-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlora.py
383 lines (314 loc) · 11.8 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright © 2023 Apple Inc.
import argparse
import json
import math
import time
from pathlib import Path
from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from sentencepiece import SentencePieceProcessor
from models import LoRALinear, Model, ModelArgs
def build_parser():
parser = argparse.ArgumentParser(description="LoRA finetuning with Llama or Mistral")
parser.add_argument(
"--model",
required=True,
help="A path to the model files containing the tokenizer, weights, config.",
)
# Generation args
parser.add_argument("--num-tokens", "-n", type=int, default=100, help="How many tokens to generate")
parser.add_argument("--write-every", type=int, default=1, help="After how many tokens to detokenize")
parser.add_argument("--temp", type=float, default=0.8, help="The sampling temperature")
parser.add_argument(
"--prompt",
"-p",
type=str,
help="The prompt for generation",
default=None,
)
# Training args
parser.add_argument(
"--train",
action="store_true",
help="Do training",
)
parser.add_argument(
"--data",
type=str,
default="data/",
help="Directory with {train, valid, test}.jsonl files",
)
parser.add_argument(
"--lora-layers",
type=int,
default=16,
help="Number of layers to fine-tune",
)
parser.add_argument("--batch-size", type=int, default=4, help="Minibatch size.")
parser.add_argument("--iters", type=int, default=1000, help="Iterations to train for.")
parser.add_argument(
"--val-batches",
type=int,
default=25,
help="Number of validation batches, -1 uses the entire validation set.",
)
parser.add_argument("--learning-rate", type=float, default=1e-5, help="Adam learning rate.")
parser.add_argument(
"--steps-per-report",
type=int,
default=10,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps-per-eval",
type=int,
default=200,
help="Number of training steps between validations.",
)
parser.add_argument(
"--resume-adapter-file",
type=str,
default=None,
help="Load path to resume training with the given adapter weights.",
)
parser.add_argument(
"--adapter-file",
type=str,
default="adapters.npz",
help="Save/load path for the trained adapter weights.",
)
parser.add_argument(
"--test",
action="store_true",
help="Evaluate on the test set after training",
)
parser.add_argument(
"--test-batches",
type=int,
default=500,
help="Number of test set batches, -1 uses the entire test set.",
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
return parser
class Tokenizer:
def __init__(self, model_path: str):
assert Path(model_path).exists(), model_path
self._model = SentencePieceProcessor(model_file=model_path)
self._sep = "▁"
assert self._model.vocab_size() == self._model.get_piece_size()
def encode(self, s: str, eos: bool = False) -> List[int]:
toks = [self._model.bos_id(), *self._model.encode(s)]
if eos:
toks.append(self.eos_id)
return toks
@property
def eos_id(self) -> int:
return self._model.eos_id()
def decode(self, t: List[int]) -> str:
out = self._model.decode(t)
if t and self._model.id_to_piece(t[0])[0] == self._sep:
return " " + out
return out
@property
def vocab_size(self) -> int:
return self._model.vocab_size()
class Dataset:
"""
Light-weight wrapper to hold lines from a jsonl file
"""
def __init__(self, path: Path, key: str = "text"):
if not path.exists():
self._data = None
else:
with open(path, "r") as fid:
self._data = [json.loads(l) for l in fid]
self._key = key
def __getitem__(self, idx: int):
return self._data[idx][self._key]
def __len__(self):
return len(self._data)
def load(args):
names = ("train", "valid", "test")
train, valid, test = (Dataset(Path(args.data) / f"{n}.jsonl") for n in names)
if args.train and len(train) == 0:
raise ValueError("Training set not found or empty. Must provide training set for fine-tuning.")
if args.train and len(valid) == 0:
raise ValueError("Validation set not found or empty. Must provide validation set for fine-tuning.")
if args.test and len(test) == 0:
raise ValueError("Test set not found or empty. Must provide test set for evaluation.")
return train, valid, test
def loss(model, inputs, targets, lengths):
# Run model on inputs
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
# Mask padding tokens
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
# Calculate the loss
ce = nn.losses.cross_entropy(logits, targets) * length_mask
ntoks = length_mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(dset, tokenizer, batch_size, train=False):
# Shuffle indices
while True:
indices = np.arange(len(dset))
if train:
indices = np.random.permutation(indices)
# Collect batches from dataset
for i in range(0, len(indices) - batch_size + 1, batch_size):
# Encode batch
batch = [tokenizer.encode(dset[indices[i + j]], eos=True) for j in range(batch_size)]
lengths = [len(x) for x in batch]
# Check if any sequence is longer than 2048 tokens
if max(lengths) > 2048:
print(
"[WARNING] Some sequences are longer than 2048 tokens. "
"Consider pre-splitting your data to save memory."
)
# Pad to the max length
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
for j in range(batch_size):
batch_arr[j, : lengths[j]] = batch[j]
batch = mx.array(batch_arr)
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
if not train:
break
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
all_losses = []
ntokens = 0
for it, batch in zip(
range(num_batches),
iterate_batches(dataset, tokenizer, batch_size),
):
losses, toks = loss(model, *batch)
all_losses.append((losses * toks).item())
ntokens += toks.item()
return np.sum(all_losses) / ntokens
def train(model, train_set, val_set, optimizer, loss, tokenizer, args):
# Create value and grad function for loss
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = []
n_tokens = 0
# Main training loop
start = time.perf_counter()
for it, batch in zip(
range(args.iters),
iterate_batches(train_set, tokenizer, args.batch_size, train=True),
):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# Model update
optimizer.update(model, grad)
mx.eval(model.parameters(), optimizer.state, lvalue)
# Record loss
losses.append(lvalue.item())
n_tokens += toks.item()
# Report training loss if needed
if (it + 1) % args.steps_per_report == 0:
train_loss = np.mean(losses)
stop = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
)
losses = []
n_tokens = 0
start = time.perf_counter()
# Report validation loss if needed
if it == 0 or (it + 1) % args.steps_per_eval == 0:
stop = time.perf_counter()
val_loss = evaluate(model, val_set, loss, tokenizer, args.batch_size, args.val_batches)
print(f"Iter {it + 1}: " f"Val loss {val_loss:.3f}, " f"Val took {(time.perf_counter() - stop):.3f}s")
start = time.perf_counter()
def generate(model, prompt, tokenizer, args):
print(args.prompt, end="", flush=True)
prompt = mx.array(tokenizer.encode(args.prompt))
def generate_step():
temp = args.temp
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
logits, cache = model(prompt[None])
y = sample(logits[:, -1, :])
yield y
while True:
logits, cache = model(y[:, None], cache)
y = sample(logits.squeeze(1))
yield y
tokens = []
for token, _ in zip(generate_step(), range(args.num_tokens)):
tokens.append(token)
if (len(tokens) % 10) == 0:
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, end="", flush=True)
tokens = []
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, flush=True)
def load_model(folder: str, dtype=mx.float16):
model_path = Path(folder)
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
with open(model_path / "params.json", "r") as f:
config = json.loads(f.read())
if config.get("vocab_size", -1) < 0:
config["vocab_size"] = tokenizer.vocab_size
model_args = ModelArgs(**config)
weights = mx.load(str(model_path / "weights.npz"))
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: p.astype(dtype), weights)
model = Model(model_args)
model.update(weights)
return model, tokenizer
if __name__ == "__main__":
parser = build_parser()
args = parser.parse_args()
np.random.seed(args.seed)
print("Loading pretrained model")
model, tokenizer = load_model(args.model)
# Freeze all layers other than LORA linears
model.freeze()
for l in model.layers[-args.lora_layers :]:
l.attention.wq = LoRALinear.from_linear(l.attention.wq)
l.attention.wv = LoRALinear.from_linear(l.attention.wv)
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
print(f"Total parameters {p:.3f}M")
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
print(f"Trainable parameters {p:.3f}M")
print("Loading datasets")
train_set, valid_set, test_set = load(args)
# Resume training the given adapters.
if args.resume_adapter_file is not None:
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
model.load_weights(args.resume_adapter_file)
if args.train:
print("Training")
opt = optim.Adam(learning_rate=args.learning_rate)
# Train model
train(model, train_set, valid_set, opt, loss, tokenizer, args)
# Save adapter weights
mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters())))
# Load the LoRA adapter weights which we assume should exist by this point
model.load_weights(args.adapter_file)
if args.test:
print("Testing")
test_loss = evaluate(
model,
test_set,
loss,
tokenizer,
args.batch_size,
num_batches=args.test_batches,
)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
if args.prompt is not None:
print("Generating")
generate(model, args.prompt, tokenizer, args)