forked from VectorCamp/vectorscan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcapscan.cc
688 lines (590 loc) · 22.9 KB
/
pcapscan.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*
* Copyright (c) 2015-2016, Intel Corporation
* Copyright (c) 2024, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Hyperscan example program 2: pcapscan
*
* This example is a very simple packet scanning benchmark. It scans a given
* PCAP file full of network traffic against a group of regular expressions and
* returns some coarse performance measurements. This example provides a quick
* way to examine the performance achievable on a particular combination of
* platform, pattern set and input data.
*
* Build instructions:
*
* g++ -std=c++11 -O2 -o pcapscan pcapscan.cc $(pkg-config --cflags --libs libhs) -lpcap
*
* Usage:
*
* ./pcapscan [-n repeats] <pattern file> <pcap file>
*
* We recommend the use of a utility like 'taskset' on multiprocessor hosts to
* pin execution to a single processor: this will remove processor migration
* by the scheduler as a source of noise in the results.
*
*/
#include <cstring>
#include <chrono>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <string>
#include <unordered_map>
#include <vector>
#include <unistd.h>
// We use the BSD primitives throughout as they exist on both BSD and Linux.
#define __FAVOR_BSD
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#ifdef __NetBSD__
#include <net/ethertypes.h>
#include <net/if_ether.h>
#else
#include <net/ethernet.h>
#endif /* __NetBSD__ */
#include <arpa/inet.h>
#include <pcap.h>
#include <hs.h>
using std::cerr;
using std::cout;
using std::endl;
using std::ifstream;
using std::string;
using std::unordered_map;
using std::vector;
// Key for identifying a stream in our pcap input data, using data from its IP
// headers.
struct FiveTuple {
unsigned int protocol;
unsigned int srcAddr;
unsigned int srcPort;
unsigned int dstAddr;
unsigned int dstPort;
// Construct a FiveTuple from a TCP or UDP packet.
explicit FiveTuple(const struct ip *iphdr) {
// IP fields
protocol = iphdr->ip_p;
srcAddr = iphdr->ip_src.s_addr;
dstAddr = iphdr->ip_dst.s_addr;
// UDP/TCP ports
const char * iphdr_base = reinterpret_cast<const char *>(iphdr);
const struct udphdr *uh = reinterpret_cast<const struct udphdr *>(iphdr_base + (iphdr->ip_hl * 4));
srcPort = uh->uh_sport;
dstPort = uh->uh_dport;
}
bool operator==(const FiveTuple &a) const {
return protocol == a.protocol && srcAddr == a.srcAddr &&
srcPort == a.srcPort && dstAddr == a.dstAddr &&
dstPort == a.dstPort;
}
};
// A *very* simple hash function, used when we create an unordered_map of
// FiveTuple objects.
struct FiveTupleHash {
size_t operator()(const FiveTuple &x) const {
return x.srcAddr ^ x.dstAddr ^ x.protocol ^ x.srcPort ^ x.dstPort;
}
};
// Helper function. See end of file.
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
unsigned int *length);
// Match event handler: called every time Hyperscan finds a match.
static
int onMatch(unsigned int id, unsigned long long from, unsigned long long to,
unsigned int flags, void *ctx) {
// Our context points to a size_t storing the match count
size_t *matches = static_cast<size_t *>(ctx);
(*matches)++;
return 0; // continue matching
}
// Simple timing class
class Clock {
public:
void start() {
time_start = std::chrono::system_clock::now();
}
void stop() {
time_end = std::chrono::system_clock::now();
}
double seconds() const {
std::chrono::duration<double> delta = time_end - time_start;
return delta.count();
}
private:
std::chrono::time_point<std::chrono::system_clock> time_start, time_end;
};
// Class wrapping all state associated with the benchmark
class Benchmark {
private:
// Packet data to be scanned.
vector<string> packets;
// The stream ID to which each packet belongs
vector<size_t> stream_ids;
// Map used to construct stream_ids
unordered_map<FiveTuple, size_t, FiveTupleHash> stream_map;
// Hyperscan compiled database (streaming mode)
const hs_database_t *db_streaming;
// Hyperscan compiled database (block mode)
const hs_database_t *db_block;
// Hyperscan temporary scratch space (used in both modes)
hs_scratch_t *scratch;
// Vector of Hyperscan stream state (used in streaming mode)
vector<hs_stream_t *> streams;
// Count of matches found during scanning
size_t matchCount;
public:
Benchmark(const hs_database_t *streaming, const hs_database_t *block)
: db_streaming(streaming), db_block(block), scratch(nullptr),
matchCount(0) {
// Allocate enough scratch space to handle either streaming or block
// mode, so we only need the one scratch region.
hs_error_t err = hs_alloc_scratch(db_streaming, &scratch);
if (err != HS_SUCCESS) {
cerr << "ERROR: could not allocate scratch space. Exiting." << endl;
exit(-1);
}
// This second call will increase the scratch size if more is required
// for block mode.
err = hs_alloc_scratch(db_block, &scratch);
if (err != HS_SUCCESS) {
cerr << "ERROR: could not allocate scratch space. Exiting." << endl;
exit(-1);
}
}
~Benchmark() {
// Free scratch region
hs_free_scratch(scratch);
}
// Read a set of streams from a pcap file
bool readStreams(const char *pcapFile) {
// Open PCAP file for input
char errbuf[PCAP_ERRBUF_SIZE];
pcap_t *pcapHandle = pcap_open_offline(pcapFile, errbuf);
if (pcapHandle == nullptr) {
cerr << "ERROR: Unable to open pcap file \"" << pcapFile
<< "\": " << errbuf << endl;
return false;
}
struct pcap_pkthdr pktHeader;
const unsigned char *pktData;
while ((pktData = pcap_next(pcapHandle, &pktHeader)) != nullptr) {
unsigned int offset = 0, length = 0;
if (!payloadOffset(pktData, &offset, &length)) {
continue;
}
// Valid TCP or UDP packet
const struct ip *iphdr = reinterpret_cast<const struct ip *>(pktData + sizeof(struct ether_header));
const char *payload = reinterpret_cast<const char *>(pktData) + offset;
size_t id = stream_map.insert(std::make_pair(FiveTuple(iphdr),
stream_map.size())).first->second;
packets.push_back(string(payload, length));
stream_ids.push_back(id);
}
pcap_close(pcapHandle);
return !packets.empty();
}
// Return the number of bytes scanned
size_t bytes() const {
size_t sum = 0;
auto packs = [](size_t z, const string &packet) { return z + packet.size(); };
sum += std::accumulate(packets.begin(), packets.end(), 0, packs);
return sum;
}
// Return the number of matches found.
size_t matches() const {
return matchCount;
}
// Clear the number of matches found.
void clearMatches() {
matchCount = 0;
}
// Open a Hyperscan stream for each stream in stream_ids
void openStreams() {
streams.resize(stream_map.size());
for (auto &stream : streams) {
hs_error_t err = hs_open_stream(db_streaming, 0, &stream);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to open stream. Exiting." << endl;
exit(-1);
}
}
}
// Close all open Hyperscan streams (potentially generating any
// end-anchored matches)
void closeStreams() {
for (const auto &stream : streams) {
hs_error_t err = hs_close_stream(stream, scratch, onMatch,
&matchCount);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to close stream. Exiting." << endl;
exit(-1);
}
}
}
// Scan each packet (in the ordering given in the PCAP file) through
// Hyperscan using the streaming interface.
void scanStreams() {
for (size_t i = 0; i != packets.size(); ++i) {
const std::string &pkt = packets[i];
hs_error_t err = hs_scan_stream(streams[stream_ids[i]],
pkt.c_str(), pkt.length(), 0,
scratch, onMatch, &matchCount);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to scan packet. Exiting." << endl;
exit(-1);
}
}
}
// Scan each packet (in the ordering given in the PCAP file) through
// Hyperscan using the block-mode interface.
void scanBlock() {
for (size_t i = 0; i != packets.size(); ++i) {
const std::string &pkt = packets[i];
hs_error_t err = hs_scan(db_block, pkt.c_str(), pkt.length(), 0,
scratch, onMatch, &matchCount);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to scan packet. Exiting." << endl;
exit(-1);
}
}
}
// Display some information about the compiled database and scanned data.
void displayStats() {
size_t numPackets = packets.size();
size_t numStreams = stream_map.size();
size_t numBytes = bytes();
hs_error_t err;
cout << numPackets << " packets in " << numStreams
<< " streams, totalling " << numBytes << " bytes." << endl;
cout << "Average packet length: " << numBytes / numPackets << " bytes."
<< endl;
cout << "Average stream length: " << numBytes / numStreams << " bytes."
<< endl;
cout << endl;
size_t dbStream_size = 0;
err = hs_database_size(db_streaming, &dbStream_size);
if (err == HS_SUCCESS) {
cout << "Streaming mode Hyperscan database size : "
<< dbStream_size << " bytes." << endl;
} else {
cout << "Error getting streaming mode Hyperscan database size"
<< endl;
}
size_t dbBlock_size = 0;
err = hs_database_size(db_block, &dbBlock_size);
if (err == HS_SUCCESS) {
cout << "Block mode Hyperscan database size : "
<< dbBlock_size << " bytes." << endl;
} else {
cout << "Error getting block mode Hyperscan database size"
<< endl;
}
size_t stream_size = 0;
err = hs_stream_size(db_streaming, &stream_size);
if (err == HS_SUCCESS) {
cout << "Streaming mode Hyperscan stream state size: "
<< stream_size << " bytes (per stream)." << endl;
} else {
cout << "Error getting stream state size" << endl;
}
}
};
// helper function - see end of file
static void parseFile(const char *filename, vector<string> &patterns,
vector<unsigned> &flags, vector<unsigned> &ids);
static hs_database_t *buildDatabase(const vector<const char *> &expressions,
const vector<unsigned> flags,
const vector<unsigned> ids,
unsigned int mode) {
hs_database_t *db;
hs_compile_error_t *compileErr;
hs_error_t err;
Clock clock;
clock.start();
err = hs_compile_multi(expressions.data(), flags.data(), ids.data(),
expressions.size(), mode, nullptr, &db, &compileErr);
clock.stop();
if (err != HS_SUCCESS) {
if (compileErr->expression < 0) {
// The error does not refer to a particular expression.
cerr << "ERROR: " << compileErr->message << endl;
} else {
cerr << "ERROR: Pattern '" << expressions[compileErr->expression]
<< "' failed compilation with error: " << compileErr->message
<< endl;
}
// As the compileErr pointer points to dynamically allocated memory, if
// we get an error, we must be sure to release it. This is not
// necessary when no error is detected.
hs_free_compile_error(compileErr);
exit(-1);
}
cout << "Hyperscan " << (mode == HS_MODE_STREAM ? "streaming" : "block")
<< " mode database compiled in " << clock.seconds() << " seconds."
<< endl;
return db;
}
/**
* This function will read in the file with the specified name, with an
* expression per line, ignoring lines starting with '#' and build a Hyperscan
* database for it.
*/
static void databasesFromFile(const char *filename,
hs_database_t **db_streaming,
hs_database_t **db_block) {
// hs_compile_multi requires three parallel arrays containing the patterns,
// flags and ids that we want to work with. To achieve this we use
// vectors and new entries onto each for each valid line of input from
// the pattern file.
vector<string> patterns;
vector<unsigned> flags;
vector<unsigned> ids;
// do the actual file reading and string handling
parseFile(filename, patterns, flags, ids);
// Turn our vector of strings into a vector of char*'s to pass in to
// hs_compile_multi. (This is just using the vector of strings as dynamic
// storage.)
vector<const char*> cstrPatterns;
for (const auto &pattern : patterns) {
// cppcheck-suppress useStlAlgorithm
cstrPatterns.push_back(pattern.c_str()); //NOLINT (performance-inefficient-vector-operation)
}
cout << "Compiling Hyperscan databases with " << patterns.size()
<< " patterns." << endl;
*db_streaming = buildDatabase(cstrPatterns, flags, ids, HS_MODE_STREAM);
*db_block = buildDatabase(cstrPatterns, flags, ids, HS_MODE_BLOCK);
}
static void usage(const char *prog) {
cerr << "Usage: " << prog << " [-n repeats] <pattern file> <pcap file>" << endl;
}
// Main entry point.
int main(int argc, char **argv) {
unsigned int repeatCount = 1;
// Process command line arguments.
int opt;
while ((opt = getopt(argc, argv, "n:")) != -1) {
switch (opt) {
case 'n':
repeatCount = atoi(optarg);
break;
default:
usage(argv[0]);
exit(-1);
}
}
if (argc - optind != 2) {
usage(argv[0]);
exit(-1);
}
const char *patternFile = argv[optind];
const char *pcapFile = argv[optind + 1];
// Read our pattern set in and build Hyperscan databases from it.
cout << "Pattern file: " << patternFile << endl;
hs_database_t *db_streaming, *db_block;
databasesFromFile(patternFile, &db_streaming, &db_block);
// Read our input PCAP file in
Benchmark bench(db_streaming, db_block);
cout << "PCAP input file: " << pcapFile << endl;
if (!bench.readStreams(pcapFile)) {
cerr << "Unable to read packets from PCAP file. Exiting." << endl;
exit(-1);
}
if (repeatCount != 1) {
cout << "Repeating PCAP scan " << repeatCount << " times." << endl;
}
bench.displayStats();
Clock clock;
// Streaming mode scans.
double secsStreamingScan = 0.0, secsStreamingOpenClose = 0.0;
for (unsigned int i = 0; i < repeatCount; i++) {
// Open streams.
clock.start();
bench.openStreams();
clock.stop();
secsStreamingOpenClose += clock.seconds();
// Scan all our packets in streaming mode.
clock.start();
bench.scanStreams();
clock.stop();
secsStreamingScan += clock.seconds();
// Close streams.
clock.start();
bench.closeStreams();
clock.stop();
secsStreamingOpenClose += clock.seconds();
}
// Collect data from streaming mode scans.
size_t bytes = bench.bytes();
double tputStreamScanning = (bytes * 8 * repeatCount) / secsStreamingScan;
double tputStreamOverhead = (bytes * 8 * repeatCount) / (secsStreamingScan + secsStreamingOpenClose);
size_t matchesStream = bench.matches();
double matchRateStream = matchesStream / ((bytes * repeatCount) / 1024.0); // matches per kilobyte
// Scan all our packets in block mode.
bench.clearMatches();
clock.start();
for (unsigned int i = 0; i < repeatCount; i++) {
bench.scanBlock();
}
clock.stop();
double secsScanBlock = clock.seconds();
// Collect data from block mode scans.
double tputBlockScanning = (bytes * 8 * repeatCount) / secsScanBlock;
size_t matchesBlock = bench.matches();
double matchRateBlock = matchesBlock / ((bytes * repeatCount) / 1024.0); // matches per kilobyte
cout << endl << "Streaming mode:" << endl << endl;
cout << " Total matches: " << matchesStream << endl;
cout << std::fixed << std::setprecision(4);
cout << " Match rate: " << matchRateStream << " matches/kilobyte" << endl;
cout << std::fixed << std::setprecision(2);
cout << " Throughput (with stream overhead): "
<< tputStreamOverhead/1000000 << " megabits/sec" << endl;
cout << " Throughput (no stream overhead): "
<< tputStreamScanning/1000000 << " megabits/sec" << endl;
cout << endl << "Block mode:" << endl << endl;
cout << " Total matches: " << matchesBlock << endl;
cout << std::fixed << std::setprecision(4);
cout << " Match rate: " << matchRateBlock << " matches/kilobyte" << endl;
cout << std::fixed << std::setprecision(2);
cout << " Throughput: "
<< tputBlockScanning/1000000 << " megabits/sec" << endl;
cout << endl;
if (bytes < (2*1024*1024)) {
cout << endl << "WARNING: Input PCAP file is less than 2MB in size." << endl
<< "This test may have been too short to calculate accurate results." << endl;
}
// Close Hyperscan databases
hs_free_database(db_streaming);
hs_free_database(db_block);
return 0;
}
/**
* Helper function to locate the offset of the first byte of the payload in the
* given ethernet frame. Offset into the packet, and the length of the payload
* are returned in the arguments @a offset and @a length.
*/
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
unsigned int *length) {
const ip *iph = reinterpret_cast<const ip *>(pkt_data + sizeof(ether_header));
const char *iph_base = reinterpret_cast<const char *>(iph);
const tcphdr *th = nullptr;
// Ignore packets that aren't IPv4
if (iph->ip_v != 4) {
return false;
}
// Ignore fragmented packets.
if (iph->ip_off & htons(IP_MF|IP_OFFMASK)) {
return false;
}
// IP header length, and transport header length.
unsigned int ihlen = iph->ip_hl * 4;
unsigned int thlen = 0;
switch (iph->ip_p) {
case IPPROTO_TCP:
th = reinterpret_cast<const tcphdr *>(iph_base + ihlen);
thlen = th->th_off * 4;
break;
case IPPROTO_UDP:
thlen = sizeof(udphdr);
break;
default:
return false;
}
*offset = sizeof(ether_header) + ihlen + thlen;
*length = sizeof(ether_header) + ntohs(iph->ip_len) - *offset;
return *length != 0;
}
static unsigned parseFlags(const string &flagsStr) {
unsigned flags = 0;
for (const auto &c : flagsStr) {
switch (c) {
case 'i':
flags |= HS_FLAG_CASELESS; break;
case 'm':
flags |= HS_FLAG_MULTILINE; break;
case 's':
flags |= HS_FLAG_DOTALL; break;
case 'H':
flags |= HS_FLAG_SINGLEMATCH; break;
case 'V':
flags |= HS_FLAG_ALLOWEMPTY; break;
case '8':
flags |= HS_FLAG_UTF8; break;
case 'W':
flags |= HS_FLAG_UCP; break;
case '\r': // stray carriage-return
break;
default:
cerr << "Unsupported flag \'" << c << "\'" << endl;
exit(-1);
}
}
return flags;
}
static void parseFile(const char *filename, vector<string> &patterns,
vector<unsigned> &flags, vector<unsigned> &ids) {
ifstream inFile(filename);
if (!inFile.good()) {
cerr << "ERROR: Can't open pattern file \"" << filename << "\"" << endl;
exit(-1);
}
for (unsigned i = 1; !inFile.eof(); ++i) {
string line;
getline(inFile, line);
// if line is empty, or a comment, we can skip it
if (line.empty() || line[0] == '#') {
continue;
}
// otherwise, it should be ID:PCRE, e.g.
// 10001:/foobar/is
size_t colonIdx = line.find_first_of(':');
if (colonIdx == string::npos) {
cerr << "ERROR: Could not parse line " << i << endl;
exit(-1);
}
// we should have an unsigned int as an ID, before the colon
unsigned id = std::stoi(line.substr(0, colonIdx).c_str());
// rest of the expression is the PCRE
const string expr(line.substr(colonIdx + 1));
size_t flagsStart = expr.find_last_of('/');
if (flagsStart == string::npos) {
cerr << "ERROR: no trailing '/' char" << endl;
exit(-1);
}
string pcre(expr.substr(1, flagsStart - 1));
string flagsStr(expr.substr(flagsStart + 1, expr.size() - flagsStart));
unsigned flag = parseFlags(flagsStr);
patterns.push_back(pcre);
flags.push_back(flag);
ids.push_back(id);
}
}