forked from tesseract-ocr/tesseract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampleiterator.cpp
262 lines (239 loc) · 8.71 KB
/
sampleiterator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2011 Google Inc. All Rights Reserved.
// Author: [email protected] (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "sampleiterator.h"
#include "indexmapbidi.h"
#include "shapetable.h"
#include "trainingsample.h"
#include "trainingsampleset.h"
namespace tesseract {
// ================== SampleIterator Implementation =================
SampleIterator::SampleIterator()
: charset_map_(NULL),
shape_table_(NULL),
sample_set_(NULL),
randomize_(false),
owned_shape_table_(NULL) {
num_shapes_ = 0;
Begin();
}
SampleIterator::~SampleIterator() {
Clear();
}
void SampleIterator::Clear() {
delete owned_shape_table_;
owned_shape_table_ = NULL;
}
// See class comment for arguments.
void SampleIterator::Init(const IndexMapBiDi* charset_map,
const ShapeTable* shape_table,
bool randomize,
TrainingSampleSet* sample_set) {
Clear();
charset_map_ = charset_map;
shape_table_ = shape_table;
sample_set_ = sample_set;
randomize_ = randomize;
if (shape_table_ == NULL && charset_map_ != NULL) {
// The caller wishes to iterate by class. The easiest way to do this
// is to create a dummy shape_table_ that we will own.
int num_fonts = sample_set_->NumFonts();
owned_shape_table_ = new ShapeTable(sample_set_->unicharset());
int charsetsize = sample_set_->unicharset().size();
for (int c = 0; c < charsetsize; ++c) {
// We always add a shape for each character to keep the index in sync
// with the unichar_id.
int shape_id = owned_shape_table_->AddShape(c, 0);
for (int f = 1; f < num_fonts; ++f) {
if (sample_set_->NumClassSamples(f, c, true) > 0) {
owned_shape_table_->AddToShape(shape_id, c, f);
}
}
}
shape_table_ = owned_shape_table_;
}
if (shape_table_ != NULL) {
num_shapes_ = shape_table_->NumShapes();
} else {
num_shapes_ = randomize ? sample_set_->num_samples()
: sample_set_->num_raw_samples();
}
Begin();
}
// Iterator functions designed for use with a simple for loop:
// for (it.Begin(); !it.AtEnd(); it.Next()) {
// const TrainingSample& sample = it.GetSample();
// }
void SampleIterator::Begin() {
shape_index_ = -1;
shape_char_index_ = 0;
num_shape_chars_ = 0;
shape_font_index_ = 0;
num_shape_fonts_ = 0;
sample_index_ = 0;
num_samples_ = 0;
// Find the first indexable sample.
Next();
}
bool SampleIterator::AtEnd() const {
return shape_index_ >= num_shapes_;
}
const TrainingSample& SampleIterator::GetSample() const {
if (shape_table_ != NULL) {
const UnicharAndFonts* shape_entry = GetShapeEntry();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
return *sample_set_->GetSample(font_id, char_id, sample_index_);
} else {
return *sample_set_->GetSample(shape_index_);
}
}
TrainingSample* SampleIterator::MutableSample() const {
if (shape_table_ != NULL) {
const UnicharAndFonts* shape_entry = GetShapeEntry();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
return sample_set_->MutableSample(font_id, char_id, sample_index_);
} else {
return sample_set_->mutable_sample(shape_index_);
}
}
// Returns the total index (from the original set of samples) of the current
// sample.
int SampleIterator::GlobalSampleIndex() const {
if (shape_table_ != NULL) {
const UnicharAndFonts* shape_entry = GetShapeEntry();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
return sample_set_->GlobalSampleIndex(font_id, char_id, sample_index_);
} else {
return shape_index_;
}
}
// Returns the index of the current sample in compact charset space, so
// in a 2-class problem between x and y, the returned indices will all be
// 0 or 1, and have nothing to do with the unichar_ids.
// If the charset_map_ is NULL, then this is equal to GetSparseClassID().
int SampleIterator::GetCompactClassID() const {
return charset_map_ != NULL ? charset_map_->SparseToCompact(shape_index_)
: GetSparseClassID();
}
// Returns the index of the current sample in sparse charset space, so
// in a 2-class problem between x and y, the returned indices will all be
// x or y, where x and y may be unichar_ids (no shape_table_) or shape_ids
// with a shape_table_.
int SampleIterator::GetSparseClassID() const {
return shape_table_ != NULL ? shape_index_ : GetSample().class_id();
}
// Moves on to the next indexable sample. If the end is reached, leaves
// the state such that AtEnd() is true.
void SampleIterator::Next() {
if (shape_table_ != NULL) {
// Next sample in this class/font combination.
++sample_index_;
if (sample_index_ < num_samples_)
return;
// Next font in this class in this shape.
sample_index_ = 0;
do {
++shape_font_index_;
if (shape_font_index_ >= num_shape_fonts_) {
// Next unichar in this shape.
shape_font_index_ = 0;
++shape_char_index_;
if (shape_char_index_ >= num_shape_chars_) {
// Find the next shape that is mapped in the charset_map_.
shape_char_index_ = 0;
do {
++shape_index_;
} while (shape_index_ < num_shapes_ &&
charset_map_ != NULL &&
charset_map_->SparseToCompact(shape_index_) < 0);
if (shape_index_ >= num_shapes_)
return; // The end.
num_shape_chars_ = shape_table_->GetShape(shape_index_).size();
}
}
const UnicharAndFonts* shape_entry = GetShapeEntry();
num_shape_fonts_ = shape_entry->font_ids.size();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
num_samples_ = sample_set_->NumClassSamples(font_id, char_id, randomize_);
} while (num_samples_ == 0);
} else {
// We are just iterating over the samples.
++shape_index_;
}
}
// Returns the size of the compact charset space.
int SampleIterator::CompactCharsetSize() const {
return charset_map_ != NULL ? charset_map_->CompactSize()
: SparseCharsetSize();
}
// Returns the size of the sparse charset space.
int SampleIterator::SparseCharsetSize() const {
return charset_map_ != NULL
? charset_map_->SparseSize()
: (shape_table_ != NULL ? shape_table_->NumShapes()
: sample_set_->charsetsize());
}
// Apply the supplied feature_space/feature_map transform to all samples
// accessed by this iterator.
void SampleIterator::MapSampleFeatures(const IntFeatureMap& feature_map) {
for (Begin(); !AtEnd(); Next()) {
TrainingSample* sample = MutableSample();
sample->MapFeatures(feature_map);
}
}
// Adjust the weights of all the samples to be uniform in the given charset.
// Returns the number of samples in the iterator.
int SampleIterator::UniformSamples() {
int num_good_samples = 0;
for (Begin(); !AtEnd(); Next()) {
TrainingSample* sample = MutableSample();
sample->set_weight(1.0);
++num_good_samples;
}
NormalizeSamples();
return num_good_samples;
}
// Normalize the weights of all the samples in the charset_map so they sum
// to 1. Returns the minimum assigned sample weight.
double SampleIterator::NormalizeSamples() {
double total_weight = 0.0;
int sample_count = 0;
for (Begin(); !AtEnd(); Next()) {
const TrainingSample& sample = GetSample();
total_weight += sample.weight();
++sample_count;
}
// Normalize samples.
double min_assigned_sample_weight = 1.0;
if (total_weight > 0.0) {
for (Begin(); !AtEnd(); Next()) {
TrainingSample* sample = MutableSample();
double weight = sample->weight() / total_weight;
if (weight < min_assigned_sample_weight)
min_assigned_sample_weight = weight;
sample->set_weight(weight);
}
}
return min_assigned_sample_weight;
}
// Helper returns the current UnicharAndFont shape_entry.
const UnicharAndFonts* SampleIterator::GetShapeEntry() const {
const Shape& shape = shape_table_->GetShape(shape_index_);
return &shape[shape_char_index_];
}
} // namespace tesseract.