forked from jiayi-ma/LLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLLT_init.m
45 lines (42 loc) · 1.79 KB
/
LLT_init.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function conf = LLT_init(conf)
% VFC Vector Field Consensus
% CONF = LLT_init(CONF) sets the default configuration for LLT.
%
% gamma: Percentage of inliers in the samples. This is an inital value
% for EM iteration, and it is not important. Default value is 0.9.
%
% beta: Paramerter of Gaussian Kernel, k(x, y) = exp(-beta*||x-y||^2).
% Default value is 0.1.
%
% lambda: Represents the trade-off between the goodness of data fit
% and LLT constraint. Default value is 9 * (10^9);.
%
% theta: If the posterior probability of a sample being an inlier is
% larger than theta, then it will be regarded as an inlier.
% Default value is 0.75.
%
% a: Paramerter of the uniform distribution. We assume that the outliers
% obey a uniform distribution 1/a. Default Value is 10.
%
% MaxIter: Maximum iterition times. Defualt value is 500.
%
% ecr: The minimum limitation of the energy change rate in the iteration
% process. Default value is 1e-5.
%
% minP: The posterior probability Matrix P may be singular for matrix
% inversion. We set the minimum value of P as minP. Default value is
% 1e-5.
% Kn: The number of k-nearst neibourhood. Default value is 15.
% M: The number of control point. Default value is 15.
% Authors: Jiayi Ma ([email protected])
% Date: 04/17/2012
if ~isfield(conf,'MaxIter'), conf.MaxIter = 500; end;
if ~isfield(conf,'gamma'), conf.gamma = 0.9; end;
if ~isfield(conf,'beta'), conf.beta = 0.1; end;
if ~isfield(conf,'lambda'), conf.lambda = 9000000000; end;
if ~isfield(conf,'theta'), conf.theta = 0.75; end;
if ~isfield(conf,'a'), conf.a = 10; end;
if ~isfield(conf,'ecr'), conf.ecr = 1e-5; end;
if ~isfield(conf,'minP'), conf.minP = 1e-5; end;
if ~isfield(conf,'Kn'), conf.Kn = 15; end;
if ~isfield(conf,'M'), conf.M = 15; end;