forked from AxeldeRomblay/MLBox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_optimiser.py
160 lines (135 loc) · 5.7 KB
/
test_optimiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# !/usr/bin/env python
# coding: utf-8
# Author: Axel ARONIO DE ROMBLAY <[email protected]>
# Author: Henri GERARD <[email protected]>
# License: BSD 3 clause
"""Test mlbox.optimisation.optimiser module."""
import pytest
import numpy as np
from mlbox.optimisation.optimiser import Optimiser
from mlbox.preprocessing.drift_thresholder import Drift_thresholder
from mlbox.preprocessing.reader import Reader
from mlbox.optimisation import make_scorer
def test_init_optimiser():
"""Test init method of Optimiser class."""
with pytest.warns(UserWarning) as record:
optimiser = Optimiser()
assert len(record) == 1
assert not optimiser.scoring
assert optimiser.n_folds == 2
assert optimiser.random_state == 1
assert optimiser.to_path == "save"
assert optimiser.verbose
def test_get_params_optimiser():
"""Test get_params method of optimiser class."""
with pytest.warns(UserWarning) as record:
optimiser = Optimiser()
assert len(record) == 1
dict = {'scoring': None,
'n_folds': 2,
'random_state': 1,
'to_path': "save",
'verbose': True}
assert optimiser.get_params() == dict
def test_set_params_optimiser():
"""Test set_params method of Optimiser class."""
with pytest.warns(UserWarning) as record:
optimiser = Optimiser()
assert len(record) == 1
optimiser.set_params(scoring='accuracy')
assert optimiser.scoring == 'accuracy'
optimiser.set_params(n_folds=3)
assert optimiser.n_folds == 3
optimiser.set_params(random_state=2)
assert optimiser.random_state == 2
optimiser.set_params(to_path="name")
assert optimiser.to_path == "name"
optimiser.set_params(verbose=False)
assert not optimiser.verbose
with pytest.warns(UserWarning) as record:
optimiser.set_params(wrong_key=3)
assert len(record) == 1
def test_evaluate_classification_optimiser():
"""Test evaluate method of Optimiser class for classication."""
reader = Reader(sep=",")
dict = reader.train_test_split(Lpath=["data_for_tests/train.csv",
"data_for_tests/test.csv"],
target_name="Survived")
drift_thresholder = Drift_thresholder()
drift_thresholder = drift_thresholder.fit_transform(dict)
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring=None, n_folds=3)
assert len(record) == 1
score = opt.evaluate(None, dict)
assert -np.Inf <= score
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring="roc_auc", n_folds=3)
assert len(record) == 1
score = opt.evaluate(None, dict)
assert 0. <= score <= 1.
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring="wrong_scoring", n_folds=3)
assert len(record) == 1
with pytest.warns(UserWarning) as record:
score = opt.evaluate(None, dict)
assert opt.scoring == "neg_log_loss"
def test_evaluate_regression_optimiser():
"""Test evaluate method of Optimiser class for regression."""
reader = Reader(sep=",")
dict = reader.train_test_split(Lpath=["data_for_tests/train_regression.csv",
"data_for_tests/test_regression.csv"],
target_name="SalePrice")
drift_thresholder = Drift_thresholder()
drift_thresholder = drift_thresholder.fit_transform(dict)
mape = make_scorer(lambda y_true,
y_pred: 100*np.sum(
np.abs(y_true-y_pred)/y_true
)/len(y_true),
greater_is_better=False,
needs_proba=False)
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring=mape, n_folds=3)
assert len(record) == 1
score = opt.evaluate(None, dict)
assert -np.Inf <= score
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring=None, n_folds=3)
assert len(record) == 1
score = opt.evaluate(None, dict)
assert -np.Inf <= score
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring="wrong_scoring", n_folds=3)
assert len(record) == 1
with pytest.warns(UserWarning) as record:
score = opt.evaluate(None, dict)
assert -np.Inf <= score
def test_evaluate_and_optimise_classification():
"""Test evaluate_and_optimise method of Optimiser class."""
reader = Reader(sep=",")
dict = reader.train_test_split(Lpath=["data_for_tests/train.csv",
"data_for_tests/test.csv"],
target_name="Survived")
drift_thresholder = Drift_thresholder()
drift_thresholder = drift_thresholder.fit_transform(dict)
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring='accuracy', n_folds=3)
assert len(record) == 1
dict_error = dict.copy()
dict_error["target"] = dict_error["target"].astype(str)
with pytest.raises(ValueError):
score = opt.evaluate(None, dict_error)
with pytest.warns(UserWarning) as record:
opt = Optimiser(scoring='accuracy', n_folds=3)
assert len(record) == 1
score = opt.evaluate(None, dict)
assert 0. <= score <= 1.
space = {'ne__numerical_strategy': {"search": "choice", "space": [0]},
'ce__strategy': {"search": "choice",
"space": ["label_encoding"]},
'fs__threshold': {"search": "uniform",
"space": [0.01, 0.3]},
'est__max_depth': {"search": "choice",
"space": [3, 4, 5, 6, 7]}
}
best = opt.optimise(space, dict, 1)
assert type(best) == type(dict)