-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
295 lines (247 loc) · 9.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchtext.legacy import data
import torchtext
from torch.utils.data import Dataset, DataLoader
from torchtext.vocab import Vocab
from collections import Counter
import re
import io
import os
import nltk
import numpy as np
import math
import matplotlib.pyplot as plt
# Initializations
epochs = 15
batch_size = 128
vocabulary_size = 5160
encoder_hidden_size = 256
decoder_hidden_size = 256
embedded_size = 300
latent_size = 100
encoder_layers = 2
decoder_layers = 4
rec_coef = 10
kld_coef = 0.001
lr = 0.0001
# Special word tokens
unk_token = "<unk>"
pad_token = "<pad>"
start_token = "<sos>"
end_token = "<eos>"
# Convert sentence to words
def make_tokens(sentence):
tokenizer = nltk.RegexpTokenizer(r"\w+")
tokenized_sentence = tokenizer.tokenize(sentence)
return tokenized_sentence
# Dataset class with function to prepare dataset
class MyDataset(data.Dataset):
def __init__(self, path, text_field, **kwargs):
fields = [('text', text_field)]
examples = []
with open(path, 'r', encoding='utf-8') as f:
for text in f:
examples.append(data.Example.fromlist([text], fields))
super(MyDataset, self).__init__(examples, fields, **kwargs)
@classmethod
def splits(cls, text_field, train='train', **kwargs):
return super(MyDataset, cls).splits(text_field=text_field, train=train, **kwargs)
# Move to cuda
def to_cuda(x):
if torch.cuda.is_available():
x = x.cuda()
return x
# Encoder class
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.encoder_hidden_size = encoder_hidden_size
self.encoder_layers = encoder_layers
self.lstm = nn.LSTM(input_size=embedded_size, hidden_size=encoder_hidden_size, num_layers=encoder_layers,
batch_first=True, bidirectional=True)
self.dropout = nn.Dropout(p=0.3)
def init_hidden(self, batch_size):
h_init = torch.zeros(2 * self.encoder_layers, batch_size, self.encoder_hidden_size)
c_init = torch.zeros(2 * self.encoder_layers, batch_size, self.encoder_hidden_size)
self.hidden = (to_cuda(h_init), to_cuda(c_init))
def forward(self, x):
batch_size, sentence_size, embedded_size = x.size()
self.init_hidden(batch_size)
_, (self.hidden, _) = self.lstm(x, self.hidden)
self.hidden = self.dropout(self.hidden)
self.hidden = self.hidden.view(self.encoder_layers, 2, batch_size, self.encoder_hidden_size)
self.hidden = self.hidden[-1]
hidden_output = torch.cat(list(self.hidden), dim=1)
return hidden_output
# Decoder class
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.decoder_hidden_size = decoder_hidden_size
self.decoder_layers = decoder_layers
self.latent_size = latent_size
self.lstm = nn.LSTM(input_size=embedded_size + latent_size, hidden_size=decoder_hidden_size,
num_layers=decoder_layers, batch_first=True)
self.fc = nn.Linear(decoder_hidden_size, vocabulary_size)
self.dropout = nn.Dropout(p=0.3)
def init_hidden(self, batch_size):
h_init = torch.zeros(self.decoder_layers, batch_size, self.decoder_hidden_size)
c_init = torch.zeros(self.decoder_layers, batch_size, self.decoder_hidden_size)
self.hidden = (to_cuda(h_init), to_cuda(c_init))
def forward(self, x, z, decoder_hidden=None):
batch_size, sentence_size, embedded_size = x.size()
z = torch.cat([z] * sentence_size, 1).view(batch_size, sentence_size, self.latent_size)
x = torch.cat([x, z], dim=2)
if decoder_hidden is None:
self.init_hidden(batch_size)
else:
self.hidden = decoder_hidden
output, self.hidden = self.lstm(x, self.hidden)
output = self.dropout(output)
output = self.fc(output)
return output, self.hidden
# VAE class
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.embedding = nn.Embedding(vocabulary_size, embedded_size)
self.encoder = Encoder()
self.find_mean = nn.Linear(2 * encoder_hidden_size, latent_size)
self.find_log_variance = nn.Linear(2 * decoder_hidden_size, latent_size)
self.decoder = Decoder()
self.latent_size = latent_size
def forward(self, x, decoder_input, z=None, decoder_hidden=None):
if z is None:
batch_size, sentence_size = x.size()
x = self.embedding(x)
encoder_hidden_output = self.encoder(x)
mean_out = self.find_mean(encoder_hidden_output)
log_variance = self.find_log_variance(encoder_hidden_output)
z = to_cuda(torch.randn([batch_size, self.latent_size]))
z = mean_out + z * torch.exp(0.5 * log_variance)
kld = -0.5 * torch.sum(log_variance - mean_out.pow(2) - log_variance.exp() + 1, 1).mean()
else:
kld = None
decoder_input = self.embedding(decoder_input)
output, decoder_hidden = self.decoder(decoder_input, z, decoder_hidden)
return output, decoder_hidden, kld
train_loss_list = []
val_loss_list = []
train_KL_list = []
val_KL_list = []
save_path = "data/saved_models/vae_model.tar"
if not os.path.exists("data/saved_models"):
os.makedirs("data/saved_models")
os.environ["CUDA_VISIBLE_DEVICES"] = str(1)
text_field = data.Field(init_token=start_token, eos_token=end_token, lower=True, tokenize=make_tokens, batch_first=True)
train_data, val_data = MyDataset.splits(path="", train="train.txt", test="test.txt", text_field=text_field)
text_field.build_vocab(train_data, val_data, max_size=vocabulary_size - 4, vectors='glove.6B.300d')
vocab = text_field.vocab
train_iter, val_iter = data.BucketIterator.splits((train_data, val_data), batch_size=batch_size,
sort_key=lambda x: len(x.text), repeat=False,
device=torch.device('cuda'))
vae = VAE()
weight_matrix = vocab.vectors
vae.embedding.weight.data.copy_(weight_matrix)
vae = to_cuda(vae)
optimizer = torch.optim.Adam(vae.parameters(), lr=lr)
def train_batch(x, decoder_input, step, train=True):
output, _, kld = vae(x, decoder_input, None, None)
output = output.view(-1, vocabulary_size)
x = x.contiguous().view(-1)
rec_loss = F.cross_entropy(output, x)
loss = rec_coef * rec_loss + kld_coef * kld
if train == True:
optimizer.zero_grad()
loss.backward()
optimizer.step()
return rec_loss.item(), kld.item()
def training():
start_epoch = step = 0
for epoch in range(start_epoch, epochs):
vae.train()
train_rec_loss = []
train_kl_loss = []
for batch in train_iter:
x = batch.text
decoder_input = x
rec_loss, kl_loss = train_batch(x, decoder_input, step, train=True)
train_rec_loss.append(rec_loss)
train_kl_loss.append(kl_loss)
step += 1
vae.eval()
valid_rec_loss = []
valid_kl_loss = []
for batch in val_iter:
x = batch.text
decoder_input = x
with torch.autograd.no_grad():
rec_loss, kl_loss = train_batch(x, decoder_input, step, train=False)
valid_rec_loss.append(rec_loss)
valid_kl_loss.append(kl_loss)
train_rec_loss = np.mean(train_rec_loss)
train_kl_loss = np.mean(train_kl_loss)
valid_rec_loss = np.mean(valid_rec_loss)
valid_kl_loss = np.mean(valid_kl_loss)
print("Epoch -> ", epoch)
print("Train data -> Reconstruction loss = ", train_rec_loss, ", KL divergence = ", train_kl_loss)
print("Validation data -> Reconstruction loss = ", valid_rec_loss, ", KL divergence = ", valid_kl_loss)
train_loss_list.append(train_rec_loss)
train_KL_list.append(train_kl_loss)
val_loss_list.append(valid_rec_loss)
val_KL_list.append(valid_kl_loss)
if epoch % 5 == 0:
torch.save({
'epoch': epoch + 1,
'vae_dict': vae.state_dict(),
'optimizer': optimizer.state_dict(),
'step': step
}, save_path)
def generate_sentence(input):
checkpoint = torch.load(save_path)
vae.load_state_dict(checkpoint['vae_dict'])
vae.eval()
del checkpoint
inp = torch.tensor([[vocab.stoi[i] for i in input.split()]])
inp = to_cuda(inp)
output, _, kld = vae(inp, inp, None, None)
probs = F.softmax(output[0], dim=1)
final_out = torch.multinomial(probs, 1)
str = ""
for i in final_out:
next_word = vocab.itos[i.item()]
str += next_word + " "
print(str)
if __name__ == '__main__':
training()
print("Input sentence:")
print("not all movies are wonderful")
print("Output sentence:")
generate_sentence("not all movies are wonderful")
print("Input sentence:")
print("spending some time at seashore can relax us by a great extend")
print("Output sentence:")
generate_sentence("spending some time at seashore can relax us by a great extend")
plt.plot(train_loss_list, '-bx')
plt.plot(val_loss_list, '-rx')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(['Train', 'Validation'])
plt.title('Loss v/s Epochs')
plt.savefig('Plot_Loss')
plt.clf()
plt.plot(train_KL_list, '-bx')
plt.plot(val_KL_list, '-rx')
plt.xlabel('Epoch')
plt.ylabel('KL divergence')
plt.legend(['Train', 'Validation'])
plt.title('KL divergence v/s Epochs')
plt.savefig('Plot_KL')
plt.clf()
plt.plot(train_KL_list, '-bx')
plt.xlabel('Epoch')
plt.ylabel('KL divergence')
plt.title('KL divergence v/s Epochs (On train data)')
plt.savefig('Plot_KL_train')