-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathCartPole-basic.py
177 lines (127 loc) · 4.53 KB
/
CartPole-basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# OpenGym CartPole-v0
# -------------------
#
# This code demonstrates use of a basic Q-network (without target network)
# to solve OpenGym CartPole-v0 problem.
#
# Made as part of blog series Let's make a DQN, available at:
# https://jaromiru.com/2016/10/03/lets-make-a-dqn-implementation/
#
# author: Jaromir Janisch, 2016
#--- enable this to run on GPU
# import os
# os.environ['THEANO_FLAGS'] = "device=gpu,floatX=float32"
import random, numpy, math, gym
#-------------------- BRAIN ---------------------------
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import *
class Brain:
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.model = self._createModel()
# self.model.load_weights("cartpole-basic.h5")
def _createModel(self):
model = Sequential()
model.add(Dense(output_dim=64, activation='relu', input_dim=stateCnt))
model.add(Dense(output_dim=actionCnt, activation='linear'))
opt = RMSprop(lr=0.00025)
model.compile(loss='mse', optimizer=opt)
return model
def train(self, x, y, epoch=1, verbose=0):
self.model.fit(x, y, batch_size=64, nb_epoch=epoch, verbose=verbose)
def predict(self, s):
return self.model.predict(s)
def predictOne(self, s):
return self.predict(s.reshape(1, self.stateCnt)).flatten()
#-------------------- MEMORY --------------------------
class Memory: # stored as ( s, a, r, s_ )
samples = []
def __init__(self, capacity):
self.capacity = capacity
def add(self, sample):
self.samples.append(sample)
if len(self.samples) > self.capacity:
self.samples.pop(0)
def sample(self, n):
n = min(n, len(self.samples))
return random.sample(self.samples, n)
#-------------------- AGENT ---------------------------
MEMORY_CAPACITY = 100000
BATCH_SIZE = 64
GAMMA = 0.99
MAX_EPSILON = 1
MIN_EPSILON = 0.01
LAMBDA = 0.001 # speed of decay
class Agent:
steps = 0
epsilon = MAX_EPSILON
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.brain = Brain(stateCnt, actionCnt)
self.memory = Memory(MEMORY_CAPACITY)
def act(self, s):
if random.random() < self.epsilon:
return random.randint(0, self.actionCnt-1)
else:
return numpy.argmax(self.brain.predictOne(s))
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
# slowly decrease Epsilon based on our eperience
self.steps += 1
self.epsilon = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * math.exp(-LAMBDA * self.steps)
def replay(self):
batch = self.memory.sample(BATCH_SIZE)
batchLen = len(batch)
no_state = numpy.zeros(self.stateCnt)
states = numpy.array([ o[0] for o in batch ])
states_ = numpy.array([ (no_state if o[3] is None else o[3]) for o in batch ])
p = self.brain.predict(states)
p_ = self.brain.predict(states_)
x = numpy.zeros((batchLen, self.stateCnt))
y = numpy.zeros((batchLen, self.actionCnt))
for i in range(batchLen):
o = batch[i]
s = o[0]; a = o[1]; r = o[2]; s_ = o[3]
t = p[i]
if s_ is None:
t[a] = r
else:
t[a] = r + GAMMA * numpy.amax(p_[i])
x[i] = s
y[i] = t
self.brain.train(x, y)
#-------------------- ENVIRONMENT ---------------------
class Environment:
def __init__(self, problem):
self.problem = problem
self.env = gym.make(problem)
def run(self, agent):
s = self.env.reset()
R = 0
while True:
self.env.render()
a = agent.act(s)
s_, r, done, info = self.env.step(a)
if done: # terminal state
s_ = None
agent.observe( (s, a, r, s_) )
agent.replay()
s = s_
R += r
if done:
break
print("Total reward:", R)
#-------------------- MAIN ----------------------------
PROBLEM = 'CartPole-v0'
env = Environment(PROBLEM)
stateCnt = env.env.observation_space.shape[0]
actionCnt = env.env.action_space.n
agent = Agent(stateCnt, actionCnt)
try:
while True:
env.run(agent)
finally:
agent.brain.model.save("cartpole-basic.h5")