forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdft-rank1.c
352 lines (304 loc) · 11.1 KB
/
dft-rank1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Complex DFTs of rank == 1 via six-step algorithm. */
#include "mpi-dft.h"
#include "mpi-transpose.h"
#include "dft.h"
typedef struct {
solver super;
rdftapply apply; /* apply_ddft_first or apply_ddft_last */
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;
typedef struct {
plan_mpi_dft super;
triggen *t;
plan *cldt, *cld_ddft, *cld_dft;
INT roff, ioff;
int preserve_input;
INT vn, xmin, xmax, xs, m, r;
} P;
static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
{
void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
INT im, iv;
for (im = 0; im < m; ++im)
for (iv = 0; iv < vn; ++iv) {
/* TODO: modify/inline rotate function
so that it can do whole vn vector at once? */
R c[2];
rotate(t, ir * im, *xr, *xi, c);
*xr = c[0]; *xi = c[1];
xr += 2; xi += 2;
}
}
/* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
plus twiddle factors between the size-m and size-r 1d DFTs, where
the m dimension is initially distributed. The output is transposed
to r x m where the r dimension is distributed.
This algorithm follows the general sequence:
global transpose (m x r -> r x m)
DFTs of size m
multiply by twiddles + global transpose (r x m -> m x r)
DFTs of size r
global transpose (m x r -> r x m)
where the multiplication by twiddles can come before or after
the middle transpose. The first/last transposes are omitted
for SCRAMBLED_IN/OUT formats, respectively.
However, we wish to exploit our dft-rank1-bigvec solver, which
solves a vector of distributed DFTs via transpose+dft+transpose.
Therefore, we can group *either* the DFTs of size m *or* the
DFTs of size r with their surrounding transposes as a single
distributed-DFT (ddft) plan. These two variations correspond to
apply_ddft_first or apply_ddft_last, respectively.
*/
static void apply_ddft_first(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld_dft;
plan_rdft *cldt, *cld_ddft;
INT roff, ioff, im, mmax, ms, r, vn;
triggen *t;
R *dI, *dO;
/* distributed size-m DFTs, with output in m x r format */
cld_ddft = (plan_rdft *) ego->cld_ddft;
cld_ddft->apply(ego->cld_ddft, I, O);
cldt = (plan_rdft *) ego->cldt;
if (ego->preserve_input || !cldt) I = O;
/* twiddle multiplications, followed by 1d DFTs of size-r */
cld_dft = (plan_dft *) ego->cld_dft;
roff = ego->roff; ioff = ego->ioff;
mmax = ego->xmax; ms = ego->xs;
t = ego->t; r = ego->r; vn = ego->vn;
dI = O; dO = I;
for (im = ego->xmin; im <= mmax; ++im) {
do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
dI += ms; dO += ms;
}
/* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
if (cldt)
cldt->apply((plan *) cldt, I, O);
}
static void apply_ddft_last(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld_dft;
plan_rdft *cldt, *cld_ddft;
INT roff, ioff, ir, rmax, rs, m, vn;
triggen *t;
R *dI, *dO0, *dO;
/* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
cldt = (plan_rdft *) ego->cldt;
if (cldt) {
cldt->apply((plan *) cldt, I, O);
dI = O;
}
else
dI = I;
if (ego->preserve_input) dO = O; else dO = I;
dO0 = dO;
/* 1d DFTs of size m, followed by twiddle multiplications */
cld_dft = (plan_dft *) ego->cld_dft;
roff = ego->roff; ioff = ego->ioff;
rmax = ego->xmax; rs = ego->xs;
t = ego->t; m = ego->m; vn = ego->vn;
for (ir = ego->xmin; ir <= rmax; ++ir) {
cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
dI += rs; dO += rs;
}
/* distributed size-r DFTs, with output in r x m format */
cld_ddft = (plan_rdft *) ego->cld_ddft;
cld_ddft->apply(ego->cld_ddft, dO0, O);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr,
INT *r, INT rblock[2], INT mblock[2])
{
const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
int n_pes;
MPI_Comm_size(p->comm, &n_pes);
return (1
&& p->sz->rnk == 1
&& ONLY_SCRAMBLEDP(p->flags)
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
&& (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
&& (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
|| !XM(dft_serial_applicable)(p))
/* disallow if dft-rank1-bigvec is applicable since the
data distribution may be slightly different (ugh!) */
&& (p->vn < n_pes || p->flags)
&& (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
p->flags, p->sign,
rblock, mblock))
/* ddft_first or last has substantial advantages in the
bigvec transpositions for the common case where
n_pes == n/r or r, respectively */
&& (!NO_UGLYP(plnr)
|| !(*r == n_pes && ego->apply == apply_ddft_first)
|| !(p->sz->dims[0].n / *r == n_pes
&& ego->apply == apply_ddft_last))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cldt, wakefulness);
X(plan_awake)(ego->cld_dft, wakefulness);
X(plan_awake)(ego->cld_ddft, wakefulness);
switch (wakefulness) {
case SLEEPY:
X(triggen_destroy)(ego->t); ego->t = 0;
break;
default:
ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
break;
}
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldt);
X(plan_destroy_internal)(ego->cld_dft);
X(plan_destroy_internal)(ego->cld_ddft);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
ego->r,
ego->super.apply == apply_ddft_first ? "/first" : "/last",
ego->preserve_input==2 ?"/p":"",
ego->cld_ddft, ego->cld_dft, ego->cldt);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_dft *p;
P *pln;
plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
R *ri, *ii, *ro, *io, *I, *O;
INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
int my_pe, n_pes, preserve_input, ddft_first;
dtensor *sz;
static const plan_adt padt = {
XM(dft_solve), awake, print, destroy
};
UNUSED(ego);
if (!applicable(ego, p_, plnr, &r, rblock, mblock))
return (plan *) 0;
p = (const problem_mpi_dft *) p_;
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
m = p->sz->dims[0].n / r;
/* some hackery so that we can plan both ddft_first and ddft_last
as if they were ddft_first */
if ((ddft_first = (ego->apply == apply_ddft_first))) {
rp = r; mp = m;
mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
mpb = XM(block)(mp, mpblock[OB], my_pe);
}
else {
rp = m; mp = r;
mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
mpb = XM(block)(mp, mpblock[IB], my_pe);
}
preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
sz = XM(mkdtensor)(1);
sz->dims[0].n = mp;
sz->dims[0].b[IB] = mpblock[IB];
sz->dims[0].b[OB] = mpblock[OB];
I = (ddft_first || !preserve_input) ? p->I : p->O;
O = p->O;
cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
I, O, p->comm, p->sign,
RANK1_BIGVEC_ONLY));
if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
rp * p->vn * 2);
X(extract_reim)(p->sign, I, &ri, &ii);
X(extract_reim)(p->sign, O, &ro, &io);
cld_dft = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
X(mktensor_1d)(p->vn, 2, 2),
ri, ii, ro, io));
if (XM(any_true)(!cld_dft, p->comm)) goto nada;
if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
I = (ddft_first && preserve_input) ? p->O : p->I;
O = p->O;
cldt = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
m, r, p->vn * 2,
I, O,
ddft_first ? mblock[OB] : mblock[IB],
ddft_first ? rblock[OB] : rblock[IB],
p->comm, 0));
if (XM(any_true)(!cldt, p->comm)) goto nada;
}
pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
pln->cld_ddft = cld_ddft;
pln->cld_dft = cld_dft;
pln->cldt = cldt;
pln->preserve_input = preserve_input;
X(extract_reim)(p->sign, p->O, &ro, &io);
pln->roff = ro - p->O;
pln->ioff = io - p->O;
pln->vn = p->vn;
pln->m = m;
pln->r = r;
pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
pln->xmax = pln->xmin + mpb - 1;
pln->xs = rp * p->vn * 2;
pln->t = 0;
X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
{
double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
pln->super.super.ops.mul += 8 * n0;
pln->super.super.ops.add += 4 * n0;
pln->super.super.ops.other += 8 * n0;
}
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldt);
X(plan_destroy_internal)(cld_dft);
X(plan_destroy_internal)(cld_ddft);
return (plan *) 0;
}
static solver *mksolver(rdftapply apply, int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->apply = apply;
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(dft_rank1_register)(planner *p)
{
rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
unsigned int iapply;
int preserve_input;
for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
}