forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecutor.py
1662 lines (1435 loc) · 70.3 KB
/
executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import logging
import os
import multiprocessing
import sys
import warnings
import numpy as np
from .wrapped_decorator import signature_safe_contextmanager
import six
from .data_feeder import convert_dtype
from .framework import Program, default_main_program, Variable, Operator, convert_np_dtype_to_dtype_
from . import core
from . import unique_name
from . import compiler
from .. import compat as cpt
from .trainer_factory import TrainerFactory
from .trainer_factory import FetchHandlerMonitor
import copy
from . import framework
from .incubate.checkpoint import auto_checkpoint as acp
__all__ = ['Executor', 'global_scope', 'scope_guard']
g_scope = core.Scope()
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
def global_scope():
"""
:api_attr: Static Graph
Get the global/default scope instance. There are a lot of APIs use
:code:`global_scope` as its default value, e.g., :code:`Executor.run`
Returns:
Scope: The global/default scope instance.
Examples:
.. code-block:: python
import paddle
import numpy
paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
"""
return g_scope
def _switch_scope(scope):
global g_scope
ex = g_scope
g_scope = scope
return ex
@signature_safe_contextmanager
def scope_guard(scope):
"""
:api_attr: Static Graph
This function switches scope through python `with` statement.
Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
similar to brackets in programming languages.
If this function is not invoked, all variables and variable names are recorded in the default global scope.
When users need to create variables with the same name,
they need to switch scopes through this function
if they do not want the mapping of variables with the same name to be overwritten.
After switching through the `with` statement,
all variables created in the `with` block will be assigned to a new scope.
Parameters:
scope: The new scope.
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy
paddle.enable_static()
new_scope = paddle.static.Scope()
with paddle.static.scope_guard(new_scope):
paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
numpy.array(new_scope.find_var("data").get_tensor())
"""
ex = _switch_scope(scope)
try:
yield
finally:
_switch_scope(ex)
def as_numpy(tensor, copy=False):
"""
Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
For higher dimensional sequence data, please use LoDTensor directly.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
new_scope = fluid.Scope()
with fluid.scope_guard(new_scope):
fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
tensor = new_scope.find_var("data").get_tensor()
fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
Args:
tensor(Variable): a instance of Tensor
copy(bool, optional): Whether to use deep copy.
Returns:
numpy.ndarray
"""
if isinstance(tensor, core.LoDTensorArray):
return [as_numpy(t) for t in tensor]
if isinstance(tensor, list):
return [as_numpy(t) for t in tensor]
assert isinstance(tensor, core.LoDTensor)
lod = tensor.lod()
if len(lod) > 0:
raise RuntimeError("Some of your fetched tensors hold LoD information. \
They can not be completely cast to Python ndarray. \
Please set the parameter 'return_numpy' as 'False' to \
return LoDTensor itself directly.")
if tensor._is_initialized():
if copy:
return np.array(tensor)
else:
return np.asarray(tensor)
else:
return None
def dtype_is_compatible_with(first, second):
"""
Returns True if the first dtype can be compatible the second one.
Currently, we require the two dtype's have to be same.
Args:
dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
Returns:
True if the two types are same.
"""
if not isinstance(first, core.VarDesc.VarType):
first = convert_np_dtype_to_dtype_(first)
if not isinstance(second, core.VarDesc.VarType):
second = convert_np_dtype_to_dtype_(second)
return first == second
def dimension_is_compatible_with(first, second):
"""
Returns True if the two dimensions are compatible.
A dimension is compatible with the other if:
1. The length of the dimensions are same.
2. Each non-negative number of the two dimensions are same.
3. For negative number or 'None' in a dimension, it means unknown so it
is compatible with any number.
Args:
first (list/tuple): integers representing shape. "None" or negative
number means unknown.
second (list/tuple): integers representing shape. "None" or negative
number means unknown.
Returns:
True if the two dimensions are compatible.
"""
dim_len = len(first)
if dim_len != len(second):
return False
for i in range(dim_len):
if first[i] is None or first[i] < 0:
continue
if second[i] is None or second[i] < 0:
continue
if first[i] != second[i]:
return False
return True
def check_feed_shape_type(var, feed, num_places=1):
"""
Returns True if the variable doesn't require feed check or it is compatible
with the shape and have same dtype as the fed value.
A dimension is compatible with the other if:
1. The length of the dimensions are same.
2. Each non-negative number of the two dimensions are same.
3. For negative number or 'None' in a dimension, it means unknown so it
is compatible with any number.
Args:
var (Variable): the Variable object
feed (LoDTensor): the fed value, which must be a LoDTensor
num_places: an integer value indicating the number of places.
ParallelExecutor will divide data into devices (CPU/GPU) evenly.
Returns:
True if the shape and dtype of variable is compatible with the feed value
Raises:
ValueError: if the shape or dtype of the variable is not compatible with
the feed value
"""
if var.desc.need_check_feed():
diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
if diff_shape is not None:
raise ValueError(
'The fed Variable %r should have dimensions = %d, shape = '
'%r, but received fed shape %r on each device' %
(var.name, len(var.shape), var.shape, diff_shape))
if not dtype_is_compatible_with(feed._dtype(), var.dtype):
var_dtype_format = convert_dtype(var.dtype) if isinstance(
var.dtype, core.VarDesc.VarType) else var.dtype
feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
feed._dtype(), core.VarDesc.VarType) else feed._dtype()
raise ValueError(
'The data type of fed Variable %r must be %r, but received %r' %
(var.name, var_dtype_format, feed_dtype_format))
return True
def has_feed_operators(block, feed_targets, feed_holder_name):
""" Check whether the block already has feed operators.
Return false if the block does not have any feed operators.
If some feed operators have been prepended to the block, check that
the info contained in these feed operators matches the feed_targets
and feed_holder_name. Raise exception when any mismatch is found.
Return true when the block has feed operators with matching info.
Args:
block: a block instance (typically global block of a program)
feed_targets: a dictionary of {feed_target_name: feed_target_data}
feed_holder_name: the name of the variable that holds the data of
all feed targets. The type of this feed_holder variable is
FEED_MINIBATCH, which is essentially vector<LoDTensor>.
Returns:
A boolean value that indicates whether a block has feed operators
that match the info contained in feed_targets and feed_holder_name.
"""
feed_count = 0
for op in block.ops:
if op.desc.type() == 'feed':
feed_count += 1
assert op.desc.input('X')[0] == feed_holder_name
feed_target_name = op.desc.output('Out')[0]
if feed_target_name not in feed_targets:
raise Exception("'feed_targets' does not have {} variable".
format(feed_target_name))
else:
break
if feed_count > 0 and feed_count != len(feed_targets):
raise Exception(
"Feed operators in program desc do not match 'feed_targets'")
return feed_count > 0
def has_fetch_operators(block, fetch_targets, fetch_holder_name):
""" Check whether the block already has fetch operators.
Return false if the block does not have any fetch operators.
If some fetch operators have been appended to the block, check that
the info contained in these fetch operators matches the fetch_targets
and fetch_holder_name. Raise exception when any mismatch is found.
Return true when the block has fetch operators with matching info.
Args:
block: a block instance (typically global block of a program)
fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
fetch_holder_name: the name of the variable that holds the data of
all fetch targets. The type of this fetch_holder variable is
FETCH_LIST, which is essentially vector<LoDTensor>.
Return:
A boolean value that indicates whether a block has fetch operators
that match the info contained in fetch_targets and fetch_holder_name.
"""
fetch_count = 0
for op in block.ops:
if op.desc.type() == 'fetch':
fetch_count += 1
assert op.desc.output('Out')[0] == fetch_holder_name
fetch_target_name = op.desc.input('X')[0]
if fetch_target_name not in [
var.desc.name() for var in fetch_targets
]:
raise Exception("'fetch_targets' does not have {} variable".
format(fetch_target_name))
idx = op.desc.attr('col')
assert fetch_target_name == fetch_targets[idx].desc.name()
if fetch_count > 0 and fetch_count != len(fetch_targets):
raise Exception(
"Fetch operators in program desc do not match 'fetch_targets'")
return fetch_count > 0
def _fetch_var(name, scope=None, return_numpy=True):
"""
Fetch the value of the variable with the given name from the
given scope.
Args:
name(str): name of the variable. Typically, only persistable variables
can be found in the scope used for running the program.
scope(core.Scope|None): scope object. It should be the scope where
you pass to Executor.run() when running your program.
If None, global_scope() will be used. Default None.
return_numpy(bool): whether convert the tensor to numpy.ndarray.
Default True.
Returns:
LodTensor|numpy.ndarray
"""
assert isinstance(name, six.string_types)
if scope is None:
scope = global_scope()
assert isinstance(scope, core._Scope)
var = scope.find_var(_to_name_str(name))
assert var is not None, (
"Cannot find " + name + " in scope. Perhaps you need to make the"
" variable persistable by using var.persistable = True in your"
" program.")
tensor = var.get_tensor()
if return_numpy:
tensor = as_numpy(tensor, copy=True)
return tensor
def _to_name_str(var):
def _to_str(var):
if isinstance(var, Variable):
return var.desc.name()
elif isinstance(var, str):
return var
elif isinstance(var, six.string_types):
return str(var)
elif isinstance(var, Operator):
return str(id(var))
else:
raise TypeError(str(var) + " should be Variable, Operator or str")
# NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
# see comments in _split_optimize_ops_in_fetch_list for more details.
if isinstance(var, tuple):
var = var[0]
if isinstance(var, list):
s = [_to_str(item) for item in var]
return ','.join(s)
else:
return _to_str(var)
def _get_strong_program_cache_key(program, feed, fetch_list):
return str(id(program)) + _get_program_cache_key(feed, fetch_list)
def _get_program_cache_key(feed, fetch_list):
feed_var_names = []
if isinstance(feed, dict):
feed_var_names = list(feed.keys())
elif isinstance(feed, list) or isinstance(feed, tuple):
for i, each in enumerate(feed):
feed_var_names += list(each.keys())
fetch_var_names = list(map(_to_name_str, fetch_list))
return str(feed_var_names + fetch_var_names)
def _as_lodtensor(data, place, dtype=None):
"""
Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
For higher dimensional sequence data, please use LoDTensor directly.
Examples:
>>> import paddle.fluid as fluid
>>> place = fluid.CPUPlace()
>>> exe = fluid.executor(place)
>>> data = np.array(size=(100, 200, 300))
>>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
>>> ...
Args:
data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
data(core.Place): the place of created tensor
dtype(core.VarDesc.VarType|str): the expected data type of created tensor
Returns:
LoDTensor
"""
#NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
if not isinstance(data, np.ndarray):
assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
dtype = convert_dtype(dtype) if isinstance(
dtype, core.VarDesc.VarType) else dtype
if np.isscalar(data):
data = np.array([data]).astype(dtype)
elif isinstance(data, (list, tuple)):
data = np.array(data)
if data.dtype == np.object:
raise TypeError(
"\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
"this means the input data contains nested lists with different lengths. "
"Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
)
data = data.astype(dtype)
else:
raise TypeError(
"Convert data of type {} to Tensor is not supported".format(
type(data)))
# convert numpy.ndarray to tensor
tensor = core.LoDTensor()
tensor.set(data, place)
return tensor
class FetchHandler(object):
def __init__(self, var_dict=None, period_secs=60):
assert var_dict != None
self.var_dict = var_dict
self.period_secs = period_secs
def handler(self, res_dict):
for key in res_dict:
if type(res_dict[key]) is np.ndarray:
sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
sys.stdout.write("\n")
@staticmethod
def help():
print("""
class FetchHandlerExample(FetchHandler):
def handler(self, res_dict):
print(res_dict["auc"])
print("auc: {}, {}".format(res_dict["auc"], time.ctime()))
auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
""")
class Executor(object):
"""
:api_attr: Static Graph
An Executor in Python, supports single/multiple-GPU running,
and single/multiple-CPU running.
Args:
place(fluid.CPUPlace()|fluid.CUDAPlace(n)|None): This parameter represents
which device the executor runs on. When this parameter is None, PaddlePaddle
will set the default device according to its installation version. If Paddle
is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
Returns:
Executor
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import numpy
import os
# Set place explicitly.
# use_cuda = True
# place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# exe = fluid.Executor(place)
# If you don't set place, PaddlePaddle sets the default device.
exe = fluid.Executor()
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
# Run the startup program once and only once.
# Not need to optimize/compile the startup program.
startup_program.random_seed=1
exe.run(startup_program)
# Run the main program directly without compile.
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(train_program,
feed={"X": x},
fetch_list=[loss.name])
# Or, compiled the program and run. See `CompiledProgram`
# for more detail.
# NOTE: If you use CPU to run the program or Paddle is
# CPU version, you need to specify the CPU_NUM, otherwise,
# fluid will use all the number of the logic core as
# the CPU_NUM, in that case, the batch size of the input
# should be greater than CPU_NUM, if not, the process will be
# failed by an exception.
# Set place explicitly.
# if not use_cuda:
# os.environ['CPU_NUM'] = str(2)
# If you don't set place and PaddlePaddle is CPU version
os.environ['CPU_NUM'] = str(2)
compiled_prog = compiler.CompiledProgram(
train_program).with_data_parallel(
loss_name=loss.name)
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
"""
def __init__(self, place=None):
if place is None:
expected_place = framework._current_expected_place()
self.place = expected_place
else:
self.place = place
self.program_caches = dict()
self.ctx_caches = dict()
self.scope_caches = dict()
self.var_caches = dict()
self.pruned_program_caches = dict()
p = core.Place()
p.set_place(self.place)
self._default_executor = core.Executor(p)
self._closed = False
self.pruned_program_scope_caches = dict()
self._auto_checkpoint_name = unique_name.generate(
"__auto_checkpoint_executor__")
def _get_scope_cache(self, program_cache_key):
return self.scope_caches.get(program_cache_key, None)
def _get_ctx_cache(self, program_cache_key):
return self.ctx_caches.get(program_cache_key, None)
def _get_program_cache(self, program_cache_key):
return self.program_caches.get(program_cache_key, None)
def _add_program_cache(self, program_cache_key, program):
self.program_caches[program_cache_key] = program
def _get_pruned_program_cache(self, program_cache_key):
return self.pruned_program_caches.get(program_cache_key, None)
def _add_pruned_program_cache(self, program_cache_key, program):
self.pruned_program_caches[program_cache_key] = program
def _get_pruned_program_scope_cache(self, program_cache_key):
return self.pruned_program_scope_caches.get(program_cache_key, None)
def _add_pruned_program_scope_cache(self, program_cache_key, program):
self.pruned_program_scope_caches[program_cache_key] = program
def _add_ctx_cache(self, ctx_cache_key, ctx):
self.ctx_caches[ctx_cache_key] = ctx
def _add_scope_cache(self, scope_cache_key, scope):
self.scope_caches[scope_cache_key] = scope
def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
fetch_var_name):
tmp_program = program.clone()
global_block = tmp_program.global_block()
if feed_var_name in global_block.vars:
feed_var = global_block.var(feed_var_name)
else:
feed_var = global_block.create_var(
name=feed_var_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
if fetch_var_name in global_block.vars:
fetch_var = global_block.var(fetch_var_name)
else:
fetch_var = global_block.create_var(
name=fetch_var_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
# prepend feed operators
if not has_feed_operators(global_block, feed, feed_var_name):
for i, name in enumerate(feed):
if global_block.has_var(name):
out = global_block.var(name)
global_block._prepend_op(
type='feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
else:
warnings.warn(
"The variable %s is not found in program. It is not declared or is pruned."
% name)
# append fetch_operators
if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
for i, var in enumerate(fetch_list):
assert isinstance(var, Variable) or isinstance(
var, six.string_types), (
"Wrong type for fetch_list[%s]: %s" % (i, type(var)))
global_block.append_op(
type='fetch',
inputs={'X': [var]},
outputs={'Out': [fetch_var]},
attrs={'col': i})
return tmp_program
def _feed_data(self, program, feed, feed_var_name, scope):
# feed var to framework
global_block = program.global_block()
for op in global_block.ops:
if op.desc.type() == 'feed':
feed_target_name = op.desc.output('Out')[0]
cur_feed = feed[feed_target_name]
var = global_block.var(feed_target_name)
if not isinstance(cur_feed, core.LoDTensor):
cur_feed = _as_lodtensor(cur_feed, self.place, var.dtype)
check_feed_shape_type(var, cur_feed)
idx = op.desc.attr('col')
core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
else:
break
def _fetch_data(self, fetch_list, fetch_var_name, scope):
outs = [
core.get_fetch_variable(scope, fetch_var_name, i)
for i in six.moves.range(len(fetch_list))
]
return outs
def _split_optimize_ops_in_fetch_list(self, fetch_list):
"""
Split optimize_ops from fetch_list, which provided to specify program prunning.
Args:
fetch_list(list): The original fetch_list.
Possible types of fetch_list are:
fetch_list = ['loss']
fetch_list = [[sgd, sgd], 'loss']
fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']
Returns:
optimize_ops(list): The optimize operators splited from fetch_list.
fetch_list(list): The updated fetch_list which does not contain optimize operators.
"""
_optimize_ops = []
_fetch_list = []
def _get_targets(_optimize_ops, _fetch_list, item):
if isinstance(item, Operator):
if item._is_optimize_op():
_optimize_ops.append(item)
else:
raise TypeError(
"The operator in fetch_list is not an optimize_op")
elif isinstance(item, Variable) or isinstance(
item, str) or isinstance(item, six.string_types):
_fetch_list.append(item)
else:
raise TypeError(
"The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
type(item))
for item in fetch_list:
# NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
# we should handle tuple and list in fetch_list.
# TODO(zhiqiu): find a better way to handle that.
if isinstance(item, list):
for i in item:
_get_targets(_optimize_ops, _fetch_list, i)
elif isinstance(item, tuple):
for i in item[0]:
_get_targets(_optimize_ops, _fetch_list, i)
else:
_get_targets(_optimize_ops, _fetch_list, item)
return _fetch_list, _optimize_ops
def _prune_program(self,
program,
feed=None,
fetch_list=None,
optimize_ops=None):
"""
Prune operators and variables which are not needed to generate
:code:`fetch_list` and optimize operators.
Prune operators and variables which are needed
to generate variables to be feeded.
Notes: This is a very low level API. Users should not use this API
directly.
Args:
program(Program): the origin program
feed(list|dict): feed dict or list.
fetch_list(list|Variable): A list of variables need to be fetched
optimize_ops(list[Operator]): A list of optimizer operators
Returns:
Program: A new, pruned program.
"""
compiled = isinstance(program, compiler.CompiledProgram)
if compiled:
if program._program:
origin_program = program._program
else:
warnings.warn(
"The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
)
return
else:
origin_program = program
feed_names = []
if isinstance(feed, dict):
feed_names = list(feed.keys())
elif isinstance(feed, list) or isinstance(feed, tuple):
for i, each in enumerate(feed):
feed_names += list(each.keys())
# if optimize_ops is [], all optimize ops in the program is used.
if not optimize_ops:
for block in origin_program.blocks:
for op in block.ops:
if op._is_optimize_op():
optimize_ops.append(op)
targets = fetch_list + optimize_ops
pruned_program = origin_program._prune_with_input(feed_names, targets)
if compiled:
# for compiled program, update the underlying program, re-generate graph,
# and reset the flag so it can be compiled again.
program._program = pruned_program
program._graph = core.Graph(pruned_program.desc)
program._compiled = False
else:
program = pruned_program
return program
def _update_feed(self, program, feed):
"""
Update the feed dict, remove the feed item which is pruned in program.
Notes: This is a very low level API. Users should not use this API
directly.
Args:
program(Program): the pruned program.
feed(list|dict): feed dict or list.
Returns:
feed:(list|dict) updated feed.
"""
compiled = isinstance(program, compiler.CompiledProgram)
if compiled:
if program._program:
global_block = program._program.global_block()
else:
warnings.warn(
"The program holds no _program, maybe it is constructed by graph."
)
else:
global_block = program.global_block()
if isinstance(feed, dict):
for feed_name in list(feed.keys()):
if not global_block.has_var(feed_name):
feed.pop(feed_name)
warnings.warn(
"The variable %s is not found in program. It is not declared or is pruned."
% feed_name)
elif isinstance(feed, list) or isinstance(feed, tuple):
for i, each in enumerate(feed):
for feed_name in list(each.keys()):
if not global_block.has_var(feed_name):
each.pop(feed_name)
warnings.warn(
"The variable %s is not found in program. It is not declared or is pruned."
% feed_name)
return feed
'''
TODO(typhoonzero): Define "no longer use" meaning? Can user create
a new Executor for the same program and run?
TODO(panyx0718): Why ParallelExecutor doesn't have close?
'''
def close(self):
"""
Close the executor. This interface is used for distributed training (PServers mode).
This executor can not be used after calling the interface, because
this interface releases resources associated with the current Trainer.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
# execute training or testing
exe.close()
"""
if not self._closed:
self._default_executor.close()
self._closed = True
def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
return_numpy, return_merged):
from paddle.optimizer.lr import LRScheduler
exe = program._executor
# TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
# instead of program. We will add support for checking Vars in Graph
need_check_feed = program._program is not None
if need_check_feed:
global_block = program._program.global_block()
if isinstance(feed, dict):
feed_tensor_dict = dict()
for feed_name in feed:
feed_tensor = feed[feed_name]
var = global_block.var(feed_name) if need_check_feed else None
if not isinstance(feed_tensor, core.LoDTensor):
# always set to CPU place, since the tensor need to be split
# it is fast in CPU
feed_tensor = _as_lodtensor(feed[feed_name],
core.CPUPlace(), var.dtype
if var else None)
if need_check_feed:
check_feed_shape_type(var, feed_tensor, exe.device_count())
feed_tensor_dict[feed_name] = feed_tensor
exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
elif isinstance(feed, list) or isinstance(feed, tuple):
res = list()
for i, each in enumerate(feed):
if not isinstance(each, dict):
raise TypeError(
"Each element of feed list should be a dict")
res_dict = dict()
for feed_name in each:
tensor = each[feed_name]
var = global_block.var(
feed_name) if need_check_feed else None
if not isinstance(tensor, core.LoDTensor):
tensor = _as_lodtensor(each[feed_name],
program._places[i], var.dtype
if var else None)
if need_check_feed:
check_feed_shape_type(var, tensor)
res_dict[feed_name] = tensor
res.append(res_dict)
exe.feed_tensors_into_local_scopes(res)
if hasattr(program._program, 'lr_sheduler'):
lr_sheduler = program._program.lr_sheduler
assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
lr_value = lr_sheduler()
lr_var = program._program.global_block().vars[lr_sheduler._var_name]
lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
exe.feed_and_split_tensor_into_local_scopes({
lr_sheduler._var_name: lr_tensor
})
fetch_var_names = list(map(_to_name_str, fetch_list))
tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
return as_numpy(tensors) if return_numpy else tensors
def run(self,
program=None,
feed=None,
fetch_list=None,
feed_var_name='feed',
fetch_var_name='fetch',
scope=None,
return_numpy=True,
use_program_cache=False,
return_merged=True,
use_prune=False):
"""
Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
specify the scope to store the :code:`Variables` during the executor running if the scope
is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
Args:
program(Program|CompiledProgram): This parameter represents the :code:`Program` or
:code:`CompiledProgram` to be executed. If this parameter is not provided, that
parameter is None, the program will be set to :code:`fluid.default_main_program()`.
The default is None.
feed(list|dict): This parameter represents the input variables of the model.
If it is single card training, the feed is dict type, and if it is multi-card
training, the parameter feed can be dict or list type variable. If the
parameter type is dict, the data in the feed will be split and sent to
multiple devices (CPU/GPU), that is to say, the input data will be evenly
sent to different devices, so you should make sure the number of samples of
the current mini-batch must be greater than the number of places;
if the parameter type is list, those data are copied directly to each device,
so the length of this list should be equal to the number of places.
The default is None.
fetch_list(list): This parameter represents the variables that need to be returned
after the model runs. The default is None.
feed_var_name(str): This parameter represents the name of the input variable of
the feed operator. The default is "feed".
fetch_var_name(str): This parameter represents the name of the output variable of
the fetch operator. The default is "fetch".
scope(Scope): the scope used to run this program, you can switch
it to different scope. default is :code:`fluid.global_scope()`
return_numpy(bool): This parameter indicates whether convert the fetched variables
(the variable specified in the fetch list) to numpy.ndarray. if it is False,
the type of the return value is a list of :code:`LoDTensor`. The default is True.
use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
If the parameter is True, the model may run faster in the following cases:
the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
and fetch_list variable) of this interface remains unchanged during running.
The default is False.
return_merged(bool): This parameter indicates whether fetched variables (the variables
specified in the fetch list) should be merged according to the execution device dimension.
If :code:`return_merged` is False, the type of the return value is a two-dimensional list
of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
results are variant, please set :code:`return_merged` as False, which denotes that the fetched
results will not be merged. The default is True, but it is just for the compatibility, and may
use False as default value in the future version.
use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
which means the operators and variables in program that generate :code:`feed` and are not
needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
program will not pruned and all the operators and variables will be executed during running.
Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
:code:`use_prune` will be overrided to True, and the program will be pruned.
Returns:
List: The fetched result list.
NOTES:
1. If it is multi-card running and the feed parameter is dict type, the input data
will be evenly sent to different cards. For example, using two GPUs to run the model,
the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
If the number of samples is less than the number of devices, the program will
throw an exception, so when running the model, you should make sure that the
number of samples of the last batch of the data set should be greater than the
number of CPU cores or GPU cards, if it is less than, it is recommended that
the batch be discarded.
2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
results are spliced together in dimension 0 for the same variable values
(variables in fetch_list) on different devices.