forked from geekan/MetaGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocument.py
235 lines (195 loc) · 8.13 KB
/
document.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2023/6/8 14:03
@Author : alexanderwu
@File : document.py
@Desc : Classes and Operations Related to Files in the File System.
"""
from enum import Enum
from pathlib import Path
from typing import Optional, Union
import pandas as pd
from llama_index.core import Document, SimpleDirectoryReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.readers.file import PDFReader
from pydantic import BaseModel, ConfigDict, Field
from tqdm import tqdm
from metagpt.logs import logger
from metagpt.repo_parser import RepoParser
def validate_cols(content_col: str, df: pd.DataFrame):
if content_col not in df.columns:
raise ValueError("Content column not found in DataFrame.")
def read_data(data_path: Path) -> Union[pd.DataFrame, list[Document]]:
suffix = data_path.suffix
if ".xlsx" == suffix:
data = pd.read_excel(data_path)
elif ".csv" == suffix:
data = pd.read_csv(data_path)
elif ".json" == suffix:
data = pd.read_json(data_path)
elif suffix in (".docx", ".doc"):
data = SimpleDirectoryReader(input_files=[str(data_path)]).load_data()
elif ".txt" == suffix:
data = SimpleDirectoryReader(input_files=[str(data_path)]).load_data()
node_parser = SimpleNodeParser.from_defaults(separator="\n", chunk_size=256, chunk_overlap=0)
data = node_parser.get_nodes_from_documents(data)
elif ".pdf" == suffix:
data = PDFReader.load_data(str(data_path))
else:
raise NotImplementedError("File format not supported.")
return data
class DocumentStatus(Enum):
"""Indicates document status, a mechanism similar to RFC/PEP"""
DRAFT = "draft"
UNDERREVIEW = "underreview"
APPROVED = "approved"
DONE = "done"
class Document(BaseModel):
"""
Document: Handles operations related to document files.
"""
path: Path = Field(default=None)
name: str = Field(default="")
content: str = Field(default="")
# metadata? in content perhaps.
author: str = Field(default="")
status: DocumentStatus = Field(default=DocumentStatus.DRAFT)
reviews: list = Field(default_factory=list)
@classmethod
def from_path(cls, path: Path):
"""
Create a Document instance from a file path.
"""
if not path.exists():
raise FileNotFoundError(f"File {path} not found.")
content = path.read_text()
return cls(content=content, path=path)
@classmethod
def from_text(cls, text: str, path: Optional[Path] = None):
"""
Create a Document from a text string.
"""
return cls(content=text, path=path)
def to_path(self, path: Optional[Path] = None):
"""
Save content to the specified file path.
"""
if path is not None:
self.path = path
if self.path is None:
raise ValueError("File path is not set.")
self.path.parent.mkdir(parents=True, exist_ok=True)
# TODO: excel, csv, json, etc.
self.path.write_text(self.content, encoding="utf-8")
def persist(self):
"""
Persist document to disk.
"""
return self.to_path()
class IndexableDocument(Document):
"""
Advanced document handling: For vector databases or search engines.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
data: Union[pd.DataFrame, list]
content_col: Optional[str] = Field(default="")
meta_col: Optional[str] = Field(default="")
@classmethod
def from_path(cls, data_path: Path, content_col="content", meta_col="metadata"):
if not data_path.exists():
raise FileNotFoundError(f"File {data_path} not found.")
data = read_data(data_path)
if isinstance(data, pd.DataFrame):
validate_cols(content_col, data)
return cls(data=data, content=str(data), content_col=content_col, meta_col=meta_col)
try:
content = data_path.read_text()
except Exception as e:
logger.debug(f"Load {str(data_path)} error: {e}")
content = ""
return cls(data=data, content=content, content_col=content_col, meta_col=meta_col)
def _get_docs_and_metadatas_by_df(self) -> (list, list):
df = self.data
docs = []
metadatas = []
for i in tqdm(range(len(df))):
docs.append(df[self.content_col].iloc[i])
if self.meta_col:
metadatas.append({self.meta_col: df[self.meta_col].iloc[i]})
else:
metadatas.append({})
return docs, metadatas
def _get_docs_and_metadatas_by_llamaindex(self) -> (list, list):
data = self.data
docs = [i.text for i in data]
metadatas = [i.metadata for i in data]
return docs, metadatas
def get_docs_and_metadatas(self) -> (list, list):
if isinstance(self.data, pd.DataFrame):
return self._get_docs_and_metadatas_by_df()
elif isinstance(self.data, list):
return self._get_docs_and_metadatas_by_llamaindex()
else:
raise NotImplementedError("Data type not supported for metadata extraction.")
class RepoMetadata(BaseModel):
name: str = Field(default="")
n_docs: int = Field(default=0)
n_chars: int = Field(default=0)
symbols: list = Field(default_factory=list)
class Repo(BaseModel):
# Name of this repo.
name: str = Field(default="")
# metadata: RepoMetadata = Field(default=RepoMetadata)
docs: dict[Path, Document] = Field(default_factory=dict)
codes: dict[Path, Document] = Field(default_factory=dict)
assets: dict[Path, Document] = Field(default_factory=dict)
path: Path = Field(default=None)
def _path(self, filename):
return self.path / filename
@classmethod
def from_path(cls, path: Path):
"""Load documents, code, and assets from a repository path."""
path.mkdir(parents=True, exist_ok=True)
repo = Repo(path=path, name=path.name)
for file_path in path.rglob("*"):
# FIXME: These judgments are difficult to support multiple programming languages and need to be more general
if file_path.is_file() and file_path.suffix in [".json", ".txt", ".md", ".py", ".js", ".css", ".html"]:
repo._set(file_path.read_text(), file_path)
return repo
def to_path(self):
"""Persist all documents, code, and assets to the given repository path."""
for doc in self.docs.values():
doc.to_path()
for code in self.codes.values():
code.to_path()
for asset in self.assets.values():
asset.to_path()
def _set(self, content: str, path: Path):
"""Add a document to the appropriate category based on its file extension."""
suffix = path.suffix
doc = Document(content=content, path=path, name=str(path.relative_to(self.path)))
# FIXME: These judgments are difficult to support multiple programming languages and need to be more general
if suffix.lower() == ".md":
self.docs[path] = doc
elif suffix.lower() in [".py", ".js", ".css", ".html"]:
self.codes[path] = doc
else:
self.assets[path] = doc
return doc
def set(self, filename: str, content: str):
"""Set a document and persist it to disk."""
path = self._path(filename)
doc = self._set(content, path)
doc.to_path()
def get(self, filename: str) -> Optional[Document]:
"""Get a document by its filename."""
path = self._path(filename)
return self.docs.get(path) or self.codes.get(path) or self.assets.get(path)
def get_text_documents(self) -> list[Document]:
return list(self.docs.values()) + list(self.codes.values())
def eda(self) -> RepoMetadata:
n_docs = sum(len(i) for i in [self.docs, self.codes, self.assets])
n_chars = sum(sum(len(j.content) for j in i.values()) for i in [self.docs, self.codes, self.assets])
symbols = RepoParser(base_directory=self.path).generate_symbols()
return RepoMetadata(name=self.name, n_docs=n_docs, n_chars=n_chars, symbols=symbols)