-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserver.py
264 lines (227 loc) · 10.5 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from werkzeug.serving import run_simple
from flask import Flask, request
import json
import time
from argparse import ArgumentParser
from collections import OrderedDict
import torch
import torch.nn.functional as F
from model import BertModel
from data_utils.tokenization import BertWordPieceTokenizer
from model.gpt_beam_search import SequenceGenerator
from utils import move_to_cuda
import pdb
def sample_sequence(model, tokenizer, length, context=None, temperature=1, temperature_lens=0, top_k=0, top_k_lens=200, top_p=0, punishRate=0.8, device='cuda', sample=False, cut_eos=False):
# pdb.set_trace()
input_tokens = context["input_tokens"]
task_type_ids = context["task_type_ids"] if "task_type_ids" in context and context["task_type_ids"] is not None else None
token_type_ids = context["token_type_ids"] if "token_type_ids" in context and context["token_type_ids"] is not None else None
task_type = task_type_ids[0, -1].item() if task_type_ids is not None else None
token_type = token_type_ids[0, -1].item() if token_type_ids is not None else None
output = input_tokens
past = None
eos_id = tokenizer.sep()
unk = tokenizer.unk()
punishDup = torch.ones(len(tokenizer)).to(input_tokens.device)
with torch.no_grad():
model.eval()
cur_temperature = temperature[0]
cur_temperature_lens = temperature_lens[0]
cur_index = 0
top_k_index = 0
cur_top_k = top_k[0]
cur_top_k_lens = top_k_lens[0]
for i in range(length):
# pdb.set_trace()
logits, _, past = model(input_tokens=input_tokens, token_type_ids=token_type_ids, task_type_ids=task_type_ids, clm=True, past=past)
if i >= cur_temperature_lens and cur_index < len(temperature_lens)-1:
cur_index += 1
cur_temperature = temperature[cur_index]
cur_temperature_lens = temperature_lens[cur_index]
if i < cur_temperature_lens:
logits = logits[:, -1, :] / cur_temperature
else:
logits = logits[:, -1, :]
logits[:, unk] = -float("inf")
if i >= cur_top_k_lens and top_k_index < len(top_k)-1:
top_k_index += 1
cur_top_k = top_k[top_k_index]
cur_top_k_lens = top_k_lens[top_k_index]
if i < cur_top_k_lens:
logits = top_k_logits(logits, k=cur_top_k)
else:
logits = top_k_logits(logits, k=1)
if top_p > 0:
logits = top_p_logits(logits, top_p)
log_probs = F.softmax(logits, dim=-1)
# punish duplicate
log_probs *= punishDup
if sample:
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
next_id = prev[0][0].item()
if cut_eos and next_id == eos_id:
break
punishDup[next_id] *= punishRate
input_tokens = prev
task_type_ids = torch.LongTensor([task_type]).type_as(input_tokens).expand_as(input_tokens) if task_type is not None else None
token_type_ids = torch.LongTensor([token_type]).type_as(input_tokens).expand_as(
input_tokens) if token_type is not None else None
output = torch.cat((output, prev), dim=1)
return output[0, 1:].tolist()
def top_p_logits(logits, top_p, threshold=-float('Inf'), filter_value=-float("inf")):
assert top_p > 0
assert logits.size(0) == 1
# Compute cumulative probabilities of sorted tokens
sorted_logits, sorted_indices = torch.sort(logits[0], descending=True)
cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probabilities > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Back to unsorted indices and set them to -infinity
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[0][indices_to_remove] = filter_value
indices_to_remove = logits[0] < threshold
logits[0][indices_to_remove] = filter_value
return logits
def top_k_logits(logits, k):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
def convert_model(state_dict):
new_dict = {}
for key, value in state_dict.items():
key = key.replace("module.", "")
key = "model." + key
new_dict[key] = value
return new_dict
def convert_text_input(tokenizer, text):
token_cls = [tokenizer.cls()]
texts = text.split("\n")
ids = token_cls
for t in texts:
if len(t.strip())==0:
continue
ids += tokenizer.convert_text_to_ids(t) + [tokenizer.eos()]
ids.pop()
input_ids = torch.LongTensor([ids])
task_type_ids = torch.LongTensor([0]).expand_as(input_ids)
return {
'input_tokens': input_ids,
'task_type_ids': task_type_ids
}
import logging
logger = logging.getLogger()
app = Flask(__name__)
def model_init(app):
ArgsSet = type('ArgsSet',(object,),{})
client = ArgsSet()
parser = ArgumentParser()
parser.add_argument("--model-config", type=str, default="openai-gpt",
help="Path, url or short name of the model")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available()
else "cpu", help="Device (cuda or cpu)")
parser.add_argument("--outlens", type=int, default=30)
parser.add_argument("--beam", type=int, default=1)
parser.add_argument("--gpt-checkpoints", type=str)
parser.add_argument("--port", type=int, default=8866)
args = parser.parse_args()
args.load_model = True
args.fp32_embedding = False
args.fp32_layernorm = False
args.fp32_tokentypes = False
args.layernorm_epsilon = 1e-12
gpt = BertModel(None, args)
state_dict = convert_model(torch.load(args.gpt_checkpoints)['sd'])
gpt.load_state_dict(state_dict)
gpt.to(args.device)
gpt.eval()
tokenizer = BertWordPieceTokenizer("bert-base-chinese", cache_dir="temp_cache_dir")
print(" Load model from {}".format(args.gpt_checkpoints))
client.tokenizer = tokenizer
client.gpt =gpt
client.gpt_beam = SequenceGenerator(gpt, tokenizer, beam_size=args.beam, max_lens=args.outlens)
client.device = args.device
client.port = args.port
client.generator = sample_sequence
return client
client = model_init(app)
@app.route('/split_lm', methods=['POST'])
def split_lm():
content = request.get_json(silent=True, force=True)
error_message = {}
if "data" in content:
length = content.get("length", 30)
is_beam = content.get("beam", -1)
beam_k = content.get("beam-k", 1)
if beam_k > is_beam:
beam_k = is_beam
sample_k = content.get("top-k", [5])
top_k_lens = content.get("top-k-lens", [200])
top_p = content.get("top-p", 1)
task_type = content.get("type", 0)
punishRate = content.get("punishRate", 1)
temperature = content.get("temperature", [1])
temperature_lens = content.get("temperature-lens", [0])
if not isinstance(sample_k, list) or not isinstance(top_k_lens, list):
error_message["error"] = "top-k expect list type, not {}".format(type(sample_k))
return json.dumps(error_message, ensure_ascii=False)
elif len(sample_k) != len(top_k_lens):
error_message["error"] = "top-k lens not equal to top-k-lens"
return json.dumps(error_message, ensure_ascii=False)
if not isinstance(temperature, list) or not isinstance(temperature_lens, list):
error_message["error"] = "temperature expect list type, not {}".format(type(temperature))
return json.dumps(error_message, ensure_ascii=False)
elif len(temperature) != len(temperature_lens):
error_message["error"] = "temperature lens not equal to temperature_lens"
return json.dumps(error_message, ensure_ascii=False)
repeat = content.get("repeat", 1)
response = OrderedDict()
begin_time = time.time()
logger.error("user message...")
text = content["data"]
logger.error(text)
with torch.no_grad():
response["user-query"] = text
content = convert_text_input(client.tokenizer, text)
ids_length = content["input_tokens"].size(1)
context = move_to_cuda(content, client.device)
reply = []
for i in range(repeat):
out = client.generator(client.gpt, client.tokenizer, length, context=context, temperature=temperature, temperature_lens=temperature_lens, top_k=sample_k, top_k_lens=top_k_lens, top_p=top_p, punishRate=punishRate, device=client.device, sample=True)
out = out[ids_length-1:]
out = client.tokenizer.convert_ids_to_text(out)
out = out.replace("##", "")
reply.append(out)
if len(reply) == 1:
reply = reply[0]
beam_out = None
if is_beam != -1:
client.gpt_beam.beam_size = is_beam
client.gpt_beam.max_lens = length
beam_out = client.gpt_beam.generate_response(context, temperature=1, temperature_lens=0, beam_k=beam_k)
response["sampling-response"] = reply
if beam_out is not None:
if not isinstance(beam_out[0], list):
response["beam-response"] = client.tokenizer.convert_ids_to_text(beam_out).replace("##", "")
else:
response["beam-response"] = [client.tokenizer.convert_ids_to_text(r).replace("##", "") for r in beam_out]
interval = time.time() - begin_time
logger.error("elapsed time = %s", interval)
response["interval"] = interval
return json.dumps(response, ensure_ascii=False)
if __name__ == '__main__':
print("Serving start on {} .".format(client.port))
# app.run(host='0.0.0.0', port=client.args.port)
run_simple('127.0.0.1', client.port, app)