[dead_ch];
if (frag_ch <= 0) continue;
const char* frag_utf8 = frag_set.id_to_unichar(frag_ch);
CHAR_FRAGMENT* frag = CHAR_FRAGMENT::parse_from_string(frag_utf8);
// Mark the chars for all parts of the fragment as good in good_junk.
for (int part = 0; part < frag->get_total(); ++part) {
frag->set_pos(part);
int good_ch = frag_set.unichar_to_id(frag->to_string().string());
if (good_ch != INVALID_UNICHAR_ID)
good_junk[good_ch] = true; // We want this one.
}
}
#endif
// For now just use all the junk that was from natural fragments.
// Get samples of fragments in junk_samples_ that replace the dead chars.
int num_junks = junk_samples_.num_samples();
for (int s = 0; s < num_junks; ++s) {
TrainingSample* sample = junk_samples_.mutable_sample(s);
int junk_id = sample->class_id();
const char* frag_utf8 = frag_set.id_to_unichar(junk_id);
CHAR_FRAGMENT* frag = CHAR_FRAGMENT::parse_from_string(frag_utf8);
if (frag != NULL && frag->is_natural()) {
junk_samples_.extract_sample(s);
samples_.AddSample(frag_set.id_to_unichar(junk_id), sample);
}
}
junk_samples_.DeleteDeadSamples();
junk_samples_.OrganizeByFontAndClass();
samples_.OrganizeByFontAndClass();
unicharset_.clear();
unicharset_.AppendOtherUnicharset(samples_.unicharset());
// delete [] good_junk;
// Fragments_ no longer needed?
delete [] fragments_;
fragments_ = NULL;
}
// Runs a hierarchical agglomerative clustering to merge shapes in the given
// shape_table, while satisfying the given constraints:
// * End with at least min_shapes left in shape_table,
// * No shape shall have more than max_shape_unichars in it,
// * Don't merge shapes where the distance between them exceeds max_dist.
const float kInfiniteDist = 999.0f;
void MasterTrainer::ClusterShapes(int min_shapes, int max_shape_unichars,
float max_dist, ShapeTable* shapes) {
int num_shapes = shapes->NumShapes();
int max_merges = num_shapes - min_shapes;
GenericVector<ShapeDist>* shape_dists =
new GenericVector<ShapeDist>[num_shapes];
float min_dist = kInfiniteDist;
int min_s1 = 0;
int min_s2 = 0;
tprintf("Computing shape distances...");
for (int s1 = 0; s1 < num_shapes; ++s1) {
for (int s2 = s1 + 1; s2 < num_shapes; ++s2) {
ShapeDist dist(s1, s2, ShapeDistance(*shapes, s1, s2));
shape_dists[s1].push_back(dist);
if (dist.distance < min_dist) {
min_dist = dist.distance;
min_s1 = s1;
min_s2 = s2;
}
}
tprintf(" %d", s1);
}
tprintf("\n");
int num_merged = 0;
while (num_merged < max_merges && min_dist < max_dist) {
tprintf("Distance = %f: ", min_dist);
int num_unichars = shapes->MergedUnicharCount(min_s1, min_s2);
shape_dists[min_s1][min_s2 - min_s1 - 1].distance = kInfiniteDist;
if (num_unichars > max_shape_unichars) {
tprintf("Merge of %d and %d with %d would exceed max of %d unichars\n",
min_s1, min_s2, num_unichars, max_shape_unichars);
} else {
shapes->MergeShapes(min_s1, min_s2);
shape_dists[min_s2].clear();
++num_merged;
for (int s = 0; s < min_s1; ++s) {
if (!shape_dists[s].empty()) {
shape_dists[s][min_s1 - s - 1].distance =
ShapeDistance(*shapes, s, min_s1);
shape_dists[s][min_s2 - s -1].distance = kInfiniteDist;
}
}
for (int s2 = min_s1 + 1; s2 < num_shapes; ++s2) {
if (shape_dists[min_s1][s2 - min_s1 - 1].distance < kInfiniteDist)
shape_dists[min_s1][s2 - min_s1 - 1].distance =
ShapeDistance(*shapes, min_s1, s2);
}
for (int s = min_s1 + 1; s < min_s2; ++s) {
if (!shape_dists[s].empty()) {
shape_dists[s][min_s2 - s - 1].distance = kInfiniteDist;
}
}
}
min_dist = kInfiniteDist;
for (int s1 = 0; s1 < num_shapes; ++s1) {
for (int i = 0; i < shape_dists[s1].size(); ++i) {
if (shape_dists[s1][i].distance < min_dist) {
min_dist = shape_dists[s1][i].distance;
min_s1 = s1;
min_s2 = s1 + 1 + i;
}
}
}
}
tprintf("Stopped with %d merged, min dist %f\n", num_merged, min_dist);
delete [] shape_dists;
if (debug_level_ > 1) {
for (int s1 = 0; s1 < num_shapes; ++s1) {
if (shapes->MasterDestinationIndex(s1) == s1) {
tprintf("Master shape:%s\n", shapes->DebugStr(s1).string());
}
}
}
}
} // namespace tesseract.