-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathCartPole-DQN.py
235 lines (168 loc) · 6 KB
/
CartPole-DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# OpenGym CartPole-v0
# -------------------
#
# This code demonstrates use a full DQN implementation
# to solve OpenGym CartPole-v0 problem.
#
# Made as part of blog series Let's make a DQN, available at:
# https://jaromiru.com/2016/09/27/lets-make-a-dqn-theory/
#
# author: Jaromir Janisch, 2016
import random, numpy, math, gym, sys
from keras import backend as K
import tensorflow as tf
#----------
HUBER_LOSS_DELTA = 1.0
LEARNING_RATE = 0.00025
#----------
def huber_loss(y_true, y_pred):
err = y_true - y_pred
cond = K.abs(err) < HUBER_LOSS_DELTA
L2 = 0.5 * K.square(err)
L1 = HUBER_LOSS_DELTA * (K.abs(err) - 0.5 * HUBER_LOSS_DELTA)
loss = tf.where(cond, L2, L1) # Keras does not cover where function in tensorflow :-(
return K.mean(loss)
#-------------------- BRAIN ---------------------------
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import *
class Brain:
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.model = self._createModel()
self.model_ = self._createModel()
def _createModel(self):
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=stateCnt))
model.add(Dense(units=actionCnt, activation='linear'))
opt = RMSprop(lr=LEARNING_RATE)
model.compile(loss=huber_loss, optimizer=opt)
return model
def train(self, x, y, epochs=1, verbose=0):
self.model.fit(x, y, batch_size=64, epochs=epochs, verbose=verbose)
def predict(self, s, target=False):
if target:
return self.model_.predict(s)
else:
return self.model.predict(s)
def predictOne(self, s, target=False):
return self.predict(s.reshape(1, self.stateCnt), target=target).flatten()
def updateTargetModel(self):
self.model_.set_weights(self.model.get_weights())
#-------------------- MEMORY --------------------------
class Memory: # stored as ( s, a, r, s_ )
samples = []
def __init__(self, capacity):
self.capacity = capacity
def add(self, sample):
self.samples.append(sample)
if len(self.samples) > self.capacity:
self.samples.pop(0)
def sample(self, n):
n = min(n, len(self.samples))
return random.sample(self.samples, n)
def isFull(self):
return len(self.samples) >= self.capacity
#-------------------- AGENT ---------------------------
MEMORY_CAPACITY = 100000
BATCH_SIZE = 64
GAMMA = 0.99
MAX_EPSILON = 1
MIN_EPSILON = 0.01
LAMBDA = 0.001 # speed of decay
UPDATE_TARGET_FREQUENCY = 1000
class Agent:
steps = 0
epsilon = MAX_EPSILON
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.brain = Brain(stateCnt, actionCnt)
self.memory = Memory(MEMORY_CAPACITY)
def act(self, s):
if random.random() < self.epsilon:
return random.randint(0, self.actionCnt-1)
else:
return numpy.argmax(self.brain.predictOne(s))
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
if self.steps % UPDATE_TARGET_FREQUENCY == 0:
self.brain.updateTargetModel()
# debug the Q function in poin S
if self.steps % 100 == 0:
S = numpy.array([-0.01335408, -0.04600273, -0.00677248, 0.01517507])
pred = agent.brain.predictOne(S)
print(pred[0])
sys.stdout.flush()
# slowly decrease Epsilon based on our eperience
self.steps += 1
self.epsilon = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * math.exp(-LAMBDA * self.steps)
def replay(self):
batch = self.memory.sample(BATCH_SIZE)
batchLen = len(batch)
no_state = numpy.zeros(self.stateCnt)
states = numpy.array([ o[0] for o in batch ])
states_ = numpy.array([ (no_state if o[3] is None else o[3]) for o in batch ])
p = self.brain.predict(states)
p_ = self.brain.predict(states_, target=True)
x = numpy.zeros((batchLen, self.stateCnt))
y = numpy.zeros((batchLen, self.actionCnt))
for i in range(batchLen):
o = batch[i]
s = o[0]; a = o[1]; r = o[2]; s_ = o[3]
t = p[i]
if s_ is None:
t[a] = r
else:
t[a] = r + GAMMA * numpy.amax(p_[i])
x[i] = s
y[i] = t
self.brain.train(x, y)
class RandomAgent:
memory = Memory(MEMORY_CAPACITY)
def __init__(self, actionCnt):
self.actionCnt = actionCnt
def act(self, s):
return random.randint(0, self.actionCnt-1)
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
def replay(self):
pass
#-------------------- ENVIRONMENT ---------------------
class Environment:
def __init__(self, problem):
self.problem = problem
self.env = gym.make(problem)
def run(self, agent):
s = self.env.reset()
R = 0
while True:
# self.env.render()
a = agent.act(s)
s_, r, done, info = self.env.step(a)
if done: # terminal state
s_ = None
agent.observe( (s, a, r, s_) )
agent.replay()
s = s_
R += r
if done:
break
# print("Total reward:", R)
#-------------------- MAIN ----------------------------
PROBLEM = 'CartPole-v0'
env = Environment(PROBLEM)
stateCnt = env.env.observation_space.shape[0]
actionCnt = env.env.action_space.n
agent = Agent(stateCnt, actionCnt)
randomAgent = RandomAgent(actionCnt)
try:
while randomAgent.memory.isFull() == False:
env.run(randomAgent)
agent.memory.samples = randomAgent.memory.samples
randomAgent = None
while True:
env.run(agent)
finally:
agent.brain.model.save("cartpole-dqn.h5")