forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip.py
725 lines (587 loc) · 28.1 KB
/
clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import copy
import six
import warnings
import functools
from . import layers
from . import framework
from . import core
from . import name_scope
from .dygraph import base as imperative_base
__all__ = [
'set_gradient_clip', 'ErrorClipByValue', 'ClipGradByValue',
'ClipGradByNorm', 'ClipGradByGlobalNorm'
]
class BaseErrorClipAttr(object):
def __str__(self):
raise NotImplementedError()
def _append_clip_op(self, block, grad_name):
raise NotImplementedError()
class ErrorClipByValue(BaseErrorClipAttr):
"""
Clips tensor values to the range [min, max].
Given a tensor ``t`` (see Examples below), this operation clips its value \
to ``min`` and ``max`` inplace.
- Any values less than min are set to min.
- Any values greater than max are set to max.
Args:
max (float): The maximum value to clip by.
min (float, optional): The minimum value to clip by. if not set by user, \
will be set to ``-max`` by framework.
Examples:
.. code-block:: python
import paddle.fluid as fluid
BATCH_SIZE = 128
CLIP_MAX = 2e-6
CLIP_MIN = -1e-6
prog = fluid.framework.Program()
with fluid.program_guard(main_program=prog):
image = fluid.layers.data(
name='x', shape=[784], dtype='float32')
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
predict = fluid.layers.fc(
input=hidden2, size=10, act='softmax')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
prog_clip = prog.clone()
prog_clip.block(0).var(hidden1.name)._set_error_clip(
fluid.clip.ErrorClipByValue(
max=CLIP_MAX, min=CLIP_MIN)
"""
def __init__(self, max, min=None):
max = float(max)
if min is None:
min = -max
else:
min = float(min)
self.max = max
self.min = min
def __str__(self):
return "ByValue, min=%f, max=%f" % (self.min, self.max)
def _append_clip_op(self, block, grad_name):
clip_op_desc = block.desc.append_op()
clip_op_desc.set_type("clip")
clip_op_desc.set_input("X", [grad_name])
clip_op_desc.set_output("Out", [grad_name])
clip_op_desc._set_attr("min", self.min)
clip_op_desc._set_attr("max", self.max)
def error_clip_callback(block, context):
# the context is a grad_to_var map
grad_to_var = context
op_desc = block.desc.op(block.desc.op_size() - 1)
for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
fwd_var = block._var_recursive(grad_to_var[grad_n])
error_clip = getattr(fwd_var, "error_clip", None)
if not (error_clip is None or isinstance(error_clip,
BaseErrorClipAttr)):
raise TypeError(
"Variable's error_clip should be an instance of BaseErrorClipAttr or None."
)
if error_clip is not None:
error_clip._append_clip_op(block, grad_n)
class ClipGradBase(object):
def __init__(self):
super(ClipGradBase, self).__init__()
def __str__(self):
raise NotImplementedError()
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
raise NotImplementedError
def _static_clip(self, params_grads):
raise NotImplementedError
def __call__(self, params_grads):
if framework.in_dygraph_mode():
return self._dygraph_clip(params_grads)
else:
for p, g in params_grads:
if getattr(p, 'gradient_clip_attr', None) is not None:
warnings.warn(
"'set_gradient_clip' will be ineffective, because you have "
"set 'need_clip' in 'ParamAttr'. So, 'set_gradient_clip' "
"is redundant and you can remove it.")
break
return self._static_clip(params_grads)
def _process_context(self, context, param, grad):
raise NotImplementedError()
def _create_operators(self, param, grad):
raise NotImplementedError()
class ClipGradByValue(ClipGradBase):
"""
Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
- Any values less than min are set to ``min``.
- Any values greater than max are set to ``max``.
The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
(for example: :ref:`api_paddle_optimizer_SGD`).
Note:
``need_clip`` of ``ClipGradByValue`` HAS BEEN DEPRECATED since 2.0.
Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
Args:
max (float): The maximum value to clip by.
min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max``
automatically. In this case, ``max`` must be greater than 0.
Examples:
.. code-block:: python
import paddle
x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
linear = paddle.nn.Linear(in_features=10, out_features=10,
weight_attr=paddle.ParamAttr(need_clip=True),
bias_attr=paddle.ParamAttr(need_clip=False))
out = linear(x)
loss = paddle.mean(out)
loss.backward()
clip = paddle.nn.ClipGradByValue(min=-1, max=1)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
sdg.step()
"""
def __init__(self, max, min=None):
super(ClipGradByValue, self).__init__()
if min is None:
assert (max > 0.0)
min = -max
self.max = float(max)
self.min = float(min)
def __str__(self):
return "Clip Gradient By Value, min = %f, max=%f" % (self.min, self.max)
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
params_and_grads = []
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
new_grad = layers.clip(x=g, min=self.min, max=self.max)
params_and_grads.append((p, new_grad))
return params_and_grads
def _static_clip(self, params_grads):
params_and_grads = []
param_new_grad_name_dict = dict()
with framework.name_scope('gradient_clip'):
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
with p.block.program._optimized_guard([p, g]):
new_grad = layers.clip(x=g, min=self.min, max=self.max)
params_and_grads.append((p, new_grad))
param_new_grad_name_dict[p.name] = new_grad.name
_correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
return params_and_grads
def _process_context(self, context, param, grad):
pass
def _create_operators(self, param, grad):
new_grad = layers.clip(x=grad, min=self.min, max=self.max)
return param, new_grad
class ClipGradByNorm(ClipGradBase):
"""
Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
- If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
- If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
(for example: :ref:`api_paddle_optimizer_SGD`).
The clipping formula is:
.. math::
Out =
\\left \{
\\begin{aligned}
& X & & if (norm(X) \\leq clip\_norm) \\\\
& \\frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\\\
\\end{aligned}
\\right.
where :math:`norm(X)` represents the L2 norm of :math:`X`.
.. math::
norm(X) = ( \\sum_{i=1}^{n}|x\_i|^2)^{ \\frac{1}{2}}
Note:
``need_clip`` of ``ClipGradByNorm`` HAS BEEN DEPRECATED since 2.0.
Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
Args:
clip_norm(float): The maximum norm value.
Examples:
.. code-block:: python
import paddle
x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
linear = paddle.nn.Linear(in_features=10, out_features=10,
weight_attr=paddle.ParamAttr(need_clip=True),
bias_attr=paddle.ParamAttr(need_clip=False))
out = linear(x)
loss = paddle.mean(out)
loss.backward()
clip = paddle.nn.ClipGradByNorm(clip_norm=1.0)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
sdg.step()
"""
def __init__(self, clip_norm):
super(ClipGradByNorm, self).__init__()
self.clip_norm = float(clip_norm)
def __str__(self):
return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
params_and_grads = []
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
params_and_grads.append((p, new_grad))
return params_and_grads
def _static_clip(self, params_grads):
params_and_grads = []
with framework.name_scope('gradient_clip'):
param_new_grad_name_dict = dict()
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
with p.block.program._optimized_guard([p, g]):
new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
param_new_grad_name_dict[p.name] = new_grad.name
params_and_grads.append((p, new_grad))
_correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
return params_and_grads
def _process_context(self, context, param, grad):
pass
def _create_operators(self, param, grad):
new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
return param, new_grad
class ClipGradByGlobalNorm(ClipGradBase):
"""
Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in
:math:`t\_list` , and limit it to ``clip_norm`` .
- If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
- If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
(for example: :ref:`api_paddle_optimizer_SGD`).
The clipping formula is:
.. math::
t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}
where:
.. math::
global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}
Note:
``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0.
Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
Args:
clip_norm (float): The maximum norm value.
group_name (str, optional): The group name for this clip. Default value is ``default_group``.
Examples:
.. code-block:: python
import paddle
x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
linear = paddle.nn.Linear(in_features=10, out_features=10,
weight_attr=paddle.ParamAttr(need_clip=True),
bias_attr=paddle.ParamAttr(need_clip=False))
out = linear(x)
loss = paddle.mean(out)
loss.backward()
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
sdg.step()
"""
def __init__(self, clip_norm, group_name="default_group"):
super(ClipGradByGlobalNorm, self).__init__()
self.clip_norm = float(clip_norm)
self.group_name = group_name
def __str__(self):
return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
params_and_grads = []
sum_square_list = []
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
continue
merge_grad = g
if g.type == core.VarDesc.VarType.SELECTED_ROWS:
merge_grad = layers.merge_selected_rows(g)
merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
square = layers.square(merge_grad)
sum_square = layers.reduce_sum(square)
sum_square_list.append(sum_square)
# all parameters have been filterd out
if len(sum_square_list) == 0:
return params_grads
global_norm_var = layers.concat(sum_square_list)
global_norm_var = layers.reduce_sum(global_norm_var)
global_norm_var = layers.sqrt(global_norm_var)
max_global_norm = layers.fill_constant(
shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)
clip_var = layers.elementwise_div(
x=max_global_norm,
y=layers.elementwise_max(
x=global_norm_var, y=max_global_norm))
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
new_grad = layers.elementwise_mul(x=g, y=clip_var)
params_and_grads.append((p, new_grad))
return params_and_grads
def _static_clip(self, params_grads):
params_and_grads = []
sum_square_list = []
with framework.name_scope('gradient_clip'):
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
continue
merge_grad = g
with p.block.program._optimized_guard([p, g]):
if g.type == core.VarDesc.VarType.SELECTED_ROWS:
merge_grad = layers.merge_selected_rows(g)
merge_grad = layers.get_tensor_from_selected_rows(
merge_grad)
square = layers.square(merge_grad)
sum_square = layers.reduce_sum(input=square)
sum_square_list.append(sum_square)
# all parameters have been filterd out
if len(sum_square_list) == 0:
return params_grads
with p.block.program._optimized_guard([p, g]):
global_norm_var = layers.sums(sum_square_list)
global_norm_var = layers.sqrt(x=global_norm_var)
max_global_norm = layers.fill_constant(
shape=[1],
dtype=global_norm_var.dtype,
value=self.clip_norm)
scale_var = layers.elementwise_div(
x=max_global_norm,
y=layers.elementwise_max(
x=max_global_norm, y=global_norm_var))
param_new_grad_name_dict = dict()
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
with p.block.program._optimized_guard([p, g]):
new_grad = layers.elementwise_mul(x=g, y=scale_var)
param_new_grad_name_dict[p.name] = new_grad.name
params_and_grads.append((p, new_grad))
_correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
return params_and_grads
def _process_context(self, context, param, grad):
if self.group_name not in context:
context[self.group_name] = []
context[self.group_name + "_clip_value"] = self.clip_norm
context[self.group_name + "_clip"] = layers.fill_constant(
shape=[1], dtype=grad.dtype, value=self.clip_norm)
else:
if not self.clip_norm == context[self.group_name + "_clip_value"]:
raise ValueError(
"All parameters' 'clip_norm' of a same group should be the same"
)
merge_grad = grad
if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
merge_grad = layers.merge_selected_rows(grad)
merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
square = layers.square(merge_grad)
local_norm_var = layers.reduce_sum(input=square)
context[self.group_name].append(local_norm_var)
self.context = context
def _create_operators(self, param, grad):
group_scale_name = self.group_name + "_scale"
if group_scale_name not in self.context:
group_norm_var = layers.sums(input=self.context[self.group_name])
group_norm_var = layers.sqrt(x=group_norm_var)
clip_var = self.context[self.group_name + "_clip"]
group_scale_var = layers.elementwise_div(
x=clip_var,
y=layers.elementwise_max(
x=clip_var, y=group_norm_var))
assert group_scale_var.shape == (1, )
self.context[group_scale_name] = group_scale_var
new_grad = layers.elementwise_mul(
x=grad, y=self.context[group_scale_name])
return param, new_grad
@framework.dygraph_not_support
def set_gradient_clip(clip, param_list=None, program=None):
"""
:api_attr: Static Graph
Warning:
This API must be used after building network, and before ``minimize`` ,
and it may be removed in future releases, so it is not recommended.
It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
this is a better method to clip gradient. There are three clipping strategies:
:ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` .
To specify parameters that require gradient clip.
Args:
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no
gradient clipping.
param_list (list(Variable), optional): Parameters that require gradient clip.
It can be a list of parameter or a list of parameter's name.
Default None, meaning that all parameters in the program will be included.
program (Program, optional): The program where parameters are located.
Default None, meaning that using :ref:`api_fluid_default_main_program` .
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
def network():
image = fluid.data(name='image', shape=[
None, 28], dtype='float32')
param_attr1 = fluid.ParamAttr("fc1_param")
fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
param_attr2 = fluid.ParamAttr("fc2_param")
fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
loss = fluid.layers.reduce_mean(fc2)
return loss
# network 1: clip all parameter gradient
with fluid.program_guard(fluid.Program(), fluid.Program()):
loss = network()
fluid.clip.set_gradient_clip(
fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
# network 2: clip parameter gradient by name
with fluid.program_guard(fluid.Program(), fluid.Program()):
loss = network()
fluid.clip.set_gradient_clip(
fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
param_list=["fc1_param", "fc2_param"])
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
# network 3: clip parameter gradient by value
with fluid.program_guard(fluid.Program(), fluid.Program()):
loss = network()
param_var1 = fluid.default_main_program().global_block().var("fc1_param")
param_var2 = fluid.default_main_program().global_block().var("fc2_param")
fluid.clip.set_gradient_clip(
fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
param_list=[param_var1, param_var2])
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
# network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
with fluid.program_guard(fluid.Program(), fluid.Program()):
loss = network()
clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
# Set the gradient clipping strategy: clip1
fluid.clip.set_gradient_clip(clip1)
# Set the gradient clipping strategy: clip2
sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
sgd.minimize(loss)
# 'set_gradient_clip' will not take effect when setting has a conflict,
# and the gradient clipping strategy will be 'clip2'
"""
warnings.warn("Caution! 'set_gradient_clip' is not recommended "
"and may be deprecated in future! "
"We recommend a new strategy: set 'grad_clip' "
"when initializing the 'optimizer'. "
"This method can reduce the mistakes, please "
"refer to documention of 'optimizer'.")
if not isinstance(clip, ClipGradBase):
raise TypeError(
"'clip' should be an instance of ClipGradBase's derived class")
if program is None:
program = framework.default_main_program()
for op in program.block(0).ops:
if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
"op_namescope"):
warnings.warn(
"'minimize' has been invoked before, this will make 'set_gradient_clip' "
"be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
)
break
if param_list is None:
param_list = program.block(0).all_parameters()
if all(isinstance(elem, six.string_types) for elem in param_list):
param_list = [program.block(0).var(elem) for elem in param_list]
if not all(isinstance(elem, framework.Parameter) for elem in param_list):
raise TypeError(
"'param_list' should be a list of Parameter or basestring(parameter's name)."
)
for param in param_list:
param.gradient_clip_attr = copy.deepcopy(clip)
def append_gradient_clip_ops(param_grads):
context = dict()
for p, g in param_grads:
if g is None:
continue
with p.block.program._optimized_guard(
[p, g]), framework.name_scope('gradient_clip_@CLIP'):
clip_attr = getattr(p, 'gradient_clip_attr', None)
if clip_attr is None:
return param_grads
if not isinstance(clip_attr, ClipGradBase):
raise TypeError(
"clip attribute should be an instance of GradientClipBase")
clip_attr._process_context(context=context, param=p, grad=g)
res = []
param_new_grad_name_dict = dict()
for p, g in param_grads:
if g is None:
continue
with p.block.program._optimized_guard(
[p, g]), framework.name_scope('graident_clip_@CLIP'):
param, new_grad = clip_attr._create_operators(param=p, grad=g)
param_new_grad_name_dict[param.name] = new_grad.name
res.append([param, new_grad])
_correct_clip_op_role_var(res, param_new_grad_name_dict)
return res
# change wrong mapping relation between param & grad in clip op
# Note: This function is sensitive to the time cost of the network with gradient clipping
# and should not be changed easily. If you must change, please test the time cost.
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
block_id_list = []
if len(param_new_grad_name_dict) == 0:
return
for param, grad in params_grads:
if grad is None:
continue
block_id = param.block.idx
if block_id in block_id_list:
continue
block_id_list.append(block_id)
for op in param.block.program.global_block().ops:
if 'op_namescope' in op.all_attrs() and "gradient_clip" in op.attr(
"op_namescope") and op.attr('op_role_var'):
param_name = op.attr('op_role_var')[0]
if param_name in param_new_grad_name_dict:
correct_p_g = [
param_name, param_new_grad_name_dict[param_name]
]
op._set_attr('op_role_var', correct_p_g)
GradientClipBase = ClipGradBase
GradientClipByValue = ClipGradByValue
GradientClipByNorm = ClipGradByNorm
GradientClipByGlobalNorm = ClipGradByGlobalNorm