forked from deepfindr/gnn-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
45 lines (39 loc) · 1.53 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from mlflow.models.signature import ModelSignature
from mlflow.types.schema import Schema, TensorSpec
HYPERPARAMETERS = {
"batch_size": [32, 128, 64],
"learning_rate": [0.1, 0.05, 0.01, 0.001],
"weight_decay": [0.0001, 0.00001, 0.001],
"sgd_momentum": [0.9, 0.8, 0.5],
"scheduler_gamma": [0.995, 0.9, 0.8, 0.5, 1],
"pos_weight" : [1.0],
"model_embedding_size": [8, 16, 32, 64, 128],
"model_attention_heads": [1, 2, 3, 4],
"model_layers": [3],
"model_dropout_rate": [0.2, 0.5, 0.9],
"model_top_k_ratio": [0.2, 0.5, 0.8, 0.9],
"model_top_k_every_n": [0],
"model_dense_neurons": [16, 128, 64, 256, 32]
}
BEST_PARAMETERS = {
"batch_size": [128],
"learning_rate": [0.01],
"weight_decay": [0.0001],
"sgd_momentum": [0.8],
"scheduler_gamma": [0.8],
"pos_weight": [1.3],
"model_embedding_size": [64],
"model_attention_heads": [3],
"model_layers": [4],
"model_dropout_rate": [0.2],
"model_top_k_ratio": [0.5],
"model_top_k_every_n": [1],
"model_dense_neurons": [256]
}
input_schema = Schema([TensorSpec(np.dtype(np.float32), (-1, 30), name="x"),
TensorSpec(np.dtype(np.float32), (-1, 11), name="edge_attr"),
TensorSpec(np.dtype(np.int32), (2, -1), name="edge_index"),
TensorSpec(np.dtype(np.int32), (-1, 1), name="batch_index")])
output_schema = Schema([TensorSpec(np.dtype(np.float32), (-1, 1))])
SIGNATURE = ModelSignature(inputs=input_schema, outputs=output_schema)