forked from MIND-Lab/OCTIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLDA.py
232 lines (202 loc) · 7.17 KB
/
LDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from models.model import Abstract_Model
import numpy as np
from gensim.models import ldamodel
class LDA_Model(Abstract_Model):
def set_default_hyperparameters(self):
"""
Set hyperparameters default values for the model
"""
self.hyperparameters = {
'corpus': None,
'num_topics': 100,
'id2word': None,
'distributed': False,
'chunksize': 2000,
'passes': 1,
'update_every': 1,
'alpha': 'symmetric',
'eta': None,
'decay': 0.5,
'offset': 1.0,
'eval_every': 10,
'iterations': 50,
'gamma_threshold': 0.001,
'minimum_probability': 0.01,
'random_state': None,
'ns_conf': None,
'minimum_phi_value': 0.01,
'per_word_topics': False,
'callbacks': None}
def train_model(self):
"""
Train the model and save all the data
in trained_model
"""
if not self.builded:
self.build_model()
hyperparameters = self.hyperparameters
self.trained_model = ldamodel.LdaModel(
corpus=self.id_corpus,
id2word=self.id2word,
num_topics=hyperparameters["num_topics"],
distributed=hyperparameters["distributed"],
chunksize=hyperparameters["chunksize"],
passes=hyperparameters["passes"],
update_every=hyperparameters["update_every"],
alpha=hyperparameters["alpha"],
eta=hyperparameters["eta"],
decay=hyperparameters["decay"],
offset=hyperparameters["offset"],
eval_every=hyperparameters["eval_every"],
iterations=hyperparameters["iterations"],
gamma_threshold=hyperparameters["gamma_threshold"],
minimum_probability=hyperparameters["minimum_probability"],
random_state=hyperparameters["random_state"],
ns_conf=hyperparameters["ns_conf"],
minimum_phi_value=hyperparameters["minimum_phi_value"],
per_word_topics=hyperparameters["per_word_topics"],
callbacks=hyperparameters["callbacks"])
self.trained = True
return True
def set_hyperparameters(self, hyperparameters):
"""
Set the hyperparameters
Allows parameter alpha to be
a float (in this case alpha will be symmetric)
Parameters
----------
hyperparameters : dictionary
key = name of the hyperparameter
value = value of the hyperparameter
"""
super().set_hyperparameters(hyperparameters)
if isinstance(self.hyperparameters["alpha"], float):
self.hyperparameters["alpha"] = [
self.hyperparameters["alpha"]
] * self.hyperparameters["num_topics"]
def get_word_topic_weights(self):
"""
Return False if the model is not trained,
return the word topic weights matrix otherwise
"""
if self.trained:
return self.trained_model.get_topics()
return None
def get_document_topics(self, document):
"""
Return False if the model is not trained,
return the topic representation of the
document otherwise
Parameters
----------
document : a document in format
list of strings (words)
Returns
-------
the topic representation of the document
"""
if self.trained:
return self.trained_model.get_document_topics(
self.id2word.doc2bow(document))
return False
def get_topics_terms(self, topk=10):
"""
Return False if the model is not trained,
return the topk words foreach topic otherwise
Parameters
----------
topk: top k words to retrieve from each topic
(ordered by weight)
Returns
-------
result : list of lists, each list
contains topk words for the topic
"""
result = []
for i in range(self.hyperparameters["num_topics"]):
topic_words_list = []
for word_tuple in self.trained_model.get_topic_terms(i):
topic_words_list.append(self.id2word[word_tuple[0]])
result.append(topic_words_list)
return result
def get_doc_topic_representation(self, corpus):
"""
Return False if the model is not trained,
return the topic representation of the
corpus otherwise
Parameters
----------
corpus : a corpus
Returns
-------
the topic representation of the documents
of the corpus
"""
if self.trained:
doc_topic_tuples = []
for document in corpus:
doc_topic_tuples.append(self.get_document_topics(document))
result = np.zeros((
self.hyperparameters["num_topics"],
len(doc_topic_tuples)))
for ndoc in range(len(doc_topic_tuples)):
document = doc_topic_tuples[ndoc]
for topic_tuple in document:
result[topic_tuple[0]][ndoc] = topic_tuple[1]
return result
return False
def save(self, model_path, dataset_path=None):
"""
Save the model in a folder.
By default the dataset is not saved
Parameters
----------
model_path : model directory path
dataset_path : dataset path (optional)
"""
super().save(model_path, dataset_path)
if self.trained:
self.trained_model.save(model_path+"/trained_model")
def load(self, model_path, dataset_path=None):
"""
Load the model from a folder.
By default the dataset is not loaded
Parameters
----------
model_path : model directory path
dataset_path : dataset path (optional)
"""
super().load(model_path, dataset_path)
if self.trained:
self.trained_model = ldamodel.LdaModel.load(
model_path+"/trained_model")
def get_output(self, topics=10, topic_word=True, topic_document=True):
"""
Produce output of the model
Parameters
----------
topics : number of most representative words to show
per topic
topic_word : if False doesn't retrieve the topic_word matrix
topic_document : if False doesn't retrieve the topic_document matrix
Returns
-------
result : output in the format
[topics, topic word matrix, topic document matrix]
"""
result = []
if topics:
result.append(self.get_topics_terms(topics))
else:
result.append([])
if topic_word:
result.append(self.get_word_topic_weights())
else:
result.append([])
if topic_document:
result.append(
self.get_doc_topic_representation(
self.dataset.get_corpus()))
else:
result.append([])
return result