forked from ploxiln/paramiko-ng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathecdsakey.py
306 lines (261 loc) · 10.9 KB
/
ecdsakey.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright (C) 2003-2007 Robey Pointer <[email protected]>
#
# This file is part of paramiko.
#
# Paramiko is free software; you can redistribute it and/or modify it under the
# terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2.1 of the License, or (at your option)
# any later version.
#
# Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Paramiko; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
"""
ECDSA keys
"""
from cryptography.exceptions import InvalidSignature, UnsupportedAlgorithm
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric.utils import (
decode_dss_signature, encode_dss_signature
)
from paramiko.common import four_byte
from paramiko.message import Message
from paramiko.pkey import PKey, register_pkey_type
from paramiko.ssh_exception import SSHException
from paramiko.util import deflate_long
class _ECDSACurve(object):
"""
Represents a specific ECDSA Curve (nistp256, nistp384, etc).
Handles the generation of the key format identifier and the selection of
the proper hash function. Also grabs the proper curve from the 'ecdsa'
package.
"""
def __init__(self, curve_class, nist_name):
self.nist_name = nist_name
self.key_length = curve_class.key_size
# Defined in RFC 5656 6.2
self.key_format_identifier = "ecdsa-sha2-" + self.nist_name
# Defined in RFC 5656 6.2.1
if self.key_length <= 256:
self.hash_object = hashes.SHA256
elif self.key_length <= 384:
self.hash_object = hashes.SHA384
else:
self.hash_object = hashes.SHA512
self.curve_class = curve_class
class _ECDSACurveSet(object):
"""
A collection to hold the ECDSA curves. Allows querying by oid and by key
format identifier. The two ways in which ECDSAKey needs to be able to look
up curves.
"""
def __init__(self, ecdsa_curves):
self.ecdsa_curves = ecdsa_curves
def get_key_format_identifier_list(self):
return [curve.key_format_identifier for curve in self.ecdsa_curves]
def get_by_curve_class(self, curve_class):
for curve in self.ecdsa_curves:
if curve.curve_class == curve_class:
return curve
def get_by_key_format_identifier(self, key_format_identifier):
for curve in self.ecdsa_curves:
if curve.key_format_identifier == key_format_identifier:
return curve
def get_by_key_length(self, key_length):
for curve in self.ecdsa_curves:
if curve.key_length == key_length:
return curve
@register_pkey_type
class ECDSAKey(PKey):
"""
Representation of an ECDSA key which can be used to sign and verify SSH2 data.
"""
LEGACY_TYPE = "EC"
OPENSSH_TYPE_PREFIX = "ecdsa-sha2-"
_ECDSA_CURVES = _ECDSACurveSet([
_ECDSACurve(ec.SECP256R1, 'nistp256'),
_ECDSACurve(ec.SECP384R1, 'nistp384'),
_ECDSACurve(ec.SECP521R1, 'nistp521'),
])
def __init__(self, msg=None, data=None, filename=None, password=None,
vals=None, file_obj=None, validate_point=True, _raw=None):
self.verifying_key = None
self.signing_key = None
self.public_blob = None
if file_obj is not None:
_raw = self._from_private_key(file_obj, password)
if filename is not None:
_raw = self._from_private_key_file(filename, password)
if _raw is not None:
self._decode_key(_raw)
return
if (msg is None) and (data is not None):
msg = Message(data)
if vals is not None:
self.signing_key, self.verifying_key = vals
c_class = self.signing_key.curve.__class__
self.ecdsa_curve = self._ECDSA_CURVES.get_by_curve_class(c_class)
else:
# Must set ecdsa_curve first; subroutines called herein may need to
# spit out our get_name(), which relies on this.
key_type = msg.get_text()
# But this also means we need to hand it a real key/curve
# identifier, so strip out any cert business. (NOTE: could push
# that into _ECDSACurveSet.get_by_key_format_identifier(), but it
# feels more correct to do it here?)
suffix = '[email protected]'
if key_type.endswith(suffix):
key_type = key_type[:-len(suffix)]
self.ecdsa_curve = self._ECDSA_CURVES.get_by_key_format_identifier(
key_type
)
key_types = self._ECDSA_CURVES.get_key_format_identifier_list()
cert_types = [
'{}[email protected]'.format(x)
for x in key_types
]
self._check_type_and_load_cert(
msg=msg,
key_type=key_types,
cert_type=cert_types,
)
curvename = msg.get_text()
if curvename != self.ecdsa_curve.nist_name:
raise SSHException(
"Can't handle curve of type {}".format(curvename)
)
pointinfo = msg.get_binary()
try:
if hasattr(ec.EllipticCurvePublicKey, 'from_encoded_point'):
key = ec.EllipticCurvePublicKey.from_encoded_point(
self.ecdsa_curve.curve_class(), pointinfo
)
self.verifying_key = key
else:
numbers = ec.EllipticCurvePublicNumbers.from_encoded_point(
self.ecdsa_curve.curve_class(), pointinfo
)
self.verifying_key = numbers.public_key(backend=default_backend())
except ValueError:
raise SSHException("Invalid public key")
@classmethod
def supported_key_format_identifiers(cls):
return cls._ECDSA_CURVES.get_key_format_identifier_list()
def asbytes(self):
key = self.verifying_key
numbers = key.public_numbers()
key_size_bytes = (key.curve.key_size + 7) // 8
x_bytes = deflate_long(numbers.x, add_sign_padding=False)
x_bytes = b'\x00' * (key_size_bytes - len(x_bytes)) + x_bytes
y_bytes = deflate_long(numbers.y, add_sign_padding=False)
y_bytes = b'\x00' * (key_size_bytes - len(y_bytes)) + y_bytes
point_str = four_byte + x_bytes + y_bytes
m = Message()
m.add_string(self.ecdsa_curve.key_format_identifier)
m.add_string(self.ecdsa_curve.nist_name)
m.add_string(point_str)
return m.asbytes()
def get_name(self):
return self.ecdsa_curve.key_format_identifier
def get_bits(self):
return self.ecdsa_curve.key_length
def can_sign(self):
return self.signing_key is not None
def sign_ssh_data(self, data):
ecdsa = ec.ECDSA(self.ecdsa_curve.hash_object())
sig = self.signing_key.sign(data, ecdsa)
r, s = decode_dss_signature(sig)
m = Message()
m.add_string(self.ecdsa_curve.key_format_identifier)
m.add_string(self._sigencode(r, s))
return m
def verify_ssh_sig(self, data, msg):
if msg.get_text() != self.ecdsa_curve.key_format_identifier:
return False
sig = msg.get_binary()
sigR, sigS = self._sigdecode(sig)
signature = encode_dss_signature(sigR, sigS)
try:
self.verifying_key.verify(
signature, data, ec.ECDSA(self.ecdsa_curve.hash_object())
)
except InvalidSignature:
return False
else:
return True
def write_private_key_file(self, filename, password=None):
self._write_private_key_file(
filename,
self.signing_key,
serialization.PrivateFormat.TraditionalOpenSSL,
password=password
)
def write_private_key(self, file_obj, password=None):
self._write_private_key(
file_obj,
self.signing_key,
serialization.PrivateFormat.TraditionalOpenSSL,
password=password
)
@classmethod
def generate(cls, curve=ec.SECP256R1(), progress_func=None, bits=None):
"""
Generate a new private ECDSA key. This factory function can be used to
generate a new host key or authentication key.
:param progress_func: Not used for this type of key.
:returns: A new private key (`.ECDSAKey`) object
"""
if bits is not None:
curve = cls._ECDSA_CURVES.get_by_key_length(bits)
if curve is None:
raise ValueError("Unsupported key length: {:d}".format(bits))
curve = curve.curve_class()
private_key = ec.generate_private_key(curve, backend=default_backend())
return ECDSAKey(vals=(private_key, private_key.public_key()))
# ...internals...
def _decode_key(self, _raw):
pkformat, data = _raw
if pkformat == self.FORMAT_ORIGINAL:
try:
key = serialization.load_der_private_key(
data, password=None, backend=default_backend()
)
except (ValueError, TypeError, AssertionError, UnsupportedAlgorithm) as e:
raise SSHException(str(e))
elif pkformat == self.FORMAT_OPENSSH:
msg = Message(data)
curve_name = msg.get_text()
verkey = msg.get_binary() # noqa: F841
sigkey = msg.get_mpint()
curve = self._ECDSA_CURVES.get_by_key_format_identifier("ecdsa-sha2-" + curve_name)
if not curve:
raise SSHException("Invalid key curve identifier")
try:
key = ec.derive_private_key(sigkey, curve.curve_class(), default_backend())
except (AttributeError, TypeError) as e:
raise SSHException(str(e))
else:
raise SSHException('unknown private key format.')
if not isinstance(key, ec.EllipticCurvePrivateKey):
raise SSHException("Invalid key type")
self.signing_key = key
self.verifying_key = key.public_key()
curve_class = key.curve.__class__
self.ecdsa_curve = self._ECDSA_CURVES.get_by_curve_class(curve_class)
def _sigencode(self, r, s):
msg = Message()
msg.add_mpint(r)
msg.add_mpint(s)
return msg.asbytes()
def _sigdecode(self, sig):
msg = Message(sig)
r = msg.get_mpint()
s = msg.get_mpint()
return r, s