forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
96 lines (83 loc) · 3.98 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import numpy as np
from PIL import Image
import time
import paddle
import paddle.nn.functional as F
from paddleseg.utils import metrics, TimeAverager, calculate_eta, logger, progbar, get_image_list
from paddleseg.core.infer import reverse_transform
def evaluate(
img_dir,
gt_dir,
num_classes,
ignore_index=255,
print_detail=True,
):
"""
Launch evalution.
Args:
eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
aug_eval (bool, optional): Whether to use mulit-scales and flip augment for evaluation. Default: False.
scales (list|float, optional): Scales for augment. It is valid when `aug_eval` is True. Default: 1.0.
flip_horizontal (bool, optional): Whether to use flip horizontally augment. It is valid when `aug_eval` is True. Default: True.
flip_vertical (bool, optional): Whether to use flip vertically augment. It is valid when `aug_eval` is True. Default: False.
is_slide (bool, optional): Whether to evaluate by sliding window. Default: False.
stride (tuple|list, optional): The stride of sliding window, the first is width and the second is height.
It should be provided when `is_slide` is True.
crop_size (tuple|list, optional): The crop size of sliding window, the first is width and the second is height.
It should be provided when `is_slide` is True.
num_workers (int, optional): Num workers for data loader. Default: 0.
print_detail (bool, optional): Whether to print detailed information about the evaluation process. Default: True.
Returns:
float: The mIoU of validation datasets.
float: The accuracy of validation datasets.
"""
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
image_list, _ = get_image_list(img_dir)
for im_path in image_list:
im_name = osp.basename(im_path)
gt_path = osp.join(gt_dir, im_name)
img = paddle.to_tensor(np.asarray(Image.open(im_path)), dtype='int32')
gt = paddle.to_tensor(np.asarray(Image.open(gt_path)), dtype='int32')
img = paddle.unsqueeze(img, axis=[0, 1])
gt = paddle.unsqueeze(gt, axis=[0, 1])
ori_shape = gt.shape[-2:]
pred = F.interpolate(img, ori_shape, mode='nearest')
intersect_area, pred_area, label_area = metrics.calculate_area(
pred, gt, num_classes, ignore_index=ignore_index)
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
label_area_all)
class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
if print_detail:
print("#Images: {} \nmIoU: {} \nAcc: {} \nKappa: {} ".format(
len(image_list), miou, acc, kappa))
print("Class IoU: " + str(class_iou))
print("Class Acc: " + str(class_acc))
metrics_dict = {}
metrics_dict['#Images'] = len(image_list)
metrics_dict['mIoU'] = miou
metrics_dict['Acc'] = acc
metrics_dict['Kappa'] = kappa
metrics_dict['Class IoU'] = class_iou
metrics_dict['Class Acc'] = class_acc
return metrics_dict