forked from YunYang1994/TensorFlow2.0-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGradientTape.py
57 lines (45 loc) · 1.54 KB
/
GradientTape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : GradientTape.py
# Author : YunYang1994
# Created date: 2019-03-08 13:50:49
# Description :
#
#================================================================
import tensorflow as tf
# tf.GradientTape is an API for automatic differentiation - computing the gradient of
# a computation with respect to its input variables. Tensorflow "records" all operations
# executed inside the context of a tf.GradientTape onto a "tape"
## Automatic differentiation
x = tf.constant(3.0)
with tf.GradientTape(persistent=True) as t:
t.watch(x) # Ensures that `tensor` is being traced by this tape.
y = x * x
z = y * y
dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3)
dy_dx = t.gradient(y, x) # 6.0
print("dz/dx=", dz_dx.numpy())
print("dy/dx=", dy_dx.numpy())
del t # Drop the reference to the tape
## Recording control flow
# Because tapes record operations as they are executed,
# Python control flow (using ifs and whiles for example) is naturally handled
def f(x, y):
output = 1.0
for i in range(y):
if i > 1 and i < 5:
output = tf.multiply(output, x)
return output
def grad(x, y):
with tf.GradientTape() as t:
t.watch(x)
out = f(x, y)
return t.gradient(out, x)
x = tf.convert_to_tensor(2.0)
assert grad(x, 6).numpy() == 12.0
assert grad(x, 5).numpy() == 12.0
assert grad(x, 4).numpy() == 4.0