This page contains a list of example codes written with Optuna.
- Scikit-learn
- Scikit-image
- Chainer
- ChainerMN
- Dask-ML
- LightGBM
- LightGBM Tuner
- CatBoost
- MXNet
- PyTorch
- PyTorch Ignite
- PyTorch Lightning
- XGBoost
- Tensorflow
- Tensorflow (eager)
- Keras
- FastAI
- AllenNLP
- AllenNLP (Jsonnet)
The following example demonstrates how to implement an objective function that uses additional arguments other than trial
.
The following example demonstrates how to implement pruning logic with Optuna.
In addition, integration modules are available for the following libraries, providing simpler interfaces to utilize pruning.
- Pruning with Chainer integration module
- Pruning with XGBoost integration module
- Pruning with XGBoost integration module (cross validation, XGBoost.cv)
- Pruning with LightGBM integration module
- Pruning with ChainerMN integration module
- Pruning with Tensorflow integration module
- Pruning with Keras integration module
- Pruning with MXNet integration module
- Pruning with PyTorch Ignite integration module
- Pruning with PyTorch Lightning integration module
- Pruning with FastAI integration module
- Analyzing optimization results using Neptune
- OptGBM: A scikit-learn compatible LightGBM estimator with Optuna
You can use our docker images with the tag ending with -dev
to run most of the examples.
For example, you can run PyTorch Lightning Simple via docker run --rm optuna/optuna:py3.7-dev python examples/pytorch_lightning_simple.py
.
Also, you can try our visualization example in Jupyter Notebook by opening localhost:8888
in your browser after executing this:
docker run -p 8888:8888 --rm optuna/optuna:py3.7-dev jupyter notebook --allow-root --no-browser --port 8888 --ip 0.0.0.0 --NotebookApp.token='' --NotebookApp.password=''