forked from arendst/Tasmota
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxsns_dht.ino
268 lines (235 loc) · 7.25 KB
/
xsns_dht.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
xsns_dht.ino - DHTxx and AM23xx temperature and humidity sensor support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT
/*********************************************************************************************\
* DHT11, DHT21 (AM2301), DHT22 (AM2302, AM2321) - Temperature and Humidy
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
* Source: Adafruit Industries https://github.com/adafruit/DHT-sensor-library
\*********************************************************************************************/
#define DHT_MAX_SENSORS 3
#define MIN_INTERVAL 2000
uint32_t dht_maxcycles;
uint8_t dht_data[5];
byte dht_sensors = 0;
struct DHTSTRUCT {
byte pin;
byte type;
char stype[10];
uint32_t lastreadtime;
bool lastresult;
float t;
float h = 0;
} dht[DHT_MAX_SENSORS];
void dht_readPrep()
{
for (byte i = 0; i < dht_sensors; i++) {
digitalWrite(dht[i].pin, HIGH);
}
}
uint32_t dht_expectPulse(byte sensor, bool level)
{
uint32_t count = 0;
while (digitalRead(dht[sensor].pin) == level) {
if (count++ >= dht_maxcycles) {
return 0;
}
}
return count;
}
boolean dht_read(byte sensor)
{
char log[LOGSZ];
uint32_t cycles[80];
uint32_t currenttime = millis();
if ((currenttime - dht[sensor].lastreadtime) < 2000) {
return dht[sensor].lastresult;
}
dht[sensor].lastreadtime = currenttime;
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
// digitalWrite(dht[sensor].pin, HIGH);
// delay(250);
pinMode(dht[sensor].pin, OUTPUT);
digitalWrite(dht[sensor].pin, LOW);
delay(20);
noInterrupts();
digitalWrite(dht[sensor].pin, HIGH);
delayMicroseconds(40);
pinMode(dht[sensor].pin, INPUT_PULLUP);
delayMicroseconds(10);
if (0 == dht_expectPulse(sensor, LOW)) {
addLog_P(LOG_LEVEL_DEBUG, PSTR("DHT: Timeout waiting for start signal low pulse"));
dht[sensor].lastresult = false;
return dht[sensor].lastresult;
}
if (0 == dht_expectPulse(sensor, HIGH)) {
addLog_P(LOG_LEVEL_DEBUG, PSTR("DHT: Timeout waiting for start signal high pulse"));
dht[sensor].lastresult = false;
return dht[sensor].lastresult;
}
for (int i = 0; i < 80; i += 2) {
cycles[i] = dht_expectPulse(sensor, LOW);
cycles[i+1] = dht_expectPulse(sensor, HIGH);
}
interrupts();
for (int i=0; i<40; ++i) {
uint32_t lowCycles = cycles[2*i];
uint32_t highCycles = cycles[2*i+1];
if ((0 == lowCycles) || (0 == highCycles)) {
addLog_P(LOG_LEVEL_DEBUG, PSTR("DHT: Timeout waiting for pulse"));
dht[sensor].lastresult = false;
return dht[sensor].lastresult;
}
dht_data[i/8] <<= 1;
if (highCycles > lowCycles) {
dht_data[i/8] |= 1;
}
}
snprintf_P(log, sizeof(log), PSTR("DHT: Received %02X, %02X, %02X, %02X, %02X =? %02X"),
dht_data[0], dht_data[1], dht_data[2], dht_data[3], dht_data[4], (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF);
addLog(LOG_LEVEL_DEBUG, log);
if (dht_data[4] == ((dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF)) {
dht[sensor].lastresult = true;
} else {
addLog_P(LOG_LEVEL_DEBUG, PSTR("DHT: Checksum failure"));
dht[sensor].lastresult = false;
}
return dht[sensor].lastresult;
}
boolean dht_readTempHum(byte sensor, float &t, float &h)
{
if (!dht[sensor].h) {
t = NAN;
h = NAN;
} else {
t = dht[sensor].t;
h = dht[sensor].h;
}
if (dht_read(sensor)) {
switch (dht[sensor].type) {
case GPIO_DHT11:
h = dht_data[0];
t = convertTemp(dht_data[2]);
break;
case GPIO_DHT22:
case GPIO_DHT21:
h = dht_data[0];
h *= 256;
h += dht_data[1];
h *= 0.1;
t = dht_data[2] & 0x7F;
t *= 256;
t += dht_data[3];
t *= 0.1;
if (dht_data[2] & 0x80) {
t *= -1;
}
t = convertTemp(t);
break;
}
if (!isnan(t)) {
dht[sensor].t = t;
}
if (!isnan(h)) {
dht[sensor].h = h;
}
}
return (!isnan(t) && !isnan(h));
}
boolean dht_setup(byte pin, byte type)
{
boolean success = false;
if (dht_sensors < DHT_MAX_SENSORS) {
dht[dht_sensors].pin = pin;
dht[dht_sensors].type = type;
dht_sensors++;
success = true;
}
return success;
}
void dht_init()
{
char log[LOGSZ];
dht_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for reading pulses from DHT sensor.
for (byte i = 0; i < dht_sensors; i++) {
pinMode(dht[i].pin, INPUT_PULLUP);
dht[i].lastreadtime = -MIN_INTERVAL;
switch (dht[i].type) {
case GPIO_DHT11:
strcpy_P(dht[i].stype, PSTR("DHT11"));
break;
case GPIO_DHT21:
strcpy_P(dht[i].stype, PSTR("AM2301"));
break;
case GPIO_DHT22:
strcpy_P(dht[i].stype, PSTR("DHT22"));
}
if (dht_sensors > 1) {
snprintf_P(dht[i].stype, sizeof(dht[i].stype), PSTR("%s-%02d"), dht[i].stype, dht[i].pin);
}
}
snprintf_P(log, sizeof(log), PSTR("DHT: Max clock cycles %d"), dht_maxcycles);
addLog(LOG_LEVEL_DEBUG, log);
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
void dht_mqttPresent(char* svalue, uint16_t ssvalue, uint8_t* djson)
{
char stemp1[10];
char stemp2[10];
float t;
float h;
byte dsxflg = 0;
for (byte i = 0; i < dht_sensors; i++) {
if (dht_readTempHum(i, t, h)) { // Read temperature
dtostrf(t, 1, sysCfg.flag.temperature_resolution, stemp1);
dtostrf(h, 1, sysCfg.flag.humidity_resolution, stemp2);
// snprintf_P(svalue, ssvalue, PSTR("%s, \"%s\":{\"Temperature\":%s, \"Humidity\":%s}"),
// svalue, dhtstype, stemp1, stemp2);
snprintf_P(svalue, ssvalue, JSON_SNS_TEMPHUM, svalue, dht[i].stype, stemp1, stemp2);
*djson = 1;
#ifdef USE_DOMOTICZ
if (!dsxflg) {
domoticz_sensor2(stemp1, stemp2);
dsxflg++;
}
#endif // USE_DOMOTICZ
}
}
}
#ifdef USE_WEBSERVER
String dht_webPresent()
{
String page = "";
char stemp[10];
char sensor[80];
float t;
float h;
for (byte i = 0; i < dht_sensors; i++) {
if (dht_readTempHum(i, t, h)) {
dtostrf(t, 1, sysCfg.flag.temperature_resolution, stemp);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_TEMP, dht[i].stype, stemp, tempUnit());
page += sensor;
dtostrf(h, 1, sysCfg.flag.humidity_resolution, stemp);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_HUM, dht[i].stype, stemp);
page += sensor;
}
}
return page;
}
#endif // USE_WEBSERVER
#endif // USE_DHT